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A B S T R A C T

Cahn–Hilliard–Navier–Stokes (CHNS) systems describe flows with two-phases, e.g., a liquid with bubbles.
Obtaining constitutive relations for general dissipative processes for such systems, which are thermodynam-
ically consistent, can be a challenge. We show how the metriplectic 4-bracket formalism (Morrison and
Updike, 2024) achieves this in a straightforward, in fact algorithmic, manner. First, from the noncanonical
Hamiltonian formulation for the ideal part of a CHNS system we obtain an appropriate Casimir to serve as
the entropy in the metriplectic formalism that describes the dissipation (e.g. viscosity, heat conductivity and
diffusion effects). General thermodynamics with the concentration variable and its thermodynamics conjugate,
the chemical potential, are included. Having expressions for the Hamiltonian (energy), entropy, and Poisson
bracket, we describe a procedure for obtaining a metriplectic 4-bracket that describes thermodynamically
consistent dissipative effects. The 4-bracket formalism leads naturally to a general CHNS system that allows
for anisotropic surface energy effects. This general CHNS system reduces to cases in the literature, to which
we can compare.
1. Introduction

The well-known Navier–Stokes equations govern the motion of a
single-phase fluid. However, in the case of two-phase fluids, chemical
reactions, changes of phase, and migration between substances of
phases become significant and cannot be disregarded. J. W. Cahn and
J. E. Hilliard were the first to formulate the mathematical equations
that describe phase separation in a such a binary fluid [1]. Here we
investigate generalizations that combine the Cahn-Hilliard equation
with equations that describe the dynamics of fluid flow, referred to
as Cahn-Hilliard-Navier–Stokes (CHNS) systems. CHNS systems aim to
describe the hydrodynamic properties of a mixture of two phases such
as bubbles in a liquid. To narrow down the already broad scope, we
assume that the two fluids share the same velocity field, yet we allow
for both extended thermodynamics and diffusive interfaces between the
two phases.

A substantial hurdle in developing CHNS type systems, systems
with a variety of constitutive relations, is to ensure thermodynamic
consistency, i.e., adherence to the first law of thermodynamics, which
in this context is to produce a set of dynamical equations that conserve
energy, and the second law which in this context means the dynamical
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production of entropy, ensuring the relaxation (asymptotic stability)
to thermodynamic equilibrium. Here we propose an algorithm for
constructing such systems, an algorithm that produces a large set of
CHNS systems.

The algorithm has four steps: (i) Select a set of dynamical variables.
For a CHNS system these will be 𝜓 ∶= {𝐦 = 𝜌𝐯, 𝜌, 𝑐 = 𝜌𝑐, 𝜎 = 𝜌𝑠}, which
are the momentum density, mass density, volume concentration of one
of the constituents, and entropy density, respectively. (ii) The next step
is to select energy and entropy functionals, 𝐻 and 𝑆, dependent on the
dynamical variables. The choice of these functionals is based on the
physics of the phenomena one wishes to describe. (iii) The third step
of the algorithm is to obtain the noncanonical Poisson bracket [see 2]
of the ideal (nondissipative) part of the theory that has the chosen
entropy as a Casimir invariant. Since the work of Morrison and Greene
[3], Poisson brackets for a great many systems, including fluid and
magnetofluid systems, have been found [e.g. 4–8]. Thus, this step may
be immediate. Alternatively, it may be achieved by a coordinate change
from a known Hamiltonian theory in order to align with the chosen en-
tropy functional. In either case, we obtain at this stage a noncanonical
Hamiltonian system. (iv) The final step is to construct a metriplectic
vailable online 24 July 2024
167-2789/© 2024 Elsevier B.V. All rights are reserved, including those for text and

https://doi.org/10.1016/j.physd.2024.134303
Received 22 February 2024; Received in revised form 17 July 2024; Accepted 19 J
data mining, AI training, and similar technologies.

uly 2024

https://www.elsevier.com/locate/physd
https://www.elsevier.com/locate/physd
mailto:morrison@physics.utexas.edu
https://doi.org/10.1016/j.physd.2024.134303
https://doi.org/10.1016/j.physd.2024.134303
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2024.134303&domain=pdf


Physica D: Nonlinear Phenomena 468 (2024) 134303A. Zaidni et al.

c

a
i
i
t
o
v
i
w
o
o
t
s
a
s
w
s
c
a

o
v
t
a
d
o
r
w
i
o
i
f
T
S
a
i
i
s
s
o
o
t
b
t
b
s
f
v
S
i
o

2

f
N
a

g
f

𝛺

𝑀

H
o
i
d
a
o
m
w
w
i
T
i
i

f
i
p
v
s
d
t
T
t

𝑠

w
i
a
t
p
d
4

𝛬

w

4-bracket as described in [9]. Although there are standard metriplectic
4-bracket constructions, there is freedom at this last step to describe a
variety of types of dissipation. However, a natural choice follows upon
consideration of the form of an early metriplectic bracket [10]. Given
𝐻 , 𝑆, and the 4-bracket, the dynamical system with thermodynamically
onsistent dissipation is produced.

We apply the algorithm to two cases. First, in Section 2, we consider
system where the fluid thermodynamics is extended by allowing the

nternal energy to depend on a concentration variable, with the chem-
cal potential being its thermodynamic dual. Because Gibbs introduced
he notion of chemical potential, we refer to the Hamiltonian version
f this fluid systems as the Gibbs–Euler (GE) system and the dissipative
ersion as the Gibbs-Navier–Stokes (GNS) system. It is a thermodynam-
cally consistent version of the compressible Navier–Stokes equations
ith the inclusion of this concentration variable for describing a sec-
nd phase of the fluid. The GNS system generalizes the early work
f Eckart [11,12] and the treatment in [13]; it allows for all possible
hermodynamics fluxes. Next, in Section 3, a general form of CHNS
ystem is produced, a form that models surface tension effects and
llows for diffuse interfaces. Our work is motivated in large part by the
ubstantial works of Anderson et al. [14] and Guo and Lin [15], which
e generalize by obtaining a class of systems that includes theirs as

pecial cases. There is a huge literature on this topic and these papers
ontain many important references to previous work. [Also, see 16, for
recent review.]

The GNS system of Section 2 serves as a straightforward example
f our algorithm. In Section 2.1 we describe the set of dynamical
ariables, properties of the system, and the energy and entropy func-
ionals 𝐻 and 𝑆. This amounts to the first and second steps of the
lgorithm. Then in Section 2.2 the Hamiltonian formulation of the
issipation free part of the system is presented. This is the third step
f the algorithm where the Poisson bracket is obtained, after a brief
eview of the noncanonical Hamiltonian formalism. Given the early
ork of Morrison and Greene [3] and the classification of extensions

n [5], this step is immediate. Based on the early and recent works
f Morrison [10] and [9] the fourth step of the algorithm is also
mmediate. In Section 2.3 we first review the metriplectic 4-bracket
ormalism and present the realization that applies for the GNS system.
hus, the thermodynamically consistent GNS system is determined. In
ection 2.4 we obtain the metriplectic 2-bracket equations of motion,
nd the determined fluxes and affinities, making connection to standard
rreversible thermodynamics. Using the results of Section 2, we proceed
n Section 3 to obtain the main result of the paper, our general CHNS
ystem that can describe diffuse interface effects. The first and second
teps of our algorithm are taken in Section 3.1, while the third step,
btaining the correct Poisson bracket, is undertaken in Section 3.2. In
rder to complete this step, one must find the Poisson bracket for which
he entropy of the second step is a Casimir invariant, which we find can
e achieved by a simple coordinate transformation. The fourth step of
he algorithm is taken in Section 3.3. Here a choice of metriplectic 4-
racket gives a general class of thermodynamically consistent CHNS
ystems, a class that contains previous results as special cases. The
ormalism also shows how one can transform to a simple entropy
ariable at the expense of a more complicated internal energy. As in
ection 2, in Section 3.4 we reduce to the metriplectic 2-bracket. Finally
n Section 4 we briefly summarize and make a few comments about
ngoing and future work.

. Metriplectic framework and the Gibbs-Navier–Stokes system

In this section we describe general features of the metriplectic
ramework in the context of the GNS system, a generalization of the
avier–Stokes equations that includes the dual thermodynamical vari-
bles of concentration and chemical potential.
2

2

2.1. Description of the Gibbs-Navier–Stokes system

The GNS for 2 phase flow proceeds on familiar ground [11–13].
It amounts to the single phase thermodynamic Navier–Stokes system
or as it is sometimes called the Fourier Navier–Stokes system with the
dispersed phase described by the addition of a concentration variable,
𝑐, giving the set of dynamical variables 𝜓 = {𝐯, 𝜌, 𝑐, 𝑠}. Here we review
lobal aspects of this known system, before showing how it emerges
rom the metriplectic formalism.

We suppose the mixture of two phases are contained in a volume
, and we consider the following global quantities and their evolution:

= ∫𝛺
𝜌, 𝑀̇ = 0, (1)

𝐏 = ∫𝛺
𝜌 𝐯, 𝐏̇ = −∫𝜕𝛺

𝐽𝐦 ⋅ 𝐧, (2)

𝐻 = ∫𝛺
𝜌
2
|𝐯|2 + 𝜌 𝑢(𝜌, 𝑠, 𝑐), 𝐻̇ = −∫𝜕𝛺

𝐉𝑒 ⋅ 𝐧, (3)

𝐶 = ∫𝛺
𝜌 𝑐, 𝐶̇ = −∫𝜕𝛺

𝐉𝑐 ⋅ 𝐧, (4)

𝑆 = ∫𝛺
𝜌 𝑠, 𝑆̇ = −∫𝜕𝛺

𝐉𝑠 ⋅ 𝐧 + ∫𝛺
𝑠̇𝑝𝑟𝑜𝑑 . (5)

ere 𝜌 is the density of the mixture, 𝐯 is the mass-averaged velocity
f the mixture, 𝑠 is the specific entropy, and the phase variable 𝑐
s the specific concentration (dimensionless mass concentration) that
etermines how much of the dispersed phase of the mixture is present
t a point 𝐱 ∈ 𝛺 ⊂ R3. The variable 𝑐 = 𝜌𝑐 is the mass density
f the dispersed phase. The functionals 𝑀 , 𝑃 , 𝐻 and 𝑆 are the total
ass, momentum, energy, and entropy of the mixture, respectively,
hile 𝐶 is the total mass of one of the constituents. For convenience
e will omit the incremental volume element for integrations over 𝛺,

.e., ∫𝛺 = ∫𝛺 𝑑
3𝑥 and use an over dot to mean the total derivative 𝑑∕𝑑𝑡.

he local thermodynamics of the mixture is described by 𝑢(𝜌, 𝑠, 𝑐), the
nternal energy per unit mass. For convenience the gravitational force
s not considered, although its inclusion is straightforward.

Quantities in the time derivatives of the basic functionals are as
ollows: 𝐧 is the unit outward normal vector of the boundary 𝜕𝛺, 𝐉𝑐
s the phase field flux, which depends on the gradient of the chemical
otential, 𝐽𝐦 is the stress tensor – surface forces – due to pressure and
iscosity, 𝐉𝑒 the energy flux that contains the rate of work done by the
urface forces (external energy), the rate of heat transfer and the rate of
iffusivity in the phase field (internal energy), 𝐉𝑠 is the net entropy flux
hrough the boundary, and 𝑠̇𝑝𝑟𝑜𝑑 is the local rate of entropy production.
he second law of thermodynamics is expressed by the requirement
hat 𝑠̇𝑝𝑟𝑜𝑑 is non-negative.

