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Classical electromagnetism with magnetic monopoles is not a Hamiltonian field theory because the Jacobi 
identity for the Poisson bracket fails. The Jacobi identity is recovered only if all of the species have the 
same ratio of electric to magnetic charge or if an electron and a monopole can never collide. Without the 
Jacobi identity, there are no local canonical coordinates or Lagrangian action principle. To build a quantum 
field of magnetic monopoles, we either must explain why the positions of electrons and monopoles can 
never coincide or we must resort to new quantization techniques.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

This letter considers the classical gauge-free theory of elec-
tromagnetic fields interacting with electrically and magnetically 
charged matter as a Hamiltonian field theory. We begin with 
a brief history of magnetic monopoles and then describe why 
monopole theories are not Hamiltonian field theories.

The modern theory of magnetic monopoles was developed by 
Dirac [1,2]. He showed that an electron in the magnetic field of a 
monopole is equivalent to an electron whose wave function is zero 
along a semi-infinite ‘string’ extending from the location of the 
monopole. Along this string, the electromagnetic vector potential 
is undefined. The phase of the electron is no longer single valued 
along a loop encircling the Dirac string. In order for observables 
to be single valued, the phase shift must be an integer multiple 
of 2π , so the electric and magnetic charge must be quantized. 
The direction of the string is arbitrary. Changing it corresponds 
to a gauge transformation for the fields and a global phase shift 
for the wave function. To avoid the string entirely, we could in-
stead define the vector potential for multiple patches around the 
monopole [3].

Magnetic monopoles can also be introduced in the hydrody-
namic formulation of non-relativistic quantum mechanics [4]. Since 
this formulation involves fluid-like variables and the fields, it re-
moves the ambiguity associated with the wave function and vector 
potential. Dirac strings are replaced by singular vortex lines.
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Quantum field theories for magnetic monopoles and for dyons 
(particles with both electric and magnetic charge) were developed 
by Cabibbo & Ferrari [5] and Schwinger [6–8]. These theories use 
two nonsingular vector potentials that are related to the fields by 
a convolution with a string function. This string function allows for 
the derivation of the action and equations of motion for interacting 
electron and monopole fields.

Grand unified theories (GUTs) describe the strong, weak, and 
electromagnetic forces as a single theory whose symmetry is spon-
taneously broken at lower energies. If the symmetry is not broken 
in the same direction everywhere, then the fields will be zero at 
some locations. Around these locations, the fields resemble the 
fields of a magnetic monopole [9,10]. Magnetic monopoles are a 
generic feature of GUTs, including string theories [11].

If we assume that a GUT exists, then, shortly after the Big Bang, 
the expanding universe cooled through the critical temperature at 
which the symmetry is broken. There is no reason to assume that 
the symmetry would be broken in the same direction at causally 
disconnected locations. The boundaries between regions with dif-
ferently broken symmetry would produce magnetic monopoles and 
strings [12]. Initial estimates of the number of monopoles pro-
duced this way were much too high [13], but the estimates are 
dramatically reduced by inflation [14].

The existence of astronomical magnetic fields produces a bound 
on the number of monopoles. If there were too many monopoles, 
they could move and screen out large magnetic fields, much like 
electrically charged matter screens out large electric fields in our 
universe [15].

Direct observations of magnetic monopoles remain inconclu-
sive. Two early experiments detected candidate events [16,17], but 
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one was immediately refuted [18] and the other has never been 
replicated. Extensive searches for monopoles have been done in 
matter, in cosmic rays, via catalyzing nucleon decays, and at col-
liders, all with negative results [19].

More information about magnetic monopoles can be found in 
one of the many relevant review articles [20,21] or textbooks [22,
23].

The letter is organized as follows. In Sec. 2, we introduce a gen-
eral and standard matter model for plasmas, the Vlasov-Maxwell 
equations, as a noncanonical Hamiltonian field theory, i.e. one 
without the standard Poisson bracket. We add monopoles to this 
theory in Sec. 3 and show that it no longer satisfies the Jacobi 
identity, a basic premise of Hamiltonian theory. Sec. 4 considers 
whether the interaction between a single electron and a single 
magnetic monopole is Hamiltonian. We discuss the importance of 
the Jacobi identity in Sec. 5 and consider the difficulties in quanti-
zation without the Jacobi identity in Sec. 6. We conclude in Sec. 7.

