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ABSTRACT

Investigation of the current collected by a long wire in space has application to long antennas and the
proposed space shuttle tethered subsatellite. Langmuir's result for current collection by a moving probe in a
plasma is used to obtain expressions for the voltage and current as functions of position along a wire. Two cases
are considered: firstly, one end of the wire is grounded to the plasma and secondly, the wire is allowed to assume
a natural grounding point. Results are obtained as a function of the wire resistivity, length and diameter for
various particle densities. Calculations for a 2mm diameter copper wire show that a current of 0.066 amperes of
oxygen ions will be collected by a tether of 10 km in length.

1. INTRODUCTION

Several experiments proposed for the space shuttle will
require long wires to be deployed from the space shuttle
orbiter while in a near-earth orbit. Among these experiments
are VLF antennas and tethered sub-satellites with wires
extending on the order of 10 to 100 km from the vehicle. A
significant potential difference between a long wire and the
ambient plasma will develop because of the induced emf due
to motion across the magnetic field lines of the earth. If the
wire is bare, current will be collected from the plasma and
flow in the wire.

In section II we describe our coordinate system, motivate
the appropriate current-voltage relation for leakage current
and obtain differential equations for the current and voltage as
a function of position along a wire. The following two sections
deal with the tethered subsatellite and a free floating wire
respectively. Numerical results are obtained.

II. GENERAL DISCUSSION

We assume that a wire points radially outward1 while in
an eastward directed equatorial orbit with velocity v. The wire
determines a coordinate axis with the point z=0 corresponding
to the point of attachment to some spacecraft and z increasing
away from the earth. For an equatorial orbit the geomagnetic
filed, B is assumed to be constant in magnitude and direction.
The vectors, K z and v determine an orthogonal coordinate
system (Fig. 1).

* Most of this material was presented at the 1976 IEEE
International Conference on Plasma Science, Austin, Texas,
May 24-26, 1976.

** Present address: Center for Research in Aeronomy, UMC 41,
Utah State University, Logan, Utah 84322.
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Figure 1. Coordinate system formed by v z, and B.

The motion of the wire in the magnetic field gives rise to a
(LXW). z induced emf in the wire. Since vXB is directed in the
positive z direction, the outer end obtains a positive charge;
electrons are driven downward. It is apparent that the electric
field due to charge separation in the wire, as seen from the
plasma reference frame, has a component directed in the
negative z direction. Hence, dV/dz>0 and V(d)>V(0), where
V is the wire potential relative to the ambient plasma potential
and d is the outer end of the wire. This change in potential per
unit length, dV/dz, is equal to the difference between the emf
and the resistive loss per unit length. Since the emf must
exceed the resistive loss,

dV = - Ai
dz
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Here (v x z being a unit vector in the z
direction, A is the resistance per unit length of the wire, and i
is the current in the wire.

The current in eq. (1) includes leakage from the plasma.
In order to ascertain the effect of this leakage current it is
necessary to utilize the current-voltage relation for a long
moving probe. The appropriate expression is obtained from
Langmuir probe theory within the following approximations:

JeVIlIeVi»I R (2)
_>> 1, 1 1>> 1,R >>1

kT 1 2 R
-m V2 +

where e is the electron charge, k is Boltzmann's constant, T is
the ambient plasma temperature, R is the wire radius, Rs is the
characteristic length of the sheath, and m+ is the mass of the
positive ion present in the plasma (here 0).

Large Potential Approximations. Here we consider the
first and second inequalities of (2). For a near-earth orbit
(-'400 km), we assume 6 =0.2 volts/meter and T= 1030 K
(kT/e = 0.09 volts). It is seen that, except for at most a small
portion of the wire about a point where the potential is zero,
IeVI/kT > 1. (See Figs. 2, 4 and 7.) For most of the wire the
potential is quite large. A 10 km wire grounded at one end will
attain, at the other end, a potential near 2 kv.