For the GNS system the fluxes are given by

𝐉𝑐 = −𝐷̄ ⋅ ∇𝜇, (6)

𝐽𝐦 = 𝑝 𝐼 − ̄̄𝛬 ∶ ∇𝐯, (7)

𝐉𝑒 = −𝐯 ⋅ ̄̄𝛬 ∶ ∇𝐯 − 𝜅̄ ⋅ ∇𝑇 − 𝜇𝐷̄ ⋅ ∇𝜇, (8)

𝐉𝑠 = − 𝜅̄
𝑇

⋅ ∇𝑇 , (9)

̇ 𝑝𝑟𝑜𝑑 = 1
𝑇

[

∇𝐯 ∶ ̄̄𝛬 ∶ ∇𝐯 + 1
𝑇

∇𝑇 ⋅ 𝜅̄ ⋅ ∇𝑇 + ∇𝜇 ⋅ 𝐷̄ ⋅ ∇𝜇
]

≥ 0, (10)

here 𝑝 is the pressure, 𝑇 is the temperature, 𝐼 is the unit tensor, 𝜅̄
s the thermal conductivity tensor, 𝐷̄ is the diffusion tensor, which
long with 𝜅̄ is assumed to be a symmetric and positive definite 2-
ensor, and 𝜇 is the chemical potential. We allow the possibility that
henomenological quantities such as 𝜅̄ and 𝐷̄ can depend on the
ynamical variables. Here, ̄̄𝛬 is the viscosity 4-tensor, the usual rank
isotropic Cartesian tensor given by

𝑖𝑗𝑘𝑙 = 𝜂
(

𝛿𝑖𝑙𝛿𝑗𝑘 + 𝛿𝑗𝑙𝛿𝑖𝑘 −
2
3
𝛿𝑖𝑗𝛿𝑘𝑙

)

+ 𝜁 𝛿𝑖𝑗𝛿𝑘𝑙 , (11)

ith viscosity coefficients 𝜂 and 𝜁 and 𝑖, 𝑗, 𝑘 and 𝑙 taking on values 1,
, 3. Note, we use boldface as in the fluxes 𝐉 , 𝐉 , and 𝐉 to denote
𝑐 𝑒 𝑠
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vectors, an over bar as in 𝐽𝐦 to denote rank-2 tensors, and a double
ver bar as in ̄̄𝛬 to denote rank-4 tensors. A single ‘‘ ⋅ ’’ is used for

neighboring contractions, e.g., (𝐷̄⋅∇𝜇)𝑖 = 𝐷𝑖𝑗𝜕𝑗𝜇 and we use the double
dot convention, e.g., for the stress tensor ( ̄̄𝛬 ∶∇𝐯)𝑖𝑗 = 𝛬𝑖𝑗𝑘𝑙𝜕𝑘𝑣𝑙, where
repeated indices are summed over.

The volume density variables are 𝜓 = (𝐦 ∶= 𝜌𝐯, 𝜌, 𝑐 ∶= 𝜌𝑐, 𝜎 ∶= 𝜌𝑠),
where 𝐦 is the momentum density, 𝜎 is entropy per unit volume and 𝑐
is the concentration per unit volume. The local energy per unit volume
is given by

𝑒 =
|𝐦|

2

2𝜌
+ 𝜌𝑢(𝜌, 𝑠, 𝑐). (12)

From the specific internal energy, 𝑢(𝜌, 𝑠, 𝑐), we have the thermodynamic
relations

d𝑢 = 𝑇 d𝑠 +
𝑝
𝜌2

d𝜌 + 𝜇d𝑐, (13)

where

𝑇 = 𝜕𝑢
𝜕𝑠
, 𝑝 = 𝜌2 𝜕𝑢

𝜕𝜌
, 𝜇 = 𝜕𝑢

𝜕𝑐
. (14)

Given the content of this section, we have established the first step
f our algorithm for the GNS system, the determination of the dynam-
cal variables 𝜓 = {𝐦 = 𝜌𝐯, 𝜌, 𝑐 = 𝜌𝑐, 𝜎 = 𝜌𝑠} or alternatively the set
𝐯, 𝜌, 𝑐, 𝑠), and the second step of our algorithm by making the choices
f Hamiltonian 𝐻 of (3) and entropy 𝑆 of (5). In the next section,
.2, we proceed to the third step of the algorithm by obtaining the
amiltonian structure for this system. This system without dissipation

s the GE system.

.2. Noncanonical Poisson bracket of the Gibbs-Euler system

Given that the mixture is assumed to be confined in the domain 𝛺,
he Eulerian scalars (volume forms) (𝜌, 𝑐, 𝜎) are functions from space–
ime 𝛺 ↦ R → R, while the vector field 𝐦 maps 𝛺×R ↦ 𝑇𝛺, where 𝑇𝛺
tands for the tangent bundle of the manifold 𝛺. We will forgo formal
eometric considerations and suppose our infinite-dimensional phase
pace has coordinates 𝜓 = (𝐦, 𝜌, 𝑐, 𝜎) and observables are functionals
hat map 𝜓 ↦ R at each fixed time. We will denote the space of
uch functionals by . Then a Poisson bracket is a bilinear operator
×  ↦ R that fulfills the Leibniz rule and is a realization of a Lie

lgebra [see e.g. 17, chap. 14]. The Leibniz rule follows from that for
he variational or functional derivative of 𝐹 ∈ , defined by

𝐹 [𝜓 ; 𝛿𝜓) = lim
𝜖→0

𝐹 (𝜓 + 𝜖𝛿𝜓) − 𝐹 (𝜓)
𝜖

= ∫𝛺
𝛿𝐹
𝛿𝜓

𝛿𝜓

where 𝛿𝐹∕𝛿𝜓 is the functional derivative. This expression can be
iewed as the directional derivative of a functional 𝐹 at 𝜓 in the

direction 𝛿𝜓 [see, e.g., 2, for a formal review of these notions].
The appropriate Poisson bracket, defined on two functionals 𝐹 ,𝐺 ∈

, for the GE system is the following:

{𝐹 ,𝐺} = −∫𝛺
𝐦 ⋅

[

𝐹𝐦 ⋅ ∇𝐺𝐦 − 𝐺𝐦 ⋅ ∇𝐹𝐦
]

+ 𝜌
[

𝐹𝐦 ⋅ ∇𝐺𝜌 − 𝐺𝐦 ⋅ ∇𝐹𝜌
]

+ 𝜎
[

𝐹𝐦 ⋅ ∇𝐺𝜎 − 𝐺𝐦 ⋅ ∇𝐹𝜎
]

+ 𝑐
[

𝐹𝐦 ⋅ ∇𝐺𝑐 − 𝐺𝐦 ⋅ ∇𝐹𝑐
]

, (15)

where we compactified our notation by defining 𝐹𝐦∶= 𝛿𝐹∕𝛿𝐦, 𝐹𝜌∶=
𝐹∕𝛿𝜌, etc., the functional derivatives with respect to the various coor-
inates 𝜓 . That this is the appropriate Poisson bracket is immediate; it
s the Lie-Poisson bracket originally given by Morrison and Greene [3]
ith the addition of the last line of (15) involving the concentration,
nother volume density variable 𝑐. Adding such a dynamical variable
s common place in the fluid modeling of plasmas over the last decades
nd fits within the general theory for extension given by Thiffeault
nd Morrison [5]. By construction we have a Poisson bracket that
s a bilinear, antisymmetric, and either by the extension theory or a
elatively easy direct calculation using the techniques of [4] it can be
hown to satisfy the Jacobi identity, i.e.,

{𝐹 ,𝐺},𝐻} + {{𝐻,𝐹 }, 𝐺} + {{𝐺,𝐻}, 𝐹 } = 0, (16)
3

or all 𝐹 ,𝐺,𝐻 ∈ . The Leibniz property, which is required for the
oisson bracket to generate a vector field, is built into the definition of
unctional derivative.

Upon inserting any functional of 𝜓 , say an observable 𝑜, into the
Poisson bracket its evolution is determined by

𝜕𝑡𝑜 = {𝑜,𝐻}, (17)

where the Hamiltonian functional is the total energy of the system,
where we rewrite (3) as follows:

𝐻[𝜌,𝐦, 𝜎, 𝑐] = ∫𝛺
𝑒 = ∫𝛺

|𝐦|

2

2𝜌
+ 𝜌𝑢

(

𝜌, 𝜎
𝜌
, 𝑐
𝜌

)

. (18)

In (17) and henceforth we use the shorthand 𝜕𝑡 = 𝜕∕𝜕𝑡. Using the
following functional derivatives:

𝐻𝜌 = −|𝐯|2∕2 + 𝑢 + 𝑝∕𝜌 − 𝑠𝑇 − 𝑐𝜇, 𝐻𝐦 = 𝐯, 𝐻𝜎 = 𝑇 , 𝐻𝑐 = 𝜇, (19)

the bracket form of (17) gives the ideal two-phase flow system

𝜕𝑡𝐯 = {𝐯,𝐻} = −𝐯 ⋅ ∇𝐯 − ∇𝑝∕𝜌, (20)

𝜕𝑡𝜌 = {𝜌,𝐻} = −𝐯 ⋅ ∇𝜌 − 𝜌∇ ⋅ 𝐯, (21)

𝜕𝑡𝑐 = {𝑐,𝐻} = −𝐯 ⋅ ∇𝑐 − 𝑐∇ ⋅ 𝐯, (22)

𝑡𝜎 = {𝜎,𝐻} = −𝐯 ⋅ ∇𝜎 − 𝜎∇ ⋅ 𝐯. (23)

ere we have dropped surface terms arising from integration by parts
nd have used 𝛿𝜌(𝐱)∕𝛿𝜌(𝐱′) = 𝛿(𝐱−𝐱′). Eqs. (20)–(22) can also be written
asily using, e.g., D𝜌∕D𝑡 ∶= 𝜕𝜌∕𝜕𝑡+𝐯 ⋅∇𝜌. These equations comprise the
E system.

Casimir invariants are special functionals C that satisfy

𝐹 ,C} = 0 ∀𝐹 ∈ , (24)

nd thus are constants of motion for any Hamiltonian. From (15) we
btain the following equations that a Casimir functional C must satisfy:

⋅ (𝜌C𝐦) = ∇ ⋅ (𝜎 C𝐦) = ∇ ⋅ (𝑐 C𝐦) = 0, (25)

nd

𝑗∇C𝑚𝑗 + 𝜕𝑗 (𝐦C𝑚𝑗 ) + 𝜌∇C𝜌 + 𝜎∇C𝜎 + 𝑐∇C𝑐 = 0, (26)

here we use the shorthand 𝛿C∕𝛿𝐦 ∶= C𝐦, 𝛿C∕𝛿𝜌 ∶= C𝜌, etc. and
ummation of repeated indices is assumed. For the purpose at hand we
ssume C is independent of 𝐦, yielding the single condition

∇C𝜌 + 𝜎∇C𝜎 + 𝑐∇C𝑐 = 0. (27)

q. (27) is satisfied by

= ∫𝛺
(𝜌, 𝜎, 𝑐) (28)

or any  that is Euler homogeneous of degree one, i.e., satisfies

(𝜆𝜌, 𝜆𝜎, 𝜆𝑐) = 𝜆(𝜌, 𝜎, 𝑐). (29)

he proof of this is straightforward.
To complete the third step of our algorithm, the entropy functional

ust be chosen from the set of Casimir invariants. Writing the Euler
omogeneous integrand as

(𝜌, 𝜎, 𝑐) = 𝜌𝑓 (𝜎∕𝜌, 𝑐∕𝜌)

t is clear that

= ∫𝛺
𝜌 𝑠 = ∫𝛺

𝜎 (30)

ies in our set of Casimirs. This quantity was first shown to be a Casimir
or the ideal fluid in [4] and used for the thermodynamically consistent
avier–Stokes metriplectic system in [10]. We note in passing, for other

heories that might have a nontraditional dynamical equilibrium play-
ng the role of thermodynamic equilibrium, one may wish to choose
nother Casimir.
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2.3. Metriplectic 4-bracket for the Gibbs-Navier–Stokes system

Now let us turn to our fourth and final step of the algorithm,
construction of the metriplectic 4-bracket. To this end we review the
formalism of [9] in general terms and then apply it to the GNS system,
which is a generalization of an example given in that work.