2. Vlasov-Maxwell equations

We approach the problem of magnetic monopoles from the 
perspective of plasma physics, although our conclusion is general 
and independent of the Vlasov-Maxwell matter model. In plasmas, 
the most important dynamics are the collective motions of the 
particles in collectively generated electromagnetic fields. The rele-
vant dynamical variables are the distribution function f s(x, v, t) for 
each species s, which describes the probability density of the par-
ticles in phase space, and the electric and magnetic fields E(x, t)
and B(x, t). The charge and mass of each species are es and ms . 
The temperatures of plasmas are high enough and the densities 
are low enough that quantum effects are negligible.

The dynamics of the distribution function are governed by a 
mean-field transport equation. The phase space density is constant 
along particle trajectories:

dfs

dt
= ∂ f s

∂t
+ v · ∂ f s

∂x
+ es

ms

(
E + v

c
× B

)
· ∂ f s

∂v
= 0 . (1)

This is combined with Maxwell’s equations for the electric and 
magnetic fields, with sources determined by the moments of the 
distribution function,

ρ =
∑

s

es

∫
f s dv , j =

∑
s

es

∫
f s v dv . (2)

The resulting Maxwell-Vlasov equations are a closed system of 
nonlinear partial integro-differential equations for f s , E , and B . 
Many reductions have been developed to convert these equations 
to more manageable forms like gyrokinetics and magnetohydrody-
namics. Since the Maxwell-Vlasov equations are more general than 
fluid equations, these results are generic for matter models with-
out dissipation.

In 1931, Dirac wrote that “if we wish to put the equations of 
motion [of electromagnetism] in the Hamiltonian form, however, 
we have to introduce the electromagnetic potentials” [1]. Born and 
Infeld showed that this is not entirely true [24,25]. The Vlasov 
description of matter coupled with Maxwell’s equations can be 
written as a Hamiltonian theory without introducing potentials if 
we allow for a noncanonical Poisson bracket (see Refs. [26–30]
for review). The Hamiltonian functional and noncanonical Poisson 
bracket for this system are

H =
∑

s

ms

2

∫
|v|2 f s d3x d3 v + 1

8π

∫
(|E|2 + |B|2)d3x , (3)

{F , G} =
∑∫ ( 1

ms
fs

(∇ F fs · ∂v G fs − ∇G fs · ∂v F fs

)

s

+ es

m2
s c

fs B · (∂v F fs × ∂v G fs

)
+ 4πes

ms
fs

(
G E · ∂v F fs − F E · ∂v G fs

))
d3x d3 v

+ 4πc

∫
(F E · ∇ × G B − G E · ∇ × F B)d3x , (4)

where subscripts such as F fs refer to the functional derivative of F
with respect to f s .

The Hamiltonian, but not the Poisson bracket, needs to be mod-
ified to make this theory relativistic. Replace the |v|2 in the kinetic 
energy term with γ |v|2 = c2

√
1 + |v|2/c2 (e.g. [29]).

It is straightforward to derive the Vlasov equation (1) and the 
dynamical Maxwell equations by setting

∂ f s

∂t
= { f s,H} ,

∂ E

∂t
= {E,H} ,

∂ B

∂t
= {B,H} . (5)

The constraints appear as Casimir invariants:

CE =
∫

hE(x)

(
∇ · E − 4π

∑
s

es

∫
f s d3 v

)
d3x , (6)

CB =
∫

hB(x)∇ · B d3x , (7)

where hE (x) and hB(x) are arbitrary functions. The Poisson bracket 
of CE or CB with anything is zero. Since the time dependence 
of anything is determined by its bracket with the Hamiltonian, 
Casimirs are conserved for any Hamiltonian. If the Casimirs are 
initially zero (as required by the divergence Maxwell’s Equations), 
they will remain zero for all time.

