
VOLUME 45, NUMBER 10 P HYSI C AL REVIEW LE TTERS 8 SEPTEMBER 1980 

ity a nonlocal potential which could fit neutron 
elastic scattering data in the energy range from 
0.4 to 24 MeV and where the optical-model param­
eters were energy independent. This is, of 
course, a remarkable result since we know that 
the absorption, for instance, is changing quite 
dramatically by going from 0.4 to 24 MeV inci­
dent projectile energy. We believe that these 
findings of Perey and Buck strongly support our 
result that there exists a nonlocal potential, 
which is not explicitly energy-dependent, which 
describes elastic nucleon scattering in a wide en­
ergy range. The theory presented in this paper 
may serve as a convenient tool in deriving such 
a potential. Actual calculation of an energy-inde­
pendent optical-model potential as outlined in this 
paper is in progress. 
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A new Hamiltonian density formulation of a perfect fluid with or without a magnetic field 
is presented. Contrary to previous work the dynamical variables are the physical variables, 
p, ~, :8, and s, which form a noncanonical set. A Poisson bracket which satisfies the 
Jacobi identity is defined. This formulation is transformed to a Hamiltonian system where 
the dynamical variables are the spatial Fourier coefficients of the fluid variables. 

PACS numbers: 47.10.+g, 03.40.0c, 47.65.+a, 52.30.+r 

Several advantages may be gained from expres- Hamiltonian systems are most elegant when ex-
sing a set of equations in Hamiltonian form. In pressed in canonical coordinates. Hydrodynam-
addition to their formal elegance, Hamiltonian ics is most usefully expressed in Eulerian vari-
systems possess Poincare invariants that influ- abIes. These two desiderata conflict. In prac-
ence the dispersion of an ensemble of systems tice, the penalty paid for adopting noncanonical 
with clustered initial conditions. A manifestly coordinates is not severe, so that branch of the 
Hamiltonian formulation of a given problem makes dichotomy is pursued here. 
it easier to find those approximations that pre- Previously, the equations of hydrodynamics1 

serve the Hamiltonian character. Here we pre- and magnetohydrodynamics,2 in both Eulerian and 
sent such a formulation of hydrodynamics and Lagrangian form, have been shown to arise from 
magnetohydrodynamics. a suitable Hamilton's principle. Such a Lagrang-
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ian density formulation is the natural starting 
place for derivation of a Hamiltonian density de­
scription.3 Typically, the Euler-Lagrange equa­
tion is the fluid equation of motion; the remain­
ing fluid equations have the role of constraints. 
A Hamiltonian density formulation obtained by 
Legendre transformation necessarily embodies 
this division of roles. Alternatively, Hamilton­
ian-type equations have been given directly for a 
fluid4 and for ideal magnetohydrodynamics.5 In 
these formulations, Clebsch or other nonphysical 
variables are necessary and entropy convection 
is not included. Our formulation departs from 
previous work in that all of the fluid equations 
are, in principle, placed on equal footing; fur­
ther, the dynamical variables are the physical 
variables. The fluid equations, including entropy 
convection and (but not necessarily) the Maxwell 
induction equation, are obtained in Poisson-brack­
et form; the Hamiltonian density is the energy 
density of the fluid. The physical variables are 
noncanonical; this results in alteration of the 
usual Poisson bracket. The use of noncanonical 
variables has proven to be fruitful for Hamilton­
ian systems6 and a Poisson bracket similar to 
ours has been used to express the Korteweg-
de Vries equation as a Hamiltonian system/·a 

In the following, we obtain three essentially 
equivalent forms for the Poisson bracket. The 
first, Eq. (6), is expressed in terms of the usual 
physical variables. The second, Eq. (9), use 
conserved densities as variables. This form 
possesses greater symmetry, and facilitates 
Fourier transformation. In the last form, Eq. 
(14), the dynamical variables are spatial Fourier 
coefficients. 