2.3.1. General metriplectic 4-bracket dynamics
The metriplectic 4-bracket theory was introduced by Morrison and

Updike [9] to describe dissipative dynamics. Let us briefly recall the
metriplectic 4-bracket description in infinite dimensions. In this de-
scription, we consider the dynamics of classical field theories with
multi-component fields

𝜒(𝑧, 𝑡) =
(

𝜒1(𝑧, 𝑡), 𝜒2(𝑧, 𝑡),… , 𝜒𝑀 (𝑧, 𝑡)
)

(31)

defined on 𝑧 = (𝑧1, 𝑧2,… , 𝑧𝑁 ) for times 𝑡 ∈ R. Here we use 𝑧 to be
a label space coordinate with the volume element 𝑑𝑁𝑧, but with the
domain unspecified. In fluid mechanics this domain would be 𝛺, the
3-dimensional domain occupied by the fluid and recall we used 𝐱 for
the coordinate of this point. In general we suppose that 𝜒1,… , 𝜒𝑀 are
real-valued functions of 𝑧 and 𝑡. Given the space of functionals of 𝜒 , ,
we define 4-bracket as an operator

( ⋅, ⋅ ; ⋅, ⋅ )∶ ×  ×  ×  →  (32)

such that for any four functionals 𝐹 ,𝐾,𝐺,𝑁 ∈  we have

(𝐹 ,𝐺;𝐾,𝑁) = ∫ 𝑑𝑁𝑧∫ 𝑑𝑁𝑧′∫ 𝑑𝑁𝑧′′∫ 𝑑𝑁𝑧′′′ 𝑅̂𝛼𝛽𝛾𝛿

× 𝛿𝐹
𝛿𝜒𝛼(𝑧)

𝛿𝐺
𝛿𝜒𝛽 (𝑧′)

𝛿𝐾
𝛿𝜒𝛾 (𝑧′′)

𝛿𝑁
𝛿𝜒𝛿 (𝑧′′′)

, (33)

where 𝑅̂𝛼𝛽𝛾𝛿(𝑧, 𝑧′, 𝑧′′, 𝑧′′′) is a 4-tensor functional operator with coordi-
nate form given by the following integral kernel:

𝑅̂𝛼𝛽𝛾𝛿(𝑧, 𝑧′, 𝑧′′, 𝑧′′′)[𝜒] = 𝑅̂(𝐝𝜒𝛼(𝑧),𝐝𝜒𝛽 (𝑧′),𝐝𝜒𝛾 (𝑧′′),𝐝𝜒𝛿(𝑧′′))[𝜒(𝑧)], (34)

where 𝛼, 𝛽, 𝛾, 𝛿 range over 1, 2,… ,𝑀 . The 4-bracket is assumed to
satisfy the following proprieties:
(i) Linearity in all arguments, e.g., for all 𝜆 ∈ R

(𝐹 + 𝜆𝐻,𝐾;𝐺,𝑁) = (𝐹 ,𝐾;𝐺,𝑁) + 𝜆(𝐻,𝐾;𝐺,𝑁) (35)

(ii) The algebraic symmetries

(𝐹 ,𝐾;𝐺,𝑁) = −(𝐾,𝐹 ;𝐺,𝑁) (36)

(𝐹 ,𝐾;𝐺,𝑁) = −(𝐹 ,𝐾;𝑁,𝐺) (37)

(𝐹 ,𝐾;𝐺,𝑁) = (𝐺,𝑁 ;𝐹 ,𝐾) (38)

(iii) Derivation in all arguments, e.g.,

(𝐹𝐻,𝐾;𝐺,𝑁) = 𝐹 (𝐻,𝐾;𝐺,𝑁) + (𝐹 ,𝐾;𝐺,𝑁)𝐻. (39)

Here, as usual, 𝐹𝐻 denotes point-wise multiplication. In addition, to
ensure entropy production we require

𝑆̇ = (𝑆,𝐻 ;𝑆,𝐻) ≥ 0. (40)

Metriplectic 4-brackets that satisfy (35)–(40) are called minimal metripl
ectic. In Section 2.3.2 we will give a construction that ensures such
appropriate positive semidefiniteness.

The minimal metriplectic properties of metriplectic 4-brackets are
reminiscent of the algebraic properties possessed by a curvature ten-
sor. In fact, every Riemannian manifold naturally has a metriplec-
tic 4-bracket, and (𝑆,𝐻 ;𝑆,𝐻) provides a notion of sectional curva-
ture [see 9].

From the metriplectic 4-bracket (33), the dissipative dynamics of an
observable 𝑜 is generated as follows:

𝜕𝑡𝑜 = (𝑜,𝐻 ;𝑆,𝐻) = 𝑑𝑁𝑧 𝑑𝑁𝑧′ 𝑑𝑁𝑧′′ 𝑑𝑁𝑧′′′ 𝑅̂𝛼𝛽𝛾𝛿
4

∫ ∫ ∫ ∫
× 𝛿𝑜
𝛿𝜒𝛼(𝑧)

𝛿𝐻
𝛿𝜒𝛽 (𝑧′)

𝛿𝑆
𝛿𝜒𝛾 (𝑧′′)

𝛿𝐻
𝛿𝜒𝛿(𝑧′′′)

. (41)

f we choose 𝑜 to be the Hamiltonian 𝐻 , then 𝐻̇ = (𝐻,𝐻 ;𝑆,𝐻) ≡ 0 by
he antisymmetry condition of (36). If we choose 𝑜 to be the entropy
, then 𝑆̇ = (𝑆,𝐻 ;𝑆,𝐻) ≥ 0 by (40).

The dissipative dynamics generated by the 4-bracket on our set of
ield variables 𝜒 is given by

𝑡𝜒
𝛼(𝑧) = (𝜒𝛼 ,𝐻 ;𝑆,𝐻) = ∫ 𝑑𝑁𝑧′′ 𝐺𝛼𝛽 (𝑧, 𝑧′′) 𝛿𝑆

𝛿𝜒𝛽 (𝑧′′)
, (42)

where the 𝐺-metric is given as follows:

𝐺𝛼𝛾 (𝑧, 𝑧′′) ∶= ∫ 𝑑𝑁𝑧′∫ 𝑑𝑁𝑧′′ 𝑅𝛼𝛽𝛾𝛿(𝑧, 𝑧′, 𝑧′′, 𝑧′′′) 𝛿𝐻
𝛿𝜒𝛽 (𝑧′)

𝛿𝐻
𝛿𝜒𝛿(𝑧′′′)

. (43)

or the full metriplectic dynamics we would add the Poisson bracket
ontribution to the above. Eq. (42) is written so as to show that it
mounts to a gradient system with the entropy 𝑆 as generator.

.3.2. General Kulkarni—Nomizu construction
We can easily create specific metriplectic 4-brackets that have the

inimal metriplectic properties: the requisite symmetries and the pos-
tive semidefiniteness (𝑆,𝐻 ;𝑆,𝐻). We do this by using the Kulkarni—
Nomizu (K-N) product [18,19]. See also [20] for relevant theorems.
onsistent with the bracket formulation of (33), we deviate from the
onventional K-N product by working on the dual. Given two symmetric
perator fields, say ∑ and 𝑀 , operating on the variational derivatives;
e again use the subscript notation when convenient,

𝜒 ∶= 𝛿𝐹
𝛿𝜒

=
(

𝛿𝐹
𝛿𝜒1

, 𝛿𝐹
𝛿𝜒2

,… , 𝛿𝐹
𝛿𝜒𝑀

)

,

the K-N product is defined as follows:

(𝛴 ∧𝑀) (𝑑𝐹 , 𝑑𝐾, 𝑑𝐺, 𝑑𝑁) = 𝛴 (𝑑𝐹 , 𝑑𝐺)𝑀 (𝑑𝐾, 𝑑𝑁)

− 𝛴 (𝑑𝐹 , 𝑑𝑁)𝑀 (𝑑𝐾, 𝑑𝐺)

+𝑀 (𝑑𝐹 , 𝑑𝐺)𝛴 (𝑑𝐾, 𝑑𝑁)

−𝑀 (𝑑𝐹 , 𝑑𝑁)𝛴 (𝑑𝐾, 𝑑𝐺) . (44)

finite-dimensional form of 𝛴 would be a symmetric contravariant
-tensor, say 𝛾, and this would give the term

(𝑑𝑓 , 𝑑𝑔) = 𝛾 𝑖𝑗
𝜕𝑓
𝜕𝑧𝑖

𝜕𝑔
𝜕𝑧𝑗

. (45)

conventional form of K-N product would involve rank 2 covariant
ensors. The form of (45) suggests a general form in infinite dimensions
ould be

(𝑑𝐹 , 𝑑𝐺) = ∫ 𝑑𝑁𝑧∫ 𝑑𝑁𝑧′ 𝛴𝛼𝛽 (𝑧, 𝑧′) 𝛿𝐹
𝛿𝜒𝛼(𝑧)

𝛿𝐺
𝛿𝜒𝛽 (𝑧′)

, (46)

where 𝛴𝛼𝛽 (𝑧, 𝑧′) is symmetric in both 𝛼, 𝛽 and 𝑧, 𝑧′ and operates to the
ight on both functional derivatives. For example,
𝛼𝛽 (𝑧, 𝑧′) = 𝐿𝛼𝛽𝑎𝑏 (𝑧, 𝑧

′)𝑎′𝑏, (47)

where 𝐿𝛼𝛽𝑎𝑏 is symmetric and 𝑎 is a differential operator. This implies,
e.g.,

𝛴(𝑑𝐹 , 𝑑𝐺) = ∫ 𝑑𝑁𝑧∫ 𝑑𝑁𝑧′ 𝐿𝛼𝛽𝑎𝑏 (𝑧, 𝑧
′)𝑎 𝛿𝐹

𝛿𝜒𝛼(𝑧)
′𝑏 𝛿𝐺

𝛿𝜒𝛽 (𝑧′)
. (48)

With an expression for 𝑀 similar to (46), a term in the K-N decompo-
sition would have the following form:

∫ 𝑑𝑁𝑧∫ 𝑑𝑁𝑧′∫ 𝑑𝑁𝑧′′∫ 𝑑𝑁𝑧′′′ 𝛴𝛼𝛽 (𝑧, 𝑧′)𝑀𝛾𝛿(𝑧′′, 𝑧′′′)

× 𝛿𝐹
𝛿𝜒𝛼(𝑧)

𝛿𝐺
𝛿𝜒𝛽 (𝑧′)

𝛿𝐾
𝛿𝜒𝛾 (𝑧′′)

𝛿𝑁
𝛿𝜒𝛿(𝑧′′′)

, (49)

which could be generalized further by adding filtering kernels.
It is easy to see that brackets constructed with this K-N product

will have all of the algebraic symmetries described in Section 2.3.1.
In addition, it is shown in the Appendix using the Cauchy–Schwarz
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inequality that positivity of (𝑆,𝐻 ;𝑆,𝐻) is satisfied, if both 𝛴 and
are positive semidefinite. Moreover, if one of 𝛴 or 𝑀 is positive

efinite, defining an inner product, then the sectional curvature of (37)
atisfies (𝑆,𝐻 ;𝑆,𝐻) ≥ 0 with equality if and only if 𝛿𝑆∕𝛿𝜒 ∝ 𝛿𝐻∕𝛿𝜒 .
hus, it is not difficult to build minimal metriplectic 4-brackets.

Alternative to (46) we can define 𝛴(𝑑𝐹 , 𝑑𝐺) pointwise as

(𝑑𝐹 , 𝑑𝐺)(𝑧) ∶=∫ 𝑑𝑁𝑧′ 𝛴𝛼𝛽 (𝑧, 𝑧′) 𝛿𝐹
𝛿𝜒𝛼(𝑧)

𝛿𝐺
𝛿𝜒𝛽 (𝑧′)

= 𝐴𝛼𝛽 (𝑧) 𝛿𝐹
𝛿𝜒𝛼(𝑧)

𝛿𝐺
𝛿𝜒𝛽 (𝑧)

, (50)

which could follow from (46) if we added an additional argument to
𝛴. Then, with a corresponding form for 𝑀 the algebraic curvature
symmetries would be induced in the integrand. This is the case for our
present purposes, where we assume the specific K-N form given in [9],
viz. where the 4-bracket is given by

(𝐹 ,𝐾;𝐺,𝑁) =∫ 𝑑𝑁𝑧𝑊 (𝛴 ∧𝑀) (𝑑𝐹 , 𝑑𝐾, 𝑑𝐺, 𝑑𝑁) ,

where 𝑊 is an arbitrary weight, possibly depending on 𝜒 and 𝑧, that
multiplies (𝛴∧𝑀) where all of the functional derivatives are evaluated
at the same point, 𝑧. (See (52) and (53) below.) In Section 2.3.3 we
will see that this form of 4-bracket is sufficient for the CHNS systems
of interest.

2.3.3. Metriplectic 4-bracket for the GNS system
Now suppose our multi-component field variable 𝜒 is that for the

multiphase fluid, i.e.,

𝜓(𝐱, 𝑡) = (𝐦(𝐱, 𝑡), 𝜌(𝐱, 𝑡), 𝑐(𝐱, 𝑡), 𝜎(𝐱, 𝑡)) (51)

and consider a specific, but still quite general, form of the K-N construc-
tion, one adaptable to the GNS type of system. For multi-component
fields 𝜓 of our fluid we could choose

𝑀(𝑑𝐹 , 𝑑𝐺) = 𝐹𝜓𝛾𝐴
𝛾𝛿𝐺𝜓𝛿 , (52)

𝛴(𝑑𝐹 , 𝑑𝐺) = ∇𝐹𝜓𝛼 ⋅ 𝐵𝛼𝛽 ⋅ ∇𝐺𝜓𝛽 , (53)

where repeated indices are to be summed, 𝐴𝛾𝛿 = 𝐴𝛿𝛾 , and in co-
ordinates 𝐵𝛼𝛽𝑖𝑗 is symmetric in both 𝑖, 𝑗 = 1, 2, 3 and 𝛼, 𝛽 = 1,… , 6,
which are indices that range over the six fields of 𝜓 . Here, the nablas
are contracted on 𝑖 and 𝑗. With the choices of (52) and (53), the
metriplectic 4-bracket is

(𝐹 ,𝐾;𝐺,𝑁) = ∫𝛺
∇𝐹𝜓𝛼 ⋅ 𝐵𝛼𝛽 ⋅ ∇𝐺𝜓𝛽 𝐾𝜓𝛾𝐴

𝛾𝛿𝑁𝜓𝛿

− ∇𝐹𝜓𝛼 ⋅ 𝐵𝛼𝛽 ⋅ ∇𝑁𝜓𝛽 𝐾𝜓𝛾𝐴
𝛾𝛿𝐺𝜓𝛿

+ ∇𝐾𝜓𝛼 ⋅ 𝐵𝛼𝛽 ⋅ ∇𝑁𝜓𝛽 𝐹𝜓𝛾𝐴
𝛾𝛿𝐺𝜓𝛿

− ∇𝐾𝜓𝛼 ⋅ 𝐵𝛼𝛽 ⋅ ∇𝐺𝜓𝛽 𝐹𝜓𝛾𝐴
𝛾𝛿𝑁𝜓𝛿 . (54)

Entropy production is governed by

(𝑆,𝐻 ;𝑆,𝐻) = ∫𝛺
∇𝑆𝜓𝛼 ⋅ 𝐵𝛼𝛽 ⋅ ∇𝑆𝜓𝛽 𝐻𝜓𝛾𝐴

𝛾𝛿𝐻𝜓𝛿 (55)

+ ∇𝐻𝜓𝛼 ⋅ 𝐵
𝛼𝛽 ⋅ ∇𝐻𝜓𝛽 𝑆𝜓𝛾𝐴

𝛾𝛿𝑆𝜓𝛿

− 2∇𝐻𝜓𝛼 ⋅ 𝐵
𝛼𝛽 ⋅ ∇𝑆𝜓𝛽 𝑆𝜓𝛾𝐴

𝛾𝛿𝐻𝜓𝛿 .