There is an important subtlety to this formulation of electro-
magnetism. If a system is Hamiltonian, its Poisson bracket must 
satisfy the Jacobi identity for any functionals F , G , and H :

{{F , G}, H} + {{G, H}, F } + {{H, F }, G} = 0 . (8)

For the Vlasov-Maxwell system it was shown by direct calculation 
in [27,31] that

{F , {G, H}} + cyc = (9)∑
s

∫
f s ∇ · B

(
∂v F fs × ∂v G fs

) · ∂v H fs d3x d3 v ,

which means the domain of functionals must be restricted to 
solenoidal vector fields, ∇ · B = 0, or equivalently defined on closed 
but not necessary exact two-forms. Such a set of functionals is 
closed with respect to the bracket.

The two Casimirs mentioned above are not symmetric. The 
value of CE could initially be chosen to be anything. If CB �= 0, 
i.e. if ∇ · B �= 0, then the Vlasov-Maxwell system would cease to be 
a Hamiltonian field theory.

This is our first indication that the existence of magnetic 
monopoles is connected to the Hamiltonian nature of classical 
electromagnetism.

3. Vlasov-Maxwell with monopoles

What happens when we add magnetic monopoles?
We must change the Hamiltonian and/or the Poisson bracket so 

they produce the new equations of motion.
The appropriate Hamiltonian, Poisson bracket, and a detailed 

proof of the Jacobi identity were given in Section IV D and Ap-
pendix 3 of [31]. For species s with electric charge es and mag-
netic charge gs the Hamiltonian is identical to (3) and the Poisson 
bracket is
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{F , G} =
∑

s

∫ ( 1

ms
fs

(∇ F fs · ∂v G fs − ∇G fs · ∂v F fs

)
+ es

m2
s c

fs B · (∂v F fs × ∂v G fs

)
− gs

m2
s c

fs E · (∂v F fs × ∂v G fs

)
(10)

+ 4πes

ms
fs

(
G E · ∂v F fs − F E · ∂v G fs

)
+ 4π gs

ms
fs

(
G B · ∂v F fs − F B · ∂v G fs

))
d3x d3 v

+ 4πc

∫
(F E · ∇ × G B − G E · ∇ × F B)d3x .

The Jacobi identity for this bracket is

{F , {G, H}} + cyc = (11)∑
s

1

m2
s

∫
∂v H fs · (∂v F fs × ∂v G fs

)
× f s (es∇ · B − gs∇ · E)d3x d3 v .

For (11) to vanish for arbitrary F , G , H , and f s , we must have

es∇ · B = gs∇ · E , ∀s . (12)

The case when every species has the same ratio of magnetic to 
electric charge is addressed in Section 6.11 of Jackson [32]. Using 
the duality transformation

E ′ = E cos ξ + B sin ξ , B ′ = −E sin ξ + B cos ξ , (13)

e′
s = es cos ξ + gs sin ξ , g′

s = −es sin ξ + gs cos ξ , (14)

with ξ = arctan(gs/es), the magnetic charges are removed and the 
Jacobi identity is satisfied. These monopoles are trivial; this theory 
is equivalent to electromagnetism without monopoles. “The only 
meaningful question is whether all particles have the same ratio of 
magnetic to electric charge” [32].

If not all species have the same ratio of magnetic to electric 
charge, then the only way that the Jacobi identity could be satis-
fied is if ∇ · E = ∇ · B = 0. This is obviously not true in general.

When we add nontrivial magnetic monopoles to the Vlasov-
Maxwell system, the Jacobi identity is not satisfied, so it is not 
a Hamiltonian field theory.

4. One electron and one monopole

Although we originally derived this result for the collective mo-
tion of many electrically and magnetically charged particles, it 
should also hold when there are only a small number of particles. 
Consider the interaction between a single electron with position 
Xe , velocity V e , mass me , electric charge e, and magnetic charge 0
and a single monopole with position Xm , velocity Vm , mass mm , 
electric charge 0, and magnetic charge g .