We wish to cast the following set of equations 
into Hamiltonian form: 

vt =- V (v 2/2) +VX (v xv) 

_p- 1V(P2U p )+p-l(VXB)XB, (1) 

Pt =- V· (pv), 

13t=vx(vxB), 

(2) 

(3) 

(4) 

Equation (1) is the hydrodynamic force balance 
equation for a fluid with denSity p and velocity v, 
with the addition of the magnetic body force term 
JxB. We have eliminated J by making use of 
Ampere's law: J=VXB. The internal energy per 
unit mass, U(P,s), is a prescribed function of p 

and the entropy per unit mass,9 s. The intensive 
variables, pressure p and temperature T, are 
obtained from this functionp =p2U p and T =Us• 

Equation (2) is mass conservation. Equation (3) 
is the Maxwell induction equation with the electric 
field eliminated by Ohm's law: E +vxB =0. Here 
infinite conductivity is assumed. Equation (4) ex­
presses entropy convection;. heat flow is assumed 
to vanish. The equation V· B =0 enters our for­
mulation only as an initial condition. 

The energy density of a fluid described by Eqs. 
(1)-(4) iSH=~PV2+PU(P,s)+~B2, where ~pV2 is 
the kinetic-energy denSity and the remaining two 
terms are the internal- and magnetic-energy den­
sities. We take this as our Hamiltonian denSity 
and construct the Hamiltonian if[ P, s , v, 13] = f v H(P , 
s,v,B)dT, where the square brackets are used 
to indicate that if is a functional of the enclosed 
functions. The integration is over a fixed spatial 
region V. We desire a Poisson bracket, such 
that Eqs. (1)-(4) can be represented in the form 

x,·=[x·,H], i=0,1,2, ••. 7, 

where the X I are suitable functional dynamical 
variables. 

(5) 

Before writing this bracket [Eq. (6) below], we 
briefly discuss the structure of our formulation. 
Quite generally consider the vector space V, over 
the real numbers R, whose elements are function­
als of the form 

where X is an n-uple of C\V) functions X·(X,t). [In 
part~ular, XO=p, Xl =s, (x2,X3 ,X4)=v, and (X5 ,X6 , 

X7 ) =B. The notation ax/ax~ is used to indicate that 
F depends on the derivatives of Xi with respect 
to each of the three spatial variables x~, a =1-3. 
We assume F has a finite number of arguments 
and is a COO function in each of them. The bracket 
we obtain is a bilinear function which maps V x V 
to V. In addition, the bracket possesses the fol­
lOWing two important properties: (i) [F ,F] =0 
for every FE V. For V over R, this is equivalent 
to [F,C]=-[C,F] forF,GEV; (ii) the Jacobi 
identitiO [E, [;, e]] +[F, [e,E]] +[ e, [E,F] =0 
for every E ,F , G E V. A vector space together 
with a bracket which has the above properties de­
fines a Lie algebra. l1 
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Now we introduce the following bracket12 : 

[ A A] i ([OF o{; of OGJ [OF (V XV) OG)J F G =- -v,-"",+-"",v- + ~. ---x~ 
, v op OV 6v op ov P ov 

[ -1 (OF 06 6eOF)] + p Vso -~---.",. 
as ov Os ov 

{ OF [- ( oe)J of [ (- - OG),l}~ f of oe + p- 1 6V' BX V x 6B + 6B 0 v x B xp 16V 'J :)dT == v 61 oj} OXi dT. (6) 

Here the notation of/OX I means the functional de­
rivative with respect to Xl. Suppose each Xl con­
tains an additional parameter dependence X / (X, 
a/,t). We define the functional derivative bys 

aft f of al - = -;;:-- -, dT (not summed). 
aat v vXi aa/ 

(7) 

This functional derivative has the role, in fi­
nite-dimensional Hamiltonian systems, of the 
derivatives with respect to phase coordinates 
(aF /aq I, aF lap I)' In systems with finite degrees 
of freedom the Poisson bracket is written 

where the Zl are the phase-space coordinates, 
Zl E{ql>'" ,qN, Pi>'" ,PN}' In canonical coordi­
nates the cosymplectic form, J I}, is 

where I is the unit N XN matrix. In a canonical 
system this matrix may be full and depend on the 
dynamical variables. Clearly, this is the case 
for our bracket, Eq. (6). The cosymplectic form 
here, is the operator OiJ which, in addition to be­
ing dependent on the dynamical variables, con­
tains derivatives. 