From the general results of the Appendix it follows that (𝑆,𝐻 ;𝑆,𝐻) ≥ 0
for this special case if 𝐴𝛼𝛽 and 𝐵𝛼𝛽 are positive semidefinite.

Observe that (53) could be replaced by the more general expression

𝛴(𝑑𝐹 , 𝑑𝐺) = 𝐹𝜓𝛼 ⋅ 𝐵𝛼𝛽 ⋅ 𝐺𝜓𝛽 , (56)

where  is contained within a general class of pseudodifferential oper-
ators. Later we will see an example of this.

Now consider an even more restrictive K-N product, a special case
of (54) with what appears to be the simplest K-N options. As discussed
5

c

earlier, we do not expect our 4-bracket to depend on functional deriva-
tives with respect to 𝜌, which could produce density diffusion. Thus,
for 𝑀 we take

𝑀(𝑑𝐹 , 𝑑𝐺) = 𝐹𝜎𝐺𝜎 . (57)

The placement of the ∇ in (54) leads to a diffusive type of relaxation,
so this is natural, and the simplest case would be to select 𝛴 with no
cross terms, i.e.,

𝛴(𝑑𝐹 , 𝑑𝐺) = ∇𝐹𝐦 ∶ ̄̄𝛬1 ∶ ∇𝐺𝐦 + ∇𝐹𝜎 ⋅ 𝛬̄2 ⋅ ∇𝐺𝜎 + ∇𝐹𝑐 ⋅ 𝛬̄3 ⋅ ∇𝐺𝑐 , (58)

where the 4-tensor ̄̄𝛬1 and the symmetric 2-tensors 𝛬̄2 and 𝛬̄3 are to
be determined. We make the following choices

̄̄𝛬1 =
̄̄𝛬
𝑇
, 𝛬̄2 =

𝜅̄
𝑇 2
, 𝛬̄3 =

𝐷̄
𝑇
, (59)

where ̄̄𝛬 is the isotropic Cartesian 4-tensor given by (11), 𝛬̄2,3 are sym-
etric positive definite 2-tensors defined by the previously introduced

̄ and 𝐷̄. We take the weight 𝑊 to be the Lagrange multiplier defined
n Section 2.4.1 i.e. 𝑊 = 1. Then, the 4-bracket reads

𝐹 ,𝐾;𝐺,𝑁) = ∫𝛺
1
𝑇

[

[

𝐾𝜎∇𝐹𝐦 − 𝐹𝜎∇𝐾𝐦
]

∶ ̄̄𝛬 ∶
[

𝑁𝜎∇𝐺𝐦 − 𝐺𝜎∇𝑁𝐦
]

+ 1
𝑇

[

𝐾𝜎∇𝐹𝜎 − 𝐹𝜎∇𝐾𝜎
]

⋅ 𝜅̄ ⋅
[

𝑁𝜎∇𝐺𝜎 − 𝐺𝜎∇𝑁𝜎
]

+
[

𝐾𝜎∇𝐹𝑐 − 𝐹𝜎∇𝐾𝑐
]

⋅ 𝐷̄ ⋅
[

𝑁𝜎∇𝐺𝑐 − 𝐺𝜎∇𝑁𝑐
]

]

. (60)

Upon insertion of 𝐻 as given by (18) and 𝑆 from the set of Casimirs
f Section 2.2 to be as in (30), the dynamics is given by

𝑡𝜓
𝛼 = {𝜓𝛼 ,𝐻} + (𝜓𝛼 ,𝐻 ;𝑆,𝐻). (61)

sing 𝐻𝐦 = 𝐯, 𝐻𝜎 = 𝑇 , and 𝑆𝜎 = 1, the following GNS system is
roduced:

𝜕𝑡𝐯 = {𝐯,𝐻} + (𝐯,𝐻 ;𝑆,𝐻) = −𝐯 ⋅ ∇𝐯 − ∇𝑝∕𝜌 + 1
𝜌
∇ ⋅ ( ̄̄𝛬 ∶ ∇𝐯), (62)

𝜕𝑡𝜌 = {𝜌,𝐻} + (𝜌,𝐻 ;𝑆,𝐻) = −𝐯 ⋅ ∇𝜌 − 𝜌∇ ⋅ 𝐯, (63)

𝜕𝑡𝑐 = {𝑐,𝐻} + (𝑐,𝐻 ;𝑆,𝐻) = −𝐯 ⋅ ∇𝑐 − 𝑐∇ ⋅ 𝐯 + ∇ ⋅ (𝐷̄ ⋅ ∇𝜇), (64)

𝑡𝜎 = {𝜎,𝐻} + (𝜎,𝐻 ;𝑆,𝐻)

= −𝐯 ⋅ ∇𝜎 − 𝜎∇ ⋅ 𝐯 + ∇ ⋅
( 𝜅̄
𝑇

⋅ ∇𝑇
)

+ 1
𝑇 2

∇𝑇 ⋅ 𝜅̄ ⋅ ∇𝑇

+ 1
𝑇
∇𝐯 ∶ ̄̄𝛬 ∶ ∇𝐯 + 1

𝑇
∇𝜇 ⋅ 𝐷̄ ⋅ ∇𝜇. (65)

By construction we automatically have energy conservation, i.e., for
(18) 𝐻̇ = 0, and entropy production

𝑆̇ = (𝑆,𝐻 ;𝑆,𝐻)

= ∫𝛺
1
𝑇

[

∇𝐯 ∶ ̄̄𝛬 ∶ ∇𝐯 + 1
𝑇
∇𝑇 ⋅ 𝜅̄ ⋅ ∇𝑇 + ∇𝜇 ⋅ 𝐷̄ ⋅ ∇𝜇

]

≥ 0. (66)

.4. GNS metriplectic 2-bracket and conventional fluxes and affinities

For completeness we demonstrate two things in this subsection:
ow the metriplectic 4-bracket formalism relates to the original binary
etriplectic formalism given in [10,21,22] and how it relates to con-

entional nonequilibrium thermodynamics, making the connection be-
ween the 4-bracket K-N construction and the phenomenology of ther-
odynamics fluxes and affinities (sometimes called thermodynamic

orces).

.4.1. GNS metriplectic 2-bracket
As noted above we are concerned with the metriplectic dynamics

ntroduced in [10,21,22] [see also 23,24], but we mention that other
inary brackets for describing dissipation were presented over the
ears [e.g. 25–31]. In addition we mention a recent alternative ap-
roach to multiphase fluids, one based on constrained variational prin-

iples, that is given in [32]. We refer the reader to [9] for comparisons
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with other formulations and how they emerge from the metriplectic
4-bracket.

Metriplectic dynamics was introduced as a means of building ther-
modynamically consistent theories in terms of a binary bracket, which
we now call the metriplectic 2-bracket. The theory applies to a wide
class of dynamical systems, including both ordinary and partial differ-
ential equations. Evolution of an observable 𝑜 using the metriplectic
2-bracket has the following form:

𝜕𝑡𝑜 = {𝑜,} − (𝑜, )𝐻 , (67)

where as before {. } is the noncanonical Poisson bracket that generates
he ideal part of the dynamics, while now (𝐹 ,𝐺)𝐻 , the metriplectic 2-

bracket, generates the dissipative part. The functional  represents the
global Helmholtz free energy of the system, and is given by:

 = 𝐻 −  𝑆, (68)

where again 𝐻 is the Hamiltonian and 𝑆 the entropy selected from the
et of Casimirs of the noncanonical Poisson bracket (ensuring {𝐹 , 𝑆} =

for any functional 𝐹 ), and  is a uniform nonnegative constant (a
lobal temperature). The metriplectic 2-bracket (, ) is assumed to be

bilinear, symmetric, and satisfies

(𝐹 ,𝐻)𝐻 ≡ 0 for any functional 𝐹 . (69)

Thus, metriplectic systems are thermodynamically consistent:

First law (energy conservation):

𝐻̇ = {𝐻,} − (𝐻, )𝐻

= {𝐻,𝐻} +  (𝐻,𝑆)𝐻 = 0; (70)

Second law (entropy production):

𝑆̇ = {𝑆,} − (𝑆, )𝐻

= −(𝑆,𝐻)𝐻 +  (𝑆, 𝑆)𝐻 =  (𝑆, 𝑆)𝐻 ≥ 0, (71)

which follows because {𝑆,} ≡ 0 and (𝑆,𝐻)𝐻 ≡ 0. As shown in [9]
the metriplectic 2-bracket emerges from the 4-bracket as follows:

(𝐹 ,𝐺)𝐻 = (𝐹 ,𝐻 ;𝐺,𝐻), (72)

where for convenience here and henceforth we set  = 1. Because of
the minimal metriplectic properties of the 4-bracket, we are assured to
have the thermodynamic consistency of (70) and (71).

The 2-bracket that emerges from the general 4-bracket of (54) is the
following:

(𝐹 ,𝐺)𝐻 = (𝐹 ,𝐻 ;𝐺,𝐻)

= ∫𝛺
∇𝐹𝜓𝛼 ⋅ 𝐵𝛼𝛽 ⋅ ∇𝐺𝜓𝛽 𝐻𝜓𝛾𝐴

𝛾𝛿𝐻𝜓𝛿

− ∇𝐹𝜓𝛼 ⋅ 𝐵𝛼𝛽 ⋅ ∇𝐻𝜓𝛽 𝐻𝜓𝛾𝐴
𝛾𝛿𝐺𝜓𝛿

+ ∇𝐻𝜓𝛼 ⋅ 𝐵
𝛼𝛽 ⋅ ∇𝐻𝜓𝛽 𝐹𝜓𝛾𝐴

𝛾𝛿𝐺𝜓𝛿

− ∇𝐻𝜓𝛼 ⋅ 𝐵
𝛼𝛽 ⋅ ∇𝐺𝜓𝛽 𝐹𝜓𝛾𝐴

𝛾𝛿𝐻𝜓𝛿 , (73)

which in light of the K-N product satisfies (𝐹 ,𝐻)𝐻 = 0 for all 𝐹 . This
will be true for any choice of the Hamiltonian 𝐻 . Indeed, a special case
of this was used in (60) to obtain the thermodynamically consistent set
of Eqs. (62)–(64). Recall, for this case 𝑀 and 𝛴 were chosen as in (57)
and (58), special cases of (52) and (53).

Another 2-bracket can be obtained from (54) by making a conve-
nient choice of variables; viz., instead of the variables 𝜓 of (134) in
(73) we choose the following:

𝜉(𝐱, 𝑡) ∶= (𝐦(𝐱, 𝑡), 𝜌(𝐱, 𝑡), 𝑐(𝐱, 𝑡), 𝑒(𝐱, 𝑡)), (74)

where the total energy density is used instead of the entropy density as
one of our dynamical variables. That this is possible is well known in
6

thermodynamics because the entropy must be a monotonic increasing t
function of the internal energy, which allows via the inverse function
theorem transformation between the extensive energy or extensive
entropy representations [33]. We will denote these density variables
in order by 𝜉𝛼 , 𝛼 = 1,… , 6. With this choice the Hamiltonian (18) is
given by

𝐻 = ∫𝛺
𝑒 = ∫𝛺

𝜉6, (75)

𝛿𝐻∕𝛿𝜉𝛼 = 𝛿𝛼6, the Kronecker delta, and ∇𝛿𝐻∕𝛿𝜉𝛼 ≡ 0. Thus, (73)
reduces to

(𝐹 ,𝐺)𝐻 = (𝐹 ,𝐻 ;𝐺,𝐻) = ∫𝛺
∇𝐹𝜉𝛼 ⋅ 𝐿𝛼𝛽 ⋅ ∇𝐺𝜉𝛽 , (76)

where without loss of generality we set 𝐴66 = 1 and 𝐵𝛼𝛽 = 𝐿𝛼𝛽 for this
case. In Section 2.4.2 we will follow [24] and show how the bracket
of (76) fits into the framework of conventional nonequilibrium ther-
modynamics as, e.g., described in [13]. In this way we will physically
identify the meaning of 𝐿𝛼𝛽 .