The Hamiltonian and Poisson bracket for this system follow 
from localizing on particles. Set

f s = δ(x − Xs) δ(v − V s) , s = e,m . (15)

For the Poisson bracket, use the chain rule expressions

∂ F

∂ Xs
= ∇ δF

δ f

∣∣∣∣
(Xs,V s)

and
∂ F

∂V s
= ∂v

δF

δ f

∣∣∣∣
(Xs,V s)

, (16)

where on the left of each expression, F is the function of (Xs, V s)

obtained upon substituting (15) into the functional F on the right. 
This yields
H = 1

2
me V 2

e + 1

2
mm V 2

m + 1

8π

∫ (
|E|2 + |B|2

)
d3x , (17)

{F , G} = 1

me

(
∂ F

∂ Xe
· ∂G

∂V e
− ∂G

∂ Xe
· ∂ F

∂V e

)

+ 1

mm

(
∂ F

∂ Xm
· ∂G

∂Vm
− ∂G

∂ Xm
· ∂ F

∂Vm

)

+ e

m2
e c

B(Xe) ·
(

∂ F

∂V e
× ∂G

∂V e

)

− g

m2
mc

E(Xm) ·
(

∂ F

∂Vm
× ∂G

∂Vm

)
(18)

+ 4πe

me

(
δG

δE

∣∣∣∣
Xe

· ∂ F

∂V e
− δF

δE

∣∣∣∣
Xe

· ∂G

∂V e

)

+4π g

mm

(
δG

δB

∣∣∣∣
Xm

· ∂ F

∂Vm
− δF

δB

∣∣∣∣
Xm

· ∂G

∂Vm

)

+4πc

∫ (
δF

δE
· ∇ × δG

δB
− δG

δE
· ∇ × δF

δB

)
d3x .

This Hamiltonian and Poisson bracket give the expected equa-
tions of motion: the Lorentz force laws and the dynamical Maxwell 
equations, with currents proportional to V s δ(x − Xs). The diver-
gence Maxwell equations, with delta function sources, appear in 
the Casimirs.

The Jacobi identity calculation for (18) can be done directly, but 
it follows easily upon substituting (15) and the second of (16) into 
(11), yielding

{{F , G}, H} + cyc = 12πeg

c
δ(Xe − Xm) (19)

×
(

1

m3
e

∂ F

∂V e
·
(

∂G

∂V e
× ∂ H

∂V e

)

− 1

m3
m

∂ F

∂Vm
·
(

∂G

∂Vm
× ∂ H

∂Vm

))
.

The Jacobi identity is not satisfied globally. There is a singularity 
when the positions of the electron and monopole coincide.

Classically, there is no reason why this coincidence couldn’t 
happen. A stationary monopole produces a radial magnetic field. 
An electron moving directly towards the monopole experiences a 
force eV e × B/c = 0. The electron passes through the monopole 
without experiencing any force at all.

This singularity is very different from the singularity for two 
electrically charged particles. That singularity comes from the 
Hamiltonian, can only be reached with infinite energy, and is re-
moved if the point particles are replaced by continuous charge 
distributions. This singularity comes from the Jacobi identity, re-
quires no energy to reach, and becomes worse if the point particles 
are replaced by continuous distributions because the Jacobi iden-
tity is violated at more locations.

The electromagnetic interaction between a single electron and 
a single magnetic monopole is not, in general, Hamiltonian.

5. Importance of the Jacobi identity

Electromagnetism with magnetic monopoles does not satisfy 
the Jacobi identity. Why should we care?

There is extensive literature on the algebraic and geometric na-
ture of Hamiltonian mechanics (e.g. [33–37]) with phase space 
defined as a symplectic or Poisson manifold. The Jacobi identity 
is central to these results.
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Darboux’s theorem, when applied to Hamiltonian systems, says 
that the Jacobi identity implies the existence of a local transfor-
mation to canonical coordinates on a foliation parameterized by 
Casimir invariants [38]. For electromagnetism, this transformation 
occurs when we introduce the potentials: the Poisson bracket be-
comes simple and the Hamiltonian becomes more complicated.

If we apply an arbitrary coordinate transformation to a bracket 
that satisfies the Jacobi identity, the new bracket will also satisfy 
the Jacobi identity [39]. If the Jacobi identity is not satisfied, then 
no coordinate transform can turn it into a canonical bracket. Local 
canonical coordinates do not exist.

Most fundamental physical theories begin as a Lagrangian ac-
tion principle. If you have a Lagrangian action principle and the 
Legendre transform exists, then you can transform it into a Hamil-
tonian system with a Poisson bracket that satisfies the Jacobi iden-
tity. Contrapose this. If your system has a Poisson bracket that 
doesn’t satisfy the Jacobi identity, then no Lagrangian action prin-
ciple exists.