The current collected by a probe is composed of two
components: one due to collection of accelerated charged
particles and the other due to retarded charged particles of the
opposite sign. If the potential is large the retarded current

contribution will be small; we neglect it.
The second approximation leVl/1/2m+ v2 1, compares the

swept up kinetic energy of the positive ions to the wire's
potential. For a wire speed of 7 km/sec and m+ 16 amu,
/2m+v2/e-4 volts. Although this approximation is not as good
as the previous one, it still holds for all but a small portion of
the wire. Again, it breaks down near a point where V is zero.

(The validity of this approximation also assures that
eVIl/2m v2>1.)

Large Sheath Approximation. Here, we consider the last
inequality of (2). This approximation is valid if the Debye
shielding length, XD is large compared to the wire radius. If we

assume a density, n, of 2 X 1011m- for oxygen ions and
electrons then XD - 5 X 10-m. A typical wire radius is about
10- m, so XD5 R. Actually, since the sheath radius increases
with potential,2 R5 may be many Debye lengths.

The appropriate current-voltage relation under these

conditions is:

3/2
2ne

P 17 2m (3)

where Jp is the current drawn from the plasma through a unit
element of surface area normal to the wire and m+is the mass

of the accelerated particle. The upper sign corresponds to

positive ion collection where the potential is negative; the
lower coresponds to electron collection.

We now combine eqs. (1) and (3) to obtain an equation
for the potential. Differentiating eq. (1) with respect to z, we
obtain:

d V di
2

- Adz 'az

since the emf per unit length is assumed to be constant. Now,
the change in current per unit length, di/dz, is due, only to the
current leakage from the plasma. Hence,

di p21TR J
dz p

Substitution of eq. (3) into eq. (5) and the result into eq. (4)
yields the following nonlinear differential equation for the
potential:

d2V 4ARne /

dz2 T m (6.dz m -(6)

If we assume that the density, n, is constant then this equation
possesses an explicit solution in terms of elliptic integrals. We
present this in Appendix A along with a useful expansion
applicable for most cases of practical interest. In the next
sections we apply this equation to the two examples and
integrate numerically.

Ill. TETHERED SUBSATELLITE

A space shuttle tethered subsatellite system called the
Tethered Balloon Current Generator6 has been proposed and a
moderately sized system consists of a 30 meter diameter
conducting balloon attached to the space shuttle via a 10
kilometer wire. The tethered balloon is gravity-gradient
stabilized in a position radially outward as the shuttle
describes an eastward orbit. The geometry is the same as in
Fig. 1, where the point d corresponds to the balloon end.

Since the balloon has a large surface area, the conductive
coupling with the plasma will be large; hence, we assume that
the balloon is at the same potential as the plasma. This is of
course not rigorously correct, since the potential at this point,
will depend upon the current, via the current-voltage
characteristics of the balloon; but it does not vary much over
the range of current of interest. (If the balloon is at zero
potential, then a current in excess of 1 amp will be collected
on its surface due to electron and ion impingent thermal
fluxes. If an equal number of electrons and ions are collected,
i.e. i=0, then the balloon will attain a potential on the order of
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-0.5 volts.) Therefore, V(d)=O (the point d corresponds to z0 0.6
as used in Appendix A). aO

Since dV/dz must be greater than zero, all points of the (kv) (a)
wire have negative potential and ions are collected. This 0.5
implies that the upper signs in eqs. (A. 14) and (A. 15) are
appropriate. Knowledge of the current at the point d, i(d), or
dV(d)/dz will complete the solution. Realistically, the current 0.4
is controlled from the shuttle, therefore, the more appropriate
conditon is i(0), the value of the current at z=0. We use the
boundary conditon i(0)=O. 0.3