2.4.2. Fluxes and affinities for the GNS system
A fundamental equations of nonequilibrium thermodynamics is the

general thermodynamic identity

d𝜎 = 𝑋𝛼d𝜉𝛼 , (77)

which relates 𝜎, the entropy density, to the 𝜉𝛼 densities associated with
conserved extensive properties and to 𝑋𝛼 ∶= 𝜕𝜎∕𝜕𝜉𝛼 , quantities called
ffinities (or thermodynamic forces). All the densities are characterized
y the following conservation equations:

𝑡𝜉𝛼 + ∇ ⋅ 𝛼 = 0, (78)

here 𝛼 is at present an unknown flux associated with the density 𝜉𝛼 .
hen, the evolution of the entropy is given by

𝑡𝜎 + ∇ ⋅
(

𝑋𝛼𝛼
)

= 𝛼 ⋅ ∇𝑋𝛼 . (79)

he righthand side of (79) is the dissipative term, which is the sum of
he fluxes 𝛼 contracted with ∇𝑋𝛼 . The linear assumption of nonequi-
ibrium processes amounts to relating fluxes and affinities according to

𝛼 = 𝐿𝛼𝛽𝑋
𝛽 . (80)

f we identify the 𝐿𝛼𝛽 of (80) with that of (76), we see how metriplectic
rackets are related to the flux-affinity relations. Onsager symmetry, as-
umed to arise from microscopic reversibility, amounts to the symmetry
𝛼𝛽 = 𝐿𝛽𝛼 and the semi-definiteness property assures the second law,

.e., entropy growth. It remains to identify how the fluxes of Section 2.1
nter the picture.

To further identify the meaning of 𝐿𝛼𝛽 we revisit the thermodynam-
cs of (13), in light of our choice of the variables 𝜉 of (134). Thus, we
ewrite the thermodynamic relation (13) upon changing variables,

d𝜎 = d𝑒 − 𝐯 ⋅ d𝐦 − 𝜇d𝑐 − 𝑔d𝜌, (81)

here 𝑒 is the energy density of (12) and 𝑔 is a modified specific Gibbs
ree energy, viz.

∶= 𝑢 − 𝑇 𝑠 + 𝑝∕𝜌 − 𝜇𝑐 − |𝐯|2∕2. (82)

e have assumed in (1) that there is no flux associated with 𝜌, i.e., in
HNS chemical reactions and/or particle creation and annihilation are

gnored. Thus, the phase space for the thermodynamics is smaller than
hat for the Hamiltonian dynamics, because the variable 𝜌 as seen
.g. in (63) has no dissipative terms. This leads us to focus on the
hermodynamic variables (𝑒,𝐦, 𝑐) and (81) reduces to

d𝜎 = d𝑒 − 𝐯 ⋅ d𝐦 − 𝜇d𝑐. (83)

Comparison of (77) and (83) suggests we require the affinities
ssociated with 𝐦, 𝑒, and 𝑐. The conventional choices for these affini-

ies are ∇(1∕𝑇 ), ∇(−𝐯∕𝑇 ), and ∇(−𝜇∕𝑇 ), respectively [13]. However,
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examination of (10) or (66) suggests using instead ∇𝑇 , ∇𝐯, and ∇𝜇, as
was done in [24].

The relationship between the flux-affinity relations in terms of these
two choices of bases are given by the following:

𝐽𝐦 = 𝐿𝐦𝑒 ⋅ ∇
( 1
𝑇

)

+ 𝐿𝐦𝐦 ∶ ∇
(−𝐯
𝑇

)

+ 𝐿𝐦𝑐 ⋅ ∇
(−𝜇
𝑇

)

= − ̄̄𝛬 ∶ ∇𝐯, (84)

𝐉𝑒 = 𝐿𝑒𝑒 ⋅ ∇
( 1
𝑇

)

+ 𝐿𝑒𝐦 ∶ ∇
(−𝐯
𝑇

)

+ 𝐿𝑒𝑐 ⋅ ∇
(−𝜇
𝑇

)

= −𝐯 ⋅ ( ̄̄𝛬 ∶ ∇𝐯) − 𝜅̄ ⋅ ∇𝑇 − 𝜇𝐷̄ ⋅ ∇𝜇, (85)

𝐉𝑐 = 𝐿𝑐𝑒 ⋅ ∇
( 1
𝑇

)

+ 𝐿𝑐𝐦 ∶ ∇
(−𝐯
𝑇

)

+ 𝐿𝑐𝑐 ⋅ ∇
(−𝜇
𝑇

)

= −𝐷̄ ⋅ ∇𝜇. (86)

Recall 𝐽𝐦 is a 2-tensor, thus 𝐿𝐦𝑒 = 𝐿𝑒𝐦 is a 3-tensor, 𝐿𝐦𝐦 is a 4-
tensor, and 𝐿𝐦𝑐 = 𝐿𝑐𝐦 is a 3-tensor. Since 𝐉𝑒 and 𝐉𝑐 are vectors,
𝐿𝑒𝑒, 𝐿𝑒𝑐 = 𝐿𝑐𝑒, and 𝐿𝑐𝑐 are 2-tensors. From (84), (85), and (86), we
identify the components of 𝐿𝛼𝛽 as follows:

𝐿𝐦𝑒 = 𝑇 ̄̄𝛬 ⋅ 𝐯, 𝐿𝐦𝐦 = 𝑇 ̄̄𝛬, 𝐿𝐦𝑐 = 0, 𝐿𝑒𝑐 = 𝑇𝜇𝐷̄′,

𝐿𝑒𝑒 = 𝑇 2𝜅̄ + 𝑇 𝐯 ⋅ ̄̄𝛬 ⋅ 𝐯 + 𝑇𝜇2𝐷̄, 𝐿𝑐𝑐 = 𝑇 𝐷̄. (87)

The metriplectic 2-bracket in terms of the 𝜉-variables is given by

(𝐹 ,𝐺)𝐻 = ∫𝛺
𝑇

[

∇𝐹𝑒 ⋅ (𝑇 𝜅̄ + 𝐯 ⋅ ̄̄𝛬 ⋅ 𝐯 + 𝜇2𝐷̄) ⋅ ∇𝐺𝑒

+ ∇𝐹𝐦 ∶ ̄̄𝛬 ∶ ∇𝐺𝐦 + ∇𝐹𝑐 ⋅ 𝐷̄ ⋅ ∇𝐺𝑐
+ ∇𝐹𝑒 ⋅ ( ̄̄𝛬 ⋅ 𝐯) ∶ ∇𝐺𝐦 + ∇𝐺𝑒 ⋅ ( ̄̄𝛬 ⋅ 𝐯) ∶ ∇𝐹𝐦

+ 𝜇∇𝐹𝑒 ⋅ 𝐷̄ ⋅ ∇𝐺𝑐 + 𝜇∇𝐺𝑒 ⋅ 𝐷̄ ⋅ ∇𝐹𝑐
]

. (88)

Upon writing

𝑆 = ∫𝛺
𝜎(𝜌, 𝑒, 𝑐,𝐦) (89)

and using standard thermodynamic manipulations we obtain

𝑆𝑒 = 1∕𝑇 , 𝑆𝐦 = −𝐯∕𝑇 , and 𝑆𝑐 = −𝜇∕𝑇 . (90)

Inserting these into (𝑜, 𝑆)𝐻 using the 2-bracket of (88) yields the dissi-
pative terms of (62), (64), and with the manipulations of transforming
from 𝑒 to 𝜎, those of the entropy Eq. (65). By direct calculation, as
well as by construction, we obtain (𝐻,𝑆)𝐻 = 0 and 𝑆̇ = (𝑆, 𝑆)𝐻 =
(𝑆,𝐻 ;𝑆,𝐻) ≥ 0 which reproduces (66).

To close the circle we transform the bracket of (88) in terms of the
variables (𝑒,𝐦, 𝑐) to one in terms of (𝜎,𝐦, 𝑐) via the following chain rule
formulas:

𝐺𝑒 → 𝐺𝜎∕𝑇 , 𝐺𝐦 → 𝐺𝐦 − 𝐯, 𝐺𝜎∕𝑇 , 𝐺𝑐 → 𝐺𝑐 − 𝜇 𝐺𝜎∕𝑇 . (91)

This calculation gives precisely the bracket of (60).

3. The Cahn-Hilliard-Navier–Stokes system

Now we apply our algorithm to obtain Cahn-Hilliard-Navier–Stokes
(CHNS) systems allows for diffuse-interfaces. We follow the steps in
order, just as in Section 2. However, here we have the additional step
of aligning the desired entropy functional with the Poisson bracket, so
that it is indeed a Casimir invariant.

3.1. Hamiltonian and entropy functional forms

The phenomenon of material transport along an interface is known
as the Marangoni effect. The presence of a surface tension gradient
naturally induces the migration of particles, moving from regions of
low tension to those of high tension. This gradient can be triggered
by a concentration gradient (or also a temperature gradient). In two-
phase theory the interface between phases is regarded as being diffuse.
According to the work of Taylor and Cahn [34], one can model the
7

diffuse interface by a single order parameter, say 𝜙, and with a free
energy functional,

F = ∫𝛺
𝜖
2
𝛤 2(∇𝜙) + 1

𝜖
𝑉 (𝜙), (92)

ith 𝛤 being a homogeneous function of degree one; further details on
his will be provided later. Here 𝑉 can be any non-negative function
hat equals zero at 𝜙 = ±1 and 𝜖 is a small parameter that goes to zero
n the sharp-interface limit. We choose the order parameter 𝜙 to be the

concentration.
In the isotropic surface energy case [15] develop a phase-field

model for two-phase flow, which is thermodynamically consistent. The
modeling is based on a non-classical choice of energy and entropy,
given respectively by

𝐻𝐺𝐿 = ∫𝛺
𝜌
2
|𝐯|2 + 𝜌𝑢(𝜌, 𝑠, 𝑐) + 𝜌

2
𝜆𝑢|∇𝑐|

2, (93)

𝑆𝐺𝐿 = ∫𝛺
𝜌𝑠 +

𝜌
2
𝜆𝑠|∇𝑐|

2, (94)

here 𝑢 and 𝑠 stand for the classical specific internal energy and
ntropy, respectively, while the coefficients 𝜆𝑠 and 𝜆𝑢 are constant
arameters.

Alternatively, [14] propose a model of phase-field of solidification
ith convection, the model permits the interface to have an anisotropic

urface energy. The choice of energy and entropy are given by

𝐴𝑀𝑊 = ∫𝛺
𝜌
2
|𝐯|2 + 𝜌𝑢(𝜌, 𝑠, 𝑐) +

𝜖2𝐸
2
𝛤 2(∇𝑐), (95)

𝑆𝐴𝑀𝑊 = ∫𝛺
𝜌𝑠 −

𝜖2𝑆
2
𝛤 2(∇𝑐), (96)

where the coefficients 𝜖𝑆 and 𝜖𝐸 are assumed to be constant and 𝛤
is a homogeneous function of degree one that takes a vector to a real
number.

In this section, we explore a choice of energy and entropy function-
als, from which the previously mentioned choices are special cases, and
we consider the associated functionals, viz.