6. Quantizing without the Jacobi identity

Standard methods of quantization fail without the Jacobi iden-
tity. Typically, we replace dynamical variables with operators 
whose commutation relation algebra matches the algebra of the 
Poisson bracket. However, commutators automatically satisfy the 
Jacobi identity, so it is impossible to match this algebra. Transform-
ing to canonical coordinates first, then quantizing, is impossible 
since canonical coordinates do not exist. Even path integral quanti-
zation is impossible because there is no Lagrangian action principle 
[40,41].

If quantization without the Jacobi identity is so difficult, how 
did Dirac quantize magnetic monopoles [1,2]?

Dirac proceeds by locally transforming to canonical coordinates 
- by locally replacing fields with potentials. This comes at a cost. 
Dirac’s theory has strings along which the electrons’ wavefunctions 
are zero. Although the directions of the strings are arbitrary, the lo-
cations of the ends of the strings are not arbitrary because these 
are the locations of the monopoles. If we consider a monopole 
wave packet instead of a point monopole, the electron must avoid 
each volume element of the wave packet [42]. Dirac implicitly 
assumes that electrons’ and monopoles’ positions could never co-
incide. This claim needs to be justified. If it were true, it could 
restore the Hamiltonian nature of electromagnetism and remove 
the impediment to quantization.

New quantization techniques are needed to build a quantum 
field of magnetic monopoles. When expressed in terms of gauge 
group operators, a violation of the Jacobi identity corresponds to 
a nonzero 3-cocycle, which removes associativity of the operators 
[43–46]. A nonassociative star product for Wigner functions, dou-
bling the size of the phase space to create a Hamiltonian structure 
on the extended space, and the geometric structure of a gerbe 
have been used to address this [47]. Another possible tool is be-
atification, which removes the explicit variable dependence from a 
Poisson bracket [48].

Electromagnetism is often considered to be a long wavelength 
limit of a more fundamental theory with a broken gauge sym-
metry [9,10]. Magnetic monopoles appear when the symmetry is 
broken in a topologically nontrivial way. In future work, we hope 
to write a classical SU(2) theory using an explicitly gauge invariant 
noncanonical Poisson bracket and check if it satisfies the Jacobi 
identity. We would then break the gauge symmetry in a topo-
logically nontrivial way to determine which aspects of symmetry 
breaking are inherently quantum and which are inherited from the 
classical theory.
7. Conclusion

The existence of magnetic monopoles disrupts the Hamilto-
nian nature of classical electromagnetism. When the locations of 
an electron and a monopole coincide, the Jacobi identity for the 
Poisson bracket is violated. This result is most obviously seen in 
plasma physics, where the huge number of particles interacting 
collectively makes collisions between species almost guaranteed.

There are two ways to recover the Jacobi identity, but neither 
is satisfactory. All species could have the same ratio of magnetic to 
electric charge. This is a duality transformation away from the uni-
verse we currently observe without monopoles. Alternatively, we 
could insist that electrons’ and monopoles’ positions never coin-
cide, as Dirac’s theory implicitly assumed. Why can’t monopoles 
collide with ordinary matter? How would this influence our at-
tempts to detect them?

Traditional methods of quantization fail without the Jacobi 
identity, canonical coordinates, or a Lagrangian action principle. 
How should we quantize the interactions between arbitrary col-
lections of electrically and magnetically charged particles?

Problems with the quantum theory of electromagnetism with 
magnetic monopoles have been known for decades [43]. In this 
letter, we showed that these problems are not inherently quantum. 
The quantum theory merely inherits the problems caused by the 
failure of the Jacobi identity for the classical Poisson bracket.

Since there is no experimental evidence, the argument for mag-
netic monopoles is aesthetic. The failure of the Jacobi identity 
taints this beauty. We should remain skeptical of any theory of 
magnetic monopoles that does not address the failure of the Ja-
cobi identity.

Note added in proof

It has recently been shown that the bracket (10) not only violates the Jacobi 
identity, it also does not satisfy the weaker conditions for a twisted Poisson bracket 
[49].
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