Figures 2 and 3 show results for the case of zero resistivity (b)
(p=O), where eq. (6) possesses a linear solution and di/dz varies
as (d-z)1/. In Fig. 2, we plot p, the negative of V, as a function of 0.2
z. Figure 3 is a plot of di/dz vs. z for two values of the density.
It is seen that di/dz scales with Rn. The maximum current i(d) (c)

is 0.066 amps for n=10'2m3; this is due entirely to leakage 0.1 _
from the plasma. (d)

2.0

0 ~ ~ \ 0 2 4 6 8
z (kmi)

lot Figure 4. Plot of AO, the deviation from the p=O case,
\ function of z for: (a) p=10-62m, R=103m, n=101

\ i(d)=0.27 amps, (b) p=10'72-m, R=2.5X10W4m, n=10o
i(d)=0.076 amps, (c) p=10 6Q-m, R=103m, n=2X10"
i(d)= 0.063 amps, and (d) p=1.5X10A4Q-m, R=2.5X1

0 1 2 3 4 5 6 7 8 9 10 n=1O2m,i(d)=0.081amp.

Figure 2. Plot of ¢ (negative of the potential) asa function of z (a

for: the resistivity p=O, n=2X10' l4, and R=104m. 7
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Figure 3. Plot of di/dz as a function of z for: (1) p=O, 3
R= 10-3m, n= 10'2m3, i(d)=O.066 amps and (b) p=O,
R=104m, n=2X10 1m3, i(d)=0.033 amps.

In Figs. 4 and 5 we plot the deviation from the p=O case.
2

Observe that the deviation scales with pn/R. For a reasonable
resistivity, p=1.5X1042-m, (Cu), wire radius R=10-3m and
n=2X10''m3, the deviation is quite small. In the figures we
plot cases where the deviation is larger. For plots (a) and (c) (c)
we used the extreme resistivity, p=104Q-m (nichrome) to (d)
demonstrate this finite resistance effect. 0 A- - U 0

Z (Ian)
Figure 5. Plot of Adi/dz, the deviation from the p=O case, as a

function of z. (a), (b), etc. correspond to the same parameters

as in Figure 4.
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IV. FREE FLOATING WIRE

We now consider an isolated, free floating wire which is
appropriate for VLF antennas and small tethered subsatellites
when no current is emitted from either the shuttle or the
subsatellite. In this case the ends of the wire assume an
unspecified floating potential relative to the ambient plasma
and no current flows through either end of the wire. The wire
assumes a natural grounding point, c, such that above this point
(increasing z) the potential is positive and below, negative (Fig.
6) (dV/dz remaining positive). Hence, we use i(0)=0, i(d)=0,
and V(c)=O.

The solution when c<z.d corresponds to eqs. (A. 14) and
(A.15) with the lower sign where z0=c. When 0 Sz<c the
upper sign is appropriate.

As an example we consider a 100 km wire with radius
2.5X10A4m in a region where the particle density is
2X101 1 m-. Plots of q(-V) versus z are shown in Fig. 7 (upper),
where the resistivity, p=1.5X10Q2-m(Cu) is plotted along
with the zero resistivity. The lower portion of Fig. 7 shows
-di/dz versus z. The maximum current occurs at the point c;
the magnitude of the leakage current density or di/dz equaling
zero at this point.
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Figure 6. Schematic depiction of floating wire.

The point, c, at which the potential is zero will be
assumed to correspond to zero plasma leakage current density.
We further assume that in the region c<z<d, where V>0, only
electron collection takes place; the retarded current is
neglected as discussed previously. Similarly, when 0.z<c,
where V<0, electron retarded current is neglected and the
leakage here is due only to positive ion collection.

The above assumptions reduce the problem to the
solution of two differential equations in two regions with
matching conditions on the voltage and current at the point c.
In Appendix B we determine the point c.

d

1 + (-
m+

When m-=meand m+=16 amu, c .97 d.
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Figure 7. (upper) Plot of 0 (negative of the potential) as a
function of z for the floating wire. (lower) Plot of -di/dz versus
z. (a) p0, n=2X10 ' m 3, R=2.5X104m, (b)
p=1.5XlO4Q-m, R=2.5X104m, n=2X10 m1m3. The
maximum current occurs at point c; i(c)=0.5 amps.