𝐻𝑎 = ∫𝛺
𝜌
2
|𝐯|2 + 𝜌𝑢 + 𝜌𝑎

2
𝜆𝑢𝛤

2(∇𝑐) =∶∫𝛺
𝑒𝑎Total, (97)

𝑆𝑎 = ∫𝛺
𝜌𝑠 +

𝜌𝑎

2
𝜆𝑠𝛤

2(∇𝑐) =∶∫𝛺
𝜎𝑎Total, (98)

F𝑎 = ∫𝛺
𝜌𝑓 +

𝜌𝑎

2
𝜆𝑓 (𝑇 )𝛤 2(∇𝑐), (99)

here 𝑢, 𝑠 and 𝑓 stand for the classical specific internal energy, entropy,
nd free energy, respectively, the coefficients 𝜆𝑠 and 𝜆𝑢 are constant

parameters, and 𝜆𝑓 (𝑇 ) is a parameter depending on the temperature
hat will lead to anisotropic surface energy effects. We have defined the
otal densities 𝑒𝑎Total and 𝜎𝑎Total for later use. The parameter 𝑎 takes on

two values: 𝑎 = 0 reduces (97) and (98) to the expressions of Anderson
et al. [14], where we set 𝜖2𝐸 = 𝜆𝑢 and 𝜖2𝑆 = −𝜆𝑠, while for 𝑎 = 1 they
reduce to those used by Guo and Lin [15] provided the choice of an
isotropic surface energy is assumed, viz., 𝛤 (∇𝑐) = |∇𝑐|. Thus, as is clear
from (97), (98), and (99), the dimensions of 𝜆𝑓 , 𝜆𝑠, and 𝜆𝑢 are either
specific or volumetric depending on the case. As usual, we have the
thermodynamic relation

𝑓 = 𝑢 − 𝑇 𝑠, (100)

which allows us to assume the relationship between the coefficients

𝜆𝑓 (𝑇 ) = 𝜆𝑢 − 𝑇𝜆𝑠 and
d𝜆𝑓 (𝑇 )

d𝑇 = −𝜆𝑠. (101)

To summarize, our expressions (97) and (98) generalize the model
studied by Guo and Lin [15] by including 𝛤 , which accounts for
anisotropic surface energy effects, while our expressions generalize the
model of Anderson et al. [14] by including the factors of 𝜌 in the
integrands making all quantities in the integrands specific quantities
multiplied by the density, giving rise to more general sources of energy.
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Because 𝛤 is a homogeneous function of degree unity,

𝛤 (𝜆𝐩) = 𝜆𝛤 (𝐩) for all 𝜆 > 0. (102)

ifferentiating (102) with respect to 𝜆 and then setting 𝜆 = 1 yields the
undamental relation

(𝐩) = 𝐩 ⋅ 𝝃 ∶= 𝑝𝑗
𝜕𝛤 (𝐩)
𝜕𝑝𝑗

. (103)

hen, differentiating (103) gives a second well-known relation,

𝜕𝛤
𝜕𝑝𝑖

= 𝜕
𝜕𝑝𝑖

(𝝃 ⋅ 𝐩) = 𝜉𝑖 +
𝜕2𝛤
𝜕𝑝𝑖𝜕𝑝𝑗

𝑝𝑗 = 𝜉𝑖, (104)

where evidently 𝑝𝑗 must be a null eigenvector of the matrix 𝜕2𝛤∕𝜕𝑝𝑖𝜕𝑝𝑗 .
Henceforth we will assume the argument of 𝛤 to be ∇𝑐. For the
case of isotropic surface energy, where 𝛤 (∇𝑐) = |∇𝑐|, the associated
omogeneous function of degree zero is given by

= ∇𝑐∕|∇𝑐|. (105)

From (99) we can obtain a generalized chemical potential

𝜇𝑎𝛤 ∶= 𝛿F𝑎

𝛿𝑐
= 𝜌 𝜕𝑢

𝜕𝑐
− ∇ ⋅ (𝜆𝑓 𝜌𝑎𝛤∇𝑐) = 𝜇 − 1

𝜌
∇ ⋅ (𝜆𝑓 𝜌𝑎𝛤 𝝃), (106)

where recall 𝑐 = 𝜌𝑐. For the case of isotropic surface energy, this
becomes

𝜇𝑎
|∇𝑐| = 𝜇 − 1

𝜌
∇ ⋅ (𝜆𝑓 𝜌𝑎∇𝑐). (107)

pon setting 𝑎 = 1 [the case of 15], this reduces to

1
|∇𝑐| = 𝜇 − 1

𝜌
∇ ⋅ (𝜆𝑓 𝜌∇𝑐), (108)

n expression that differs from that in [15] unless 𝜆𝑓 𝜌 is constant. If
his is the case and we choose a classical 𝜇 = 𝑐3 − 𝑐, corresponding to
he quartic Laudau potential, we obtain

𝐶𝐻 = 𝑐3 − 𝑐 − 𝜆𝑓∇2𝑐, (109)

he chemical potential of Cahn and Hilliard who indeed make these
ssumptions [cf. page 267 of 1]. For 𝛼 = 0 [the case of 14], we have

0
𝛤 = 𝜇 − 1

𝜌
∇ ⋅ (𝜆𝑓 𝛤 𝝃), (110)

which allows for the weighted mean curvature effects of anisotropy.
Maintaining the same set of dynamical variables as in (51) (or

an equivalent set) and making the choices of energy and entropy
functionals of (97) and (98), we have completed the first two steps of
the algorithm.

3.2. Noncanonical Poisson bracket of the Cahn-Hilliard-Euler system

To complete the next step of the algorithm, the third step, we need
to manufacture a bracket that has (98) as a Casimir invariant. We
do this by starting from the bracket of (15) in terms of the original
variables 𝜓 = {𝐦, 𝜌, 𝑐, 𝜎} and then transforming it to a new set of
dynamical variables 𝜓̂𝑎 ∶= {𝐦̂, 𝜌̂, ̂̃𝑐, 𝜎̂𝑎}, giving the same bracket in
terms of new coordinates. We have included the superscript 𝑎 because
in effect we have two sets of coordinates, corresponding to the desired
entropies of (98) for 𝑎 = 0 and 𝑎 = 1. To distinguish the old from
the new, we write the bracket in the transformed variables as {𝐹 , 𝐺̂}𝑎.
Because of coordinate invariance, {𝐶, 𝐹 } = {𝐶𝑎, 𝐹 }𝑎 = 0, where
𝐹 [𝜓] = 𝐹 [𝜓̂𝑎] is any functional written in one or the other coordinates.
The Casimir 𝑆 = ∫𝛺 𝜎 in our original coordinates is transformed into

different form in the new coordinates. Specifically, we change the
ariables as follows:

= 𝐦̂, 𝜌 = 𝜌̂, 𝑐 = ̂̃𝑐, 𝜎 = 𝜎̂𝑎 +
𝜌̂𝑎

2
𝜆𝑠𝛤

2(∇𝑐), (111)

where ̂̃𝑐 = 𝜌̂𝑐. Consequently, the entropy 𝑆 in the old coordinates
written in terms of the new coordinates will, by design, become the
following Casimir for the Poisson bracket in the new coordinates:

𝑆̂𝑎 = 𝜎̂𝑎 +
𝜌̂𝑎
𝜆𝑠𝛤

2(∇𝑐). (112)
8

∫𝛺 2
Thus we have manufactured a bracket with the entropy expression of
(98) as a Casimir.

Transformation of the Poisson bracket (15) requires use of the
functional chain rule. For convenience we use

𝜎̂𝑎 = 𝜎 −
𝜌𝑎

2
𝜆𝑠𝛤

2(∇𝑐) (113)

and consider the variation of any functional of the new variables. Thus
we use 𝛿𝜌 = 𝛿𝜌̂, 𝛿𝐦 = 𝛿𝐦̂, 𝛿𝑐 = 𝛿 ̂̃𝑐, and for the entropy variable

𝛿𝜎̂𝑎 = 𝛿𝜎 − 1
2
𝑎𝜌𝑎−1𝜆𝑠𝛤

2(∇𝑐)𝛿𝜌 − 𝜌𝑎𝜆𝑠𝛤 𝝃 ⋅ ∇𝛿
(

𝑐
𝜌

)

= 𝛿𝜎 − 1
2
𝑎𝜌𝑎−1𝜆𝑠𝛤

2(∇𝑐)𝛿𝜌 − 𝜌𝑎𝜆𝑠𝛤 𝝃 ⋅ ∇
(

𝛿𝑐
𝜌

)

+ 𝜌𝑎𝜆𝑠𝛤 𝝃 ⋅ ∇
(

𝑐
𝜌2
𝛿𝜌

)

, (114)

where use has been made of (104). Now let 𝐹 be an arbitrary functional
of the original variables and 𝐹 the same functional in terms of the new
variables. Thus,

∫𝛺
𝐹𝐦̂ ⋅ 𝛿𝐦̂ + 𝐹𝜌̂ 𝛿𝜌̂ + 𝐹𝜎̂𝑎 𝛿𝜎̂𝑎 + 𝐹 ̂̃𝑐 𝛿 ̂̃𝑐 (115)

= ∫𝛺
𝐹𝐦 ⋅ 𝛿𝐦 + 𝐹𝜌 𝛿𝜌 + 𝐹𝜎 𝛿𝜎 + 𝐹𝑐 𝛿𝑐.

Note, no sum over 𝑎 is to be done. By identification of terms we obtain

𝐹𝐦 = 𝐹𝐦̂, 𝐹𝜎 = 𝐹𝜎̂𝑎 ,

𝐹𝜌 = 𝐹𝜌̂ −
𝑎
2
𝜌̂𝑎−1𝜆𝑠𝛤

2 𝐹𝜎̂𝑎 −
̂̃𝑐
𝜌̂2

∇ ⋅
(

𝜌̂𝑎𝜆𝑠𝛤 𝝃 𝐹𝜎̂𝑎
)

,

𝐹𝑐 = 𝐹 ̂̃𝑐 +
1
𝜌̂
∇ ⋅

(

𝜌̂𝑎𝜆𝑠𝛤 𝝃𝐹𝜎̂𝑎
)

. (116)

The transformed Poisson bracket is obtained by inserting the expres-
sions of (116) into (15), writing it entirely in terms of the hat variables.
Upon doing this and then dropping the hats, we get for any functionals
𝐹 and 𝐺 the following Poisson bracket:

{𝐹 ,𝐺}𝑎 = −∫𝛺
𝐦 ⋅

[

𝐹𝐦 ⋅ ∇𝐺𝐦 − 𝐺𝐦 ⋅ ∇𝐹𝐦
]

(117)

+ 𝜌
[

𝐹𝐦 ⋅ ∇
(

𝐺𝜌 − 𝑎𝜌𝑎−1𝜆𝑠𝛤 2𝐺𝜎𝑎∕2 − 𝑐∇ ⋅ (𝜌𝑎𝜆𝑠𝛤 𝝃𝐺𝜎𝑎 )∕𝜌2
)

− 𝐺𝐦 ⋅ ∇
(

𝐹𝜌 − 𝑎𝜌𝑎−1𝜆𝑠𝛤 2𝐹𝜎𝑎∕2 − 𝑐∇ ⋅
(

𝜌𝑎𝜆𝑠𝛤 𝝃𝐹𝜎𝑎
)

∕𝜌2
)

]

+
(

𝜎𝑎 + 𝜌𝑎𝜆𝑠𝛤 2∕2
)

[

𝐹𝐦 ⋅ ∇𝐺𝜎𝑎 − 𝐺𝐦 ⋅ ∇𝐹𝜎𝑎
]

+ 𝑐
[

𝐹𝐦 ⋅ ∇
(

𝐺𝑐 + ∇ ⋅
(

𝜌𝑎𝜆𝑠𝛤 𝝃𝐺𝜎𝑎
)

∕𝜌
)

− 𝐺𝐦 ⋅ ∇
(

𝐹𝑐 + ∇ ⋅
(

𝜌𝑎𝜆𝑠𝛤 𝝃𝐹𝜎𝑎
)

∕𝜌
)

]

.

his bracket is clearly bilinear and skew-symmetric. Because it was
erived from the bracket (15) by a change of variables, satisfaction
f the Jacobi identity is assured. We note, as before, strong boundary
onditions are assumed such that all integrations by parts produce
anishing boundary terms.

Thus we have completed the third part of our algorithm, the con-
truction of a Poisson bracket that has the entropy functional of (98)
n the set of its Casimir invariants. Recall the integrand of the entropy
s given by

𝑎
Total ∶= 𝜎𝑎 +

𝜌𝑎

2
𝜆𝑠𝛤

2(∇𝑐); (118)

so we find
𝛿𝑆𝑎

𝛿𝜎𝑎
= 1, 𝛿𝑆𝑎

𝛿𝑐
= −1

𝜌
∇ ⋅

(

𝜌𝑎𝜆𝑠𝛤 𝝃
)

𝛿𝑆𝑎

𝛿𝜌
= 𝑎

2
𝜌𝑎−1𝜆𝑠𝛤

2 + 𝑐
𝜌2

∇ ⋅
(

𝜌𝑎𝜆𝑠𝛤 𝝃
)

. (119)

Using (119) one can easily check that {𝐹 , 𝑆𝑎} = 0 for all 𝐹 , which by
construction had to be the case. Now we are free to choose any Hamil-
tonian we desire in (117) to obtain the evolution of any observable 𝑜
as follows:

𝑎 𝑎
𝜕𝑡𝑜 = {𝑜,𝐻 } , (120)
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In Section 3.1 we proposed the Hamiltonian functional of (97), which
we rewrite as follows in order to make all arguments clear:

𝐻𝑎[𝜌,𝐦, 𝜎𝑎, 𝑐] = ∫𝛺
|𝐦|

2

2𝜌
+ 𝜌𝑢

(

𝜌, 𝜎
𝑎

𝜌
, 𝑐
𝜌

)

+
𝜌𝑎

2
𝜆𝑢𝛤

2
(

∇
(

𝑐
𝜌

))

. (121)

Using the functional derivatives of this Hamiltonian,

𝐻𝑎
𝐦 = 𝐯, 𝐻𝜎𝑎 = 𝑇 ,

𝐻𝑎
𝜌 = −|𝐯|2∕2 + 𝑢 + 𝑝∕𝜌 − 𝑠𝑇 − 𝑐𝜇 + 𝑎𝜌𝑎−1𝜆𝑢𝛤 2∕2 + 𝑐∇ ⋅ (𝜌𝑎𝜆𝑢𝛤 𝝃)∕𝜌,

𝐻𝑎
𝑐 = 𝜇 − ∇ ⋅ (𝜌𝑎𝜆𝑢𝛤 𝝃)∕𝜌, (122)

n the bracket (117) gives the equations of motion in the form of (120).
t this point we could write this out and display a general system of
quations that includes both cases, but we choose to consider them
eparately because the general system is unwieldy and not particularly
erspicuous.