Now we complete the description of our formu­
lation and demonstrate the relationship between 
this bracket and Eqs. (1)-(4). We define a set 

,D C V whose elements are of the form 

XI[Xi] =fvfl(x)xl(x,t)dT, 

i = 0,1,2, ... ,7 (not summed), 

where Xl E C~(V) and thefl are arbitrary func­
tions13 of x alone, which vanish on avo D is thus 
the set of dynamical variables. Substituting X 0 

and H into Eq. (5) yields 

(8) 
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I Sincefo(x) is an arbitrary function, by the Du 
Bois-Reymond14 lemma, Eq. (8) implies Eq. (2). 
Equations (1), (3), and (4) follow, from the re­
maining dynamical variables of the set D, in a 
similar manner. 

Several features of the bracket defined in Eq. 
(6) deserve comment. First, the denSity, p, 
appears in the denominator of several terms. 
This makes it awkward to evaluate the bracket 
exactly when polynomial or Fourier representa­
tions are used for the dynamical variables. This 
is easily rectified through a nonlinear transfor­
mation described below, and the resulting brack­
et, in terms of the new variables, has a pleaSing 
form. Second, gradients appear throughout the 
bracket. This is reminiscent of the bracket used 
in Hamiltonian theories of the Korteweg-de Vries 
equation7.8 

[F G]=JdXOF(~ aG). , au ax au 

Two methods have been used to reduce the Korte­
weg-de Vries bracket to canonical form. Gard­
ners used a Fourier transform to convert the de­
rivatives to numbers, and then scaled the coeffi­
cients to achieve canonical form. Similarly moti­
vated, we also consider Fourier transforms be­
low. In another approach to the Korteweg-de 
Vries equation, Zakharov and Faddeev7 used a 
spectral transform to achieve canonical form. 
This method may be applicable here. 

Our new set of Eulerian variables, which yields 
an improved Poisson barcket is {p, a , M, 13}, 
where a =ps and M =pv; a is the specific entropy 
and M is the momentum denSity. Substitution of 
these variables into Eqs. (1)-(4) results in eight 
conservation equations. The pressure is now 
determined by P =p2{6p+ ap- 1Ua), where (j(p,a) 
=U(p,s). As a result of the transformation 

~I =~I +P-1M·~+ap-l~ 
op v,s op M. a oM oa' 

together with similar transformations for the re-
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FIG. 1. The cosympletic form £1< • i. 

maining variables, Eq. (6) becomes 

~ A r f (OF 08 08 of) ... (oF 08 08 of) 
[F,G]=-:Jvdr\f\6M'V:OP -6M' v oP +M· 6M.v6M-6M'v~ 

(OF OG oG of) - {(OF oe 08 of) ~( OF) oG (08) of J}) +(J -...- ,v- ---- ,v- + B' __ ·v~ - ___ ·v~ + V---'-'" - v~·-..,.. . 
oM O(J oM O(J oM o.Jj oM o.Jj oB oM o.Jj oM (9) 

Notice that each term .contains one Eulerian vari­
able in the numerator; the terms in the denomi­
nator have been eliminated. 

Now consider a transformation of the Hamilton­
ian coordinates from Eulerian variables to the 
coefficients of the Fourier transform of these 
variables. For convenience, we take V to be a 
unit cube and adopt periodic boundary conditions. 
Then 

P =6tP'k(t) exp(21Tk .x), 
'I 

where kE ZXZXZ (Z, the integers). 
from Eq. (7) that 

aF laF ~ -= - exp(21TzK' X) dr. 
apt ·vap 

Inverting Eq. (11), we obtain 

aF aF ..... ~ 
- = ~- exp(- 21TZk' X,. 
op K apt 

(10) 

We observe 

(11) 

(12) 

Inserting Eqs. (10) and (12), and the analogous 
expressions for the other variables in our set, 
into Eq. (9) yields 