V. CONCLUSION

We have described the current-voltage properties of an
orbiting long wire of finite resistivity and diameter. Two
applications have been considered and deviation from the zero
resistivity case was seen to be small for practical values of the
parameters involved. The point of ground for a floating wire
was determined.
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Here we obtain the solution to eq. (6) which is
representable in terms of elliptic integrals. Also, since for most
cases of practical interest the deviation from the p=O case is
small, we develop expansions for V and i.

Integrating eq. (6) from z=zO to z with V(zO )=O yields:

(dV 2 dV2 1ne3/2
dz dz + (:F V (z))

0 ±

(A.1)

- 2. 31/4 1E(P.k)-E(@,1 )) ,

where

cos Cp = ----
A/-7+1+/ '

Using eq. (1) we define,

dV(dz = & - Ai(z ) = K

0
and substitution into (A.1) yields:

dV _
dz

(A.2) and k2 = sin2 51TT= 4
F and E are elliptic integrals of the first and second kinds,
respectively. 3/2

Now defining CE = 4 AR ne / (dZm; )
eq. (6) becomes

(A.3) dvTdz2 ±V (A.7)

Substituting the dimensionless variables

Expaning +V in the smallness of e±,

TV = ±V
(A.8)

z

(A.4)1 3/2 2/3
± = K (16ne AR

m K2
into (A.3) leads to the integral,

J +3/2 + 1 0±Ci

where V +1 /(V)~ O(°) . Substituting (A.5) into (A.8)
and equating the first two orders in e to zero,

d 2(T V
0d

dz2

(A.9)

Substituting 0+=x2 (h+ is nonnegative) implies,

W/Vi
2x dx

O, v 17

2 2

2 +3/2 + 1
2

J3+1A4+ I +

(A.6)
3 - I F(Cpv k) - F(314 k)

d(V1) ) 1/2

dz2 C(V

We solve these subject to the boundary conditions,
dV

V(z) =
0. -° = K,

0 dz/ =Z=

0

_V1) = 0, I >0.

Z-Z
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The solution to (A.9) is

(TVVO) = K(z - z )
(A. 1 1)

Using (A. 4), (n /r) 1/3 and ( 1/3
Evaluating (B.1) at z=0 and (B.2) at z=d, then equatingE = g (m /mr) im/lie~C+ c- + iplies,

d@+

O2+ + 1
Substituting (A.1 1) into (A.10) and integrating,

dV1
dz

2e K"/
3

1/3 4'_ (d)
1

= l

(T(z - z )) /
0

(A.12)

and integrating a second time,

4e K1'
T V1(Z) = 15

m 1/3
+ d

(F (z ))
(A.13) Now since we have assumed i(0)=O and i(d)=O, using (A.3)

evaluated at c and d, together with (1) and (A.4), we obtain,

Therefore to order e+,
T V(z) = K(z - z, ,+(0) = + (d)

(B.4)

16 Rne3/2 K1/2 5/2

+16ARne K (T(z -z)) (A.14)

15f5

The corresponding equation for the current is obtained by
differentiating (A.14) then substituting the result into eq. (1),

i(z) = i(z ) -
8 ne3/2RK1/2 3/2

(TF(z-z )) 0

3 2m, ° (A.15)

APPENDIX B

Here we determine the point c. When 0.z<c, using (A.5),

/

4//2+ 1 c+ +

d@'
d/ = g - C

r - c-
t3/2 + 1

and when c<zId,

0

(B.1)

(B.2)

Hence from (B.3) and (B.2),
4 (d)

Jo
i312+i

d+
/m- 1/3

I+
m

c+

(B.5)

Whereupon,
d

C f)1/3

1+
\m (B.6)
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