Let us first consider the simplified version of our derived Poisson
racket for the case 𝑎 = 1, which is as follows:

𝐹 ,𝐺}1 = −∫𝛺
𝐦 ⋅

[

𝐹𝐦 ⋅ ∇𝐺𝐦 − 𝐺𝐦 ⋅ ∇𝐹𝐦
]

+ 𝜌
[

𝐹𝐦 ⋅ ∇𝐺𝜌 − 𝐺𝐦 ⋅ ∇𝐹𝜌
]

− 𝜆𝑠
[

𝐹𝐦 ⋅ ∇ ⋅
(

𝜌𝐺𝜎1𝛤 𝝃 ⊗ ∇𝑐
)

− 𝐺𝐦 ⋅ ∇ ⋅
(

𝜌𝐹𝜎1𝛤 𝝃 ⊗ ∇𝑐
) ]

+ 𝜎1
[

𝐹𝐦 ⋅ ∇𝐺𝜎1 − 𝐺𝐦 ⋅ ∇𝐹𝜎1
]

+ 𝑐
[

𝐹𝐦 ⋅ ∇𝐺𝑐 − 𝐺𝐦 ⋅ ∇𝐹𝑐
]

, (123)

here ⊗ denotes tensor product of two vectors and consistent with our
onvention we have

⋅ (𝐮⊗ 𝐯) = (∇ ⋅ 𝐮)𝐯 + 𝐮 ⋅ ∇𝐯.

sing (122), the bracket form of (120) gives the ideal diffuse two-phase
low system

𝜕𝑡𝐯 = {𝐯,𝐻1}1 = −𝐯 ⋅ ∇𝐯 − 1
𝜌
∇ ⋅ (𝑝𝐼 + 𝜌𝜆𝑓𝛤 𝝃 ⊗ ∇𝑐), (124)

𝜕𝑡𝜌 = {𝜌,𝐻1}1 = −𝐯 ⋅ ∇𝜌 − 𝜌∇ ⋅ 𝐯, (125)

𝜕𝑡𝑐 = {𝑐,𝐻1}1 = −𝐯 ⋅ ∇𝑐 − 𝑐∇ ⋅ 𝐯, (126)

𝜕𝑡𝜎
1
Total = {𝜎1Total,𝐻

1}1 = −𝐯 ⋅ ∇𝜎1Total − 𝜎
1
Total ∇ ⋅ 𝐯, (127)

here 𝐼 is the unit tensor. Observe in (127) we have chosen the
bservable 𝜎1Total instead of 𝜎1, in order to demonstrate its conservation.

Similarly, for the case where 𝑎 = 0, the Poisson bracket has the
ollowing form:

𝐹 ,𝐺}0 = −∫𝛺
𝐦 ⋅

[

𝐹𝐦 ⋅ ∇𝐺𝐦 − 𝐺𝐦 ⋅ ∇𝐹𝐦
]

+ 𝜌
[

𝐹𝐦 ⋅ ∇𝐺𝜌 − 𝐺𝐦 ⋅ ∇𝐹𝜌
]

− 𝜆𝑠
[

𝐹𝐦 ⋅ ∇ ⋅
(

𝐺𝜎0𝛤 𝝃 ⊗ ∇𝑐
)

− 𝐺𝐦 ⋅ ∇ ⋅
(

𝐹𝜎0𝛤 𝝃 ⊗ ∇𝑐
) ]

+ 𝜆𝑠
[

𝐹𝐦 ⋅ ∇
(

𝛤 2𝐺𝜎0
)

− 𝐺𝐦 ⋅ ∇
(

𝛤 2𝐹𝜎0
)]

∕2

+ 𝜎0
[

𝐹𝐦 ⋅ ∇𝐺𝜎0 − 𝐺𝐦 ⋅ ∇𝐹𝜎0
]

+ 𝑐
[

𝐹𝐦 ⋅ ∇𝐺𝑐 − 𝐺𝐦 ⋅ ∇𝐹𝑐
]

. (128)

Same as above, using (122), the ideal diffuse two-phase flow system is
produced

𝜕𝑡𝐯 = {𝐯,𝐻0}0 (129)

= −𝐯 ⋅ ∇𝐯 − 1
𝜌
∇⋅

[

(

𝑝 − 𝜆𝑓𝛤 2∕2
)

𝐼 + 𝜆𝑓𝛤 𝝃 ⊗ ∇𝑐
]

,

𝜕𝑡𝜌 = {𝜌,𝐻0}0 = −𝐯 ⋅ ∇𝜌 − 𝜌∇ ⋅ 𝐯, (130)

𝜕𝑡𝑐 = {𝑐,𝐻0}0 = −𝐯 ⋅ ∇𝑐 − 𝑐∇ ⋅ 𝐯, (131)

𝜕𝑡𝜎
0
Total = {𝜎0Total,𝐻

0}0 = −𝐯 ⋅ ∇𝜎0Total − 𝜎
0
Total ∇ ⋅ 𝐯, (132)

where recall from (103), 𝝃 = 𝜕𝛤 (𝐩)∕𝜕𝐩 .
Let us now comment on these two Hamiltonian systems. By con-

struction both the 𝑎 = 1 and 𝑎 = 0 systems conserve their Hamiltonians
and entropies, as given by (97) and (98) with 𝑎 = 1 and 𝑎 = 0,
respectively. Both systems have momentum equations containing a
term describing anisotropic surface energy (capillary) effects. The 𝑎 = 0
system of (129)–(132) is identical to the ideal limit of that given in
the work of Anderson et al. [14]. Upon choosing 𝛤 (∇𝑐) = |∇𝑐|, the
9

= 1 system of (124)–(127) should correspond to the ideal limit of
hat of Guo and Lin [15], but it does not. In fact the system of Guo and
in [15] in this limit does not conserve energy. Moreover, the capillary
ffect in their momentum equation (equation (3.40)), which should be
eplaced by (124) with 𝛤 (∇𝑐) = |∇𝑐|, vanishes in the one-dimensional
imit. Since such surface effects are determined by mean or weighted
ean curvature [35], it is clear that this is physically untenable.

ortunately, our method provides a simple fix to their equations, while
howing how to generalize them to include anisotropic surface effects.

An alternative but equivalent Hamiltonian formulation of the above
ystems exists, in fact, one that has a standard entropy functional of
he form of (30). Given that the bracket of (117) was obtained via a
ransformation of the bracket of (15), we can transform it back from
ne that has (98) as a Casimir to the original that has (5) as a Casimir.
owever, to generate equivalent equations of motion, we would have

o transform the Hamiltonian of (97) into a more complicated form.
racing back through our transformations, we would replace the coor-
inate 𝜎𝑎 in the Hamiltonian by 𝜎−𝜌𝑎𝜆𝑠𝛤 2∕2, which means the internal
nergy becomes

↦ 𝑢(𝜌, (𝜎 − 𝜌𝑎𝜆𝑠𝛤 2∕2)∕𝜌, 𝑐∕𝜌), (133)

hile otherwise the Hamiltonian remains the same. Just as with finite-
imensional Hamiltonian systems, one can change coordinates and
rrive at equivalent systems with different Poisson brackets and Hamil-
onians, and in the noncanonical case different expressions for the
asimir invariants. Often one has the options of a simple bracket and
omplicated Hamiltonian or vice verse.

.3. Metriplectic 4-bracket for the Cahn-Hilliard-Navier–Stokes system

Now we turn to the 4th and final step of our algorithm. Just
s in Section 2.3.3 we build a metriplectic 4-bracket using the K-N
onstruction. We suppose our multi-component field variable is

(𝐱, 𝑡) = (𝐦(𝐱, 𝑡), 𝜌(𝐱, 𝑡), 𝑐(𝐱, 𝑡), 𝜎𝑎(𝐱, 𝑡)) (134)

nd in the K-N construction we use a more general expression for 𝛴
kin to that mentioned in (56), viz.

(𝑑𝐹 , 𝑑𝐺) = 𝐹𝜎𝑎𝐺𝜎𝑎 , (135)

𝛴(𝑑𝐹 , 𝑑𝐺) = ∇𝐹𝐦 ∶ ̄̄𝛬1 ∶ ∇𝐺𝐦 + ∇𝐹𝜎𝑎 ⋅ 𝛬̄2 ⋅ ∇𝐺𝜎𝑎

+ ∇𝑎𝑐 (𝐹 ) ⋅ 𝛬̄3 ⋅ 𝑎𝑐 (𝐹 ), (136)

here 𝑎, of course, is not to be summed over and the pseudodifferential
perator 𝑎𝑐 has the following form:

𝑎
𝑐 (𝐹 ) ∶= ∇

(

𝐹𝑐 + ∇ ⋅
(

𝜌𝑎𝜆𝑠𝛤 𝝃𝐹𝜎𝑎
)

∕𝜌
)

. (137)

ere the tensors ̄̄𝛬1, 𝛬̄2 and 𝛬̄3 are defined by (59). Then, the 4-bracket
eads

𝐹 ,𝐾;𝐺,𝑁)𝑎 = ∫𝛺
1
𝑇

[

[

𝐾𝜎𝑎∇𝐹𝐦 − 𝐹𝜎𝑎∇𝐾𝐦
]

∶ ̄̄𝛬∶
[

𝑁𝜎𝑎∇𝐺𝐦 − 𝐺𝜎𝑎∇𝑁𝐦
]

+ 1
𝑇
[

𝐾𝜎𝑎∇𝐹𝜎𝑎 − 𝐹𝜎𝑎∇𝐾𝜎𝑎
]

⋅ 𝜅̄ ⋅
[

𝑁𝜎𝑎∇𝐺𝜎𝑎 − 𝐺𝜎𝑎∇𝑁𝜎𝑎
]

+
[

𝐾𝜎𝑎𝑎𝑐 (𝐹 ) − 𝐹𝜎𝑎
𝑎
𝑐 (𝐾)

]

⋅𝐷̄⋅
[

𝑁𝜎𝑎𝑎𝑐 (𝐺) − 𝐺𝜎𝑎
𝑎
𝑐 (𝑁)

]

]

. (138)

Observe, with the exception of the last line this bracket is identical to
that of (60).

Upon insertion of 𝐻𝑎 as given by (97) and 𝑆 from the set of Casimirs
to be as in (98), the dynamics is given by

𝜕𝑡𝜓
𝛼 = {𝜓𝛼 ,𝐻𝑎}𝑎 + (𝜓𝛼 ,𝐻𝑎;𝑆𝑎,𝐻𝑎)𝑎. (139)

Using 𝑎𝑐 (𝐻
𝑎) = ∇𝜇𝑎𝛤 , 𝐻𝑎

𝐦 = 𝐯, 𝐻𝑎
𝜎𝑎

= 𝑇 , 𝑆𝑎𝜎𝑎 = 1 and 𝑎𝑐 (𝑆
𝑎) = 0, the

ollowing diffuse-interface CHNS system for 𝑎 = 1 is produced:

𝜕𝑡𝐯 = {𝐯,𝐻1}1 + (𝐯,𝐻1;𝑆1,𝐻1)1

= −𝐯 ⋅ ∇𝐯 − 1∇ ⋅
[

𝑝𝐈 + 𝜆𝑓 𝜌𝛤 𝝃 ⊗ ∇𝑐
]

𝜌
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+ 1
𝜌
∇ ⋅ ( ̄̄𝛬 ∶ ∇𝐯), (140)

𝜕𝑡𝜌 = {𝜌,𝐻1}1 + (𝜌,𝐻1;𝑆1,𝐻1)1

= −𝐯 ⋅ ∇𝜌 − 𝜌∇ ⋅ 𝐯, (141)
𝜕𝑡𝑐 = {𝑐,𝐻1}1 + (𝑐,𝐻1;𝑆1,𝐻1)1

= −𝐯 ⋅ ∇𝑐 − 𝑐∇ ⋅ 𝐯 + ∇ ⋅ (𝐷̄ ⋅ ∇𝜇1𝛤 ), (142)
𝜕𝑡𝜎

1
Total = {𝜎1Total,𝐻

1}1 + (𝜎1Total,𝐻
1;𝑆1,𝐻1)1

= −𝐯 ⋅ ∇𝜎1Total − 𝜎
1
Total ∇ ⋅ 𝐯

+ ∇ ⋅
( 𝜅̄
𝑇

⋅ ∇𝑇
)

+ 1
𝑇 2

∇𝑇 ⋅ 𝜅̄ ⋅ ∇𝑇 (143)

+ 1
𝑇
∇𝐯 ∶ ̄̄𝛬 ∶ ∇𝐯 + 1

𝑇
∇𝜇1𝛤 ⋅ 𝐷̄ ⋅ ∇𝜇1𝛤 .