[ A A] '" aF aG F G = LL -=- '0'" .... -..,--, t,1 aZ j{ _k,1 azt' (13) 

where Zt is the octuple (Pt,(Jt, M t, 13t), and the 
matrix Ok t is shown in Fig. 1. Here I is the 3 
x 3 unit m~trix appropriate to the box in which 
it is contained. The matrix has the important 
property Qt, r=-Qt. t, where the tilde indicates 

I transpose. Equation (13) can be written as fol­
lows: 

[ ] _8F ijaG .. 
F, G -azrJ 8z i ' Z,JE.Z, (14) 

where ZiE{Pt,(Jt, Mt,BtikEZXZXZ}. The ma­
trix J has the property Jii = - Jii and its elements 
can be obtained by a suitable map15 of the indices 
of Qt. r onto Z. Clearly Eq. (14) is of the same 
form as finite Hamiltonian systems, but here J 
is of infinite order. Approximation techniques, 
along with the proof of the Jacobi identity, inte­
gral invariants, and commutation relations, will 
be the subject of a future publication. 
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ERRATA 

NONCANONICAL HAMILTONIAN DENSITY FOR­
MULA TION OF HYDRODYNAMICS AND IDEAL 
MAGNETOHYDRODYNAMICS. Philip J. Morri­
sori(a) and JOM M. Greene lPhys. Rev. Lett. 45, 
790 (1980)]. -

We wish to point out that the magnetic field 
portions of the Poisson brackets presented in 
Eqs. (6) and (9) require the initial condition V • 13 
= 0 for the validity of the Jacobi condition. This 
requirement is easily removed by adding a term, 
proportional to V· 13, to these equations. The 
last term of Eq. (6) (within the curly braces) be­
comes 

-f{13' (! il! ·v~- !~'V~) 
" P ilv ilB p ilv il.tS 
- [( 1 ilF) ilG (1 OG) OF]-} +B' Vp ilv . ffi - Vp ilv 0 ffi dT. 

Similarly, the lasf term of Eq. (9) becomes 

I{ ( ilF .OG OG OF) - B i ilM al ilB - ilM 31 ilB . 
v , Iii 1 

+Bi [( ai il~);1 - (Oi :~J;J}dT, 
where repeated index notation is used. We em­
phasize that the Jacobi condition is satisfied in 
complete generality for these brackets,t inde­
pendent of V 0 13 = O. The dynamical equations of 
motion, 

vt = - V (~V2)+VX (v xv) - p·1V (P2Up ) 

~ p-1V 0 (~B21 - 1313), 
13t=-13Vov+13ovv-voV13, 

that are obtained from the Poisson bracket in 
this form manifestly have the symmetries of the 
ten-parameter Galilean group. Elsewhere one of 
us (P.J .M.) has shown how our brackets together 
with dynamical constants of magnetohydrodynam­
ics generate the infinitesmal transformations of 
this group.2 

We would like to thank Dr. B. Kupershmidt for 
prompting this analysis with V • 13 '" o. 
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EFFECTIVE HARMONIC-FLUID APPROACH TO 
LOW-ENERGY PROPERTIES OF ONE-DIMEN­
SIONAL QUANTUM FLUIDS. F. D. M. Haldane 
[Phys. Rev. Lett. 47, 1840 (1981)]. 

The condition for stability of the quantum fluid 
state against pinning by a substrate potential com­
mensurate with the mean particle separation (p. 
1842, top of column 2) should read:. "The fluid 
state is only stable if the sine-Gordon coupling 
parameter10 satisfies {32 = 21Tn21/ > 81T, i.e., 1/- 1 

< in2 , or 1/ > 4/ n2 ." (This replaces the opposite 
condition 132 < 81T in the printed text.) The condi­
tion (:32> 81T means that the zero-point density fluc­
tuations of the fluid are sufficiently strong to re­
sist pinning by the substrate. 

Note also that the phase field qJ (x) [intended as 
cp(x), as in Refs. 1 and 2] should not be confused 
with the Bogoliubov-transformation parameter 
qJ(q) introduced in Eq. (5); its boundary condi­
tions are cp(x+L)=CP(x)+1TJ, [not qJ(x)+ITJ, as 
printed]. 
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