Similarly, for 𝑎 = 0 we obtain

𝜕𝑡𝐯 = {𝐯,𝐻0}0 + (𝐯,𝐻0;𝑆0,𝐻0)0

= −𝐯 ⋅ ∇𝐯 − 1
𝜌
∇⋅

[

(

𝑝 − 𝜆𝑓𝛤 2∕2
)

𝐈 + 𝜆𝑓𝛤 𝝃 ⊗ ∇𝑐
]

+ 1
𝜌
∇ ⋅ ( ̄̄𝛬 ∶ ∇𝐯), (144)

𝜕𝑡𝜌 = {𝜌,𝐻0}0 + (𝜌,𝐻0;𝑆0,𝐻0)0

= −𝐯 ⋅ ∇𝜌 − 𝜌∇ ⋅ 𝐯, (145)
𝜕𝑡𝑐 = {𝑐,𝐻0}0 + (𝑐,𝐻0;𝑆0,𝐻0)0

= −𝐯 ⋅ ∇𝑐 − 𝑐∇ ⋅ 𝐯 + ∇ ⋅ (𝐷̄ ⋅ ∇𝜇0𝛤 ), (146)
𝜕𝑡𝜎

0
Total = {𝜎0Total,𝐻

0}0 + (𝜎0Total,𝐻
0;𝑆0,𝐻0)0

= −𝐯 ⋅ ∇𝜎0Total − 𝜎
0
Total ∇ ⋅ 𝐯 (147)

+ ∇ ⋅
( 𝜅̄
𝑇

⋅ ∇𝑇
)

+ 1
𝑇 2

∇𝑇 ⋅ 𝜅̄ ⋅ ∇𝑇

+ 1
𝑇
∇𝐯 ∶ ̄̄𝛬 ∶ ∇𝐯 + 1

𝑇
∇𝜇0𝛤 ⋅ 𝐷̄ ⋅ ∇𝜇0𝛤 .

Thus we have extracted from our general system with arbitrary 𝑎, two
thermodynamically consistent CHNS systems. By construction both the
𝑎 = 1 and 𝑎 = 0 systems must conserve energy and both must produce
entropy, which we find is governed by the following:

𝑆̇𝑎 = (𝑆𝑎,𝐻𝑎;𝑆𝑎,𝐻𝑎)𝑎

= ∫𝛺
1
𝑇

[

∇𝐯 ∶ ̄̄𝛬 ∶ ∇𝐯 + 1
𝑇
∇𝑇 ⋅ 𝜅̄ ⋅ ∇𝑇 + ∇𝜇𝑎𝛤 ⋅ 𝐷̄ ⋅ ∇𝜇𝑎𝛤

]

≥ 0. (148)

3.4. Metriplectic 2-bracket for the Cahn-Hilliard-Navier–Stokes system

Proceeding as in the previous section, using 𝑎𝑐 (𝐻
𝑎) = ∇(𝜇 − 1

𝜌∇ ⋅
(𝜆𝑓 𝜌𝑎𝛤 𝝃)) = ∇𝜇𝑎𝛤 , 𝐻𝑎

𝐦 = 𝐯, 𝐻𝑎
𝜎𝑎 = 𝑇 , the metriplectic 2-bracket emerges

directly from the 4-bracket as follows:

(𝐹 ,𝐺)𝑎𝐻𝑎 = (𝐹 ,𝐻𝑎;𝐺,𝐻𝑎)𝑎 (149)

= ∫𝛺
1
𝑇

[

[

𝑇∇𝐹𝐦 − 𝐹𝜎𝑎∇𝐯
]

∶ ̄̄𝛬 ∶
[

𝑇∇𝐺𝐦 − 𝐺𝜎𝑎∇𝐯
]

+ 1
𝑇

[

𝑇∇𝐹𝜎𝑎 − 𝐹𝜎𝑎∇𝑇
]

⋅ 𝜅̄ ⋅
[

𝑇∇𝐺𝜎𝑎 − 𝐺𝜎𝑎∇𝑇
]

+
[

𝑇𝑎𝑐 (𝐹 ) − 𝐹𝜎𝑎∇𝜇
𝑎
𝛤
]

⋅ 𝐷̄ ⋅
[

𝑇𝑎𝑐 (𝐺) − 𝐺𝜎𝑎∇𝜇
𝑎
𝛤
]

]

,

which is the analog of (60) for the GNS system in Section 2.3.3.
Now we could proceed as in Section 2.4.1 and obtain the analog

of 𝐿𝛼𝛽 by transforming to the coordinates 𝜉𝑎 ∶= (𝐦, 𝜌, 𝑐, 𝑒𝑎Total), where
𝑒𝑎Total is the total energy density defined in (97). This would lead to
a metriplectic 2-bracket analogous to (76) and the concomitant flux
and affinity relations analogous to (87) would emerge. Because this is
hardly more enlightening than (149), we do not record this result here.

4. Summary and conclusions

In this paper we have described the metriplectic 4-bracket formal-
ism and how it can algorithmically be used in the context of multiphase
10

fluids to construct thermodynamically consistent models, ones that
conserve energy and produce entropy. In particular, we have used
it in Section 2 to obtain the GE Hamiltonian system, which adds a
concentration variable to conventional Eulerian fluid mechanics, and
to the GNS system, a generalization of the Navier–Stokes system that
is thermodynamically consistent with the collection of thermodynamic
fluxes. Then, in Section 3 we used the algorithm to obtain a class of
Hamiltonian fluid systems that allow for anisotropic surface effects,
followed by the construction of a general class of CHNS systems that
couple Cahn-Hilliard physics with that of Navier–Stokes dynamics, in a
thermodynamically consistent way. The systems we obtain generalizes
previous work by including anisotropic effects in the surface tension
and all phenomenological parameters.

A cornerstone of Hamiltonian dynamics is its geometric invariance
under coordinate changes. Because the minimal metriplectic properties
are algebraic and geometric, they too are invariant under coordinate
changes. Thus, we can write our CHNS class of dissipative systems with
a standard entropy functional of the form of (30), but with a more
complicated Hamiltonian using (133).

From the examples presented, it is clear that the 4-bracket formal-
ism can be applied to obtain a wide variety of dynamical systems in
various fields. In fact it was recently applied to obtain generalized
collision operators in kinetic theory [36] and a thermodynamically
consistent model for radiation hydrodynamics [37]. Although incom-
pressible flows do not have the usual thermodynamics associated with
compression and pressure, they can be included in the metriplectic
formalism by using the techniques of Chandre et al. [38].

The metriplectic 4-bracket formalism also provides an avenue for
designing structure preserving numerical algorithms [see e.g. 39]. Any
discretization that preserves the symmetries of the 4-bracket, which is
not a difficult task, will be thermodynamically consistent on the semi-
discrete level, i.e. produce a set of ordinary differential equations that
conserve energy and produce entropy.
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Appendix. Semidefinite curvature

We define the binary operations ⟨⋅, ⋅⟩𝛴 and ⟨⋅, ⋅⟩𝑀 that satisfy all
of the axioms of an inner product space, except the non-degeneracy
condition

⟨𝐹 ,𝐺⟩𝛴 ∶= ∫ 𝑑𝑁𝑧∫ 𝑑𝑁𝑧′ 𝛴𝛼𝛽 (𝑧, 𝑧′) 𝛿𝐹
𝛿𝜒𝛼(𝑧)

𝛿𝐺
𝛿𝜒𝛽 (𝑧′)

,

⟨𝐹 ,𝐺⟩𝑀 ∶=∫ 𝑑𝑁𝑧′′∫ 𝑑𝑁𝑧′′′𝑀𝛾𝛿(𝑧′′, 𝑧′′′) 𝛿𝐹
𝛿𝜒𝛾 (𝑧′′)

𝛿𝐺
𝛿𝜒𝛿(𝑧′′′)

,

where 𝛴 and 𝑀 are positive semi-definites. We have the Cauchy–
Schwarz inequality

|

|

⟨𝐹 ,𝐺⟩𝛴 || ≤
√

⟨𝐹 , 𝐹 ⟩𝛴
√

⟨𝐺,𝐺⟩𝛴 = ‖𝐹‖𝛴‖𝐺‖𝛴 .

Lemma 1. A metriplectic quadravector constructed using the 𝐾−𝑁 product,
has non-negative sectional curvature,

𝐾(𝐹 ,𝐺) = ∫ 𝑑𝑁𝑧∫ 𝑑𝑁𝑧′∫ 𝑑𝑁𝑧′′∫ 𝑑𝑁𝑧′′′ 𝛴𝑖𝑗 (𝑧, 𝑧′)𝑀𝑘𝑙(𝑧′′, 𝑧′′′)

× 𝛿𝐹
𝛿𝜒𝛼(𝑧)

𝛿𝐺
𝛿𝜒𝛽 (𝑧′)

𝛿𝐹
𝛿𝜒𝛾 (𝑧′′)

𝛿𝐺
𝛿𝜒𝛿(𝑧′′′)

+ other terms.

Proof. Direct calculation gives

𝐾(𝐹 ,𝐺) = ‖𝐹‖2𝛴‖𝐺‖
2
𝑀 − 2⟨𝐹 ,𝐺⟩𝛴⟨𝐹 ,𝐺⟩𝑀 + ‖𝐺‖2𝛴‖𝐹‖

2
𝑀 .

The following inequality
(

‖𝐹‖𝛴‖𝐺‖𝑀 − ‖𝐺‖𝛴‖𝐹‖𝑀
)2 ≥ 0

implies

‖𝐹‖2𝛴‖𝐺‖
2
𝑀 + ‖𝐺‖2𝛴‖𝐹‖

2
𝑀 ≥ 2‖𝐹‖𝑀‖𝐹‖𝛴‖𝐺‖𝑀‖𝐺‖𝛴

≥ 2 |
|

⟨𝐹 ,𝐺⟩𝛴 || ||⟨𝐹 ,𝐺⟩𝑀 |

|

≥ 2⟨𝐹 ,𝐺⟩𝛴⟨𝐹 ,𝐺⟩𝑀 ,

where the second inequality follows from the Cauchy–Schwarz inequal-
ity. Evidently, the last inequality implies 𝐾(𝐹 ,𝐺) ≥ 0 for all 𝐹 and
𝐺.

Lemma 2. We suppose that 𝛴 is positive definite, defining an inner product.
Given any two 𝛴-arbitrary linearly independent 𝛿𝐹∕𝛿𝜒 and 𝛿𝐺∕𝛿𝜒 , then
the sectional curvature is strictly positive (𝐾(𝐹 ,𝐺) > 0).

Proof. Since 𝛿𝐹∕𝛿𝜒 and 𝛿𝐺∕𝛿𝜒 are 𝛴-Linearly independent, the Cauc
hy–Schwarz inequality given by

|

|

⟨𝐹 ,𝐺⟩𝛴 || < ‖𝐹‖𝛴‖𝐺‖𝛴 .

In the same way we have
(

‖𝐹‖𝛴‖𝐺‖𝑀 − ‖𝐺‖𝛴‖𝐹‖𝑀
)2 ≥ 0

implies

‖𝐹‖2𝛴‖𝐺‖
2
𝑀 + ‖𝐺‖2𝛴‖𝐹‖

2
𝑀 ≥ 2‖𝐹‖𝑀‖𝐹‖𝛴‖𝐺‖𝑀‖𝐺‖𝛴
> 2 |

|

⟨𝐹 ,𝐺⟩𝛴 || ||⟨𝐹 ,𝐺⟩𝑀 |

|

> 2⟨𝐹 ,𝐺⟩𝛴⟨𝐹 ,𝐺⟩𝑀 .

Hence, we deduce that 𝐾(𝐹 ,𝐺) > 0 .

Finite-dimensional versions of these two lemmas were first reported
in [9].
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