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Hamiltonian Field Description of 

Two-Dimensional Vortex Fluids and 

Guiding Center Plasmas 

by 

Philip J. Morrison 

Plasma Physics Laboratory, Princeton University 

Princeton, New Jersey 08544 

Abstract 

The equations that describe the motion of two-dimensional vortex fluids 

and guiding center plasmas are shown to possess underlying field Hamiltonian 

structure. A Poisson bracket which is gi ven . in terms of the vorticity, the 

physical although noncanonical dynamical variable, casts these equations into 

Heisenberg form. The Hamiltonian density is the kinetic energy density of the 

fluid. The well-known conserved quantities are seen to be in involution with 

respect to this Poisson bracket. Expanding the vorticity in terms of a 

Fourier-Dirac series transforms the field description given here into the 

usual canonical equations for discrete vortex motion. A Clebsch potential 

representation of the vorticity transforms the noncanonical field description 

into a canonical description. 
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I. Introduction 

This paper is concerned with the Hamiltonian field formulation of the 

equations which describe the advection of vorticity in a two-dimensional 

fluid. These equations have received a great deal of attention in the past 

thirty years and are believed to model the large scale motions which occur in 

atmospheres and oceans. They have also arisen in the study of plasma 

transport perpendicular to a uniform magnetic field, the so-called guiding 

center plasma. 1,2 (For recent reviews see Refs. 3 and 4.) 

It has been known for some time that a system of discrete vortex (or 

charge) filaments possesses a Hamiltonian description. 5 The equations of 

motion are 

dx. 
1. 

k i dt 
aH =--
ay. 

1. 

dy. 
1. 

k i dt = 
aH 
ax. 

1. 

(1) 

where ki is the circulation of the i th vortex which has coordinates xi and 

YiO The Hamiltonian, H, is the interaction energy and for an unbounded fluid 

has the form 

H = 
-1 L k.k. In R. of 

2TI i>j 1. J 1.J 

The variables xi and Yi are canonically 

conjugate. The formulation we describe here is a field formulation which 

possesses this underlying discrete dynamics. 

In Sec. II we briefly review some aspects of finite degree of freedom 

Hamiltonian dynamics. The emphasis here is placed on the Lie algebraic 

properties of the Poisson bracket. This is used as a framework in which to 
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explain the "constructive" approach to Hamiltonian dynamics. Such an approach 

frees one from the prejudice that a system need be in canonical variables to 

be Hamiltonian. This section is then concluded by the extension of these 

notions to infinite degree of freedom or Hamiltonian density systems. In Sec. 

III we present a Poisson bracket that renders the vortex equations into 

Heisenberg form. This formulation is novel in that it is noncanonical. In 

the remainder of this section we discuss involutivity of the well-known 

constants of motion for this system, Fourier space representation and 

truncation. In Sec. IV we expand the vorticity in a Fourier-Dirac series 

which, upon substitution into the Poisson bracket of Sec. III, yields the 

canonical discrete vortex description of the Introduction. Following this we 

introduce Clebsch potentials which also bring the Poisson bracket into 

canonial form. Finally, we obtain a spectral description where complex 

conjugate pairs are canonically conjugate. A quartic interaction Hamiltonian 

is obtained. 

II. Constructive Hamiltonian Dynamics 

The standard approach6 to a Hamiltonian description is via a Lagrangian 

description. One constructs a Lagrangian on physical bases and through the 

Legendre transformation (assuming convexity) obtains the Hamiltonian and the 

following 2N (where N is the number of degrees of freedom) first order 

ordinary differential equations: 

k=1,2, ••• N (2 ) 

Here the Poisson bracket has the form 
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[f, g) 
N 

L 
k=1 

(.2L k _ .2L k) 
aqk aPk aPk aqk 

=.2L Jij k 
az

i 
az

j 
( 3) 

The last equality of Eq. (4) follows from the substitutions, 

f' 
for i k = 1,2 ••• N 

zi 
Pk for i = N + k = (N + 1 ) ••• 2N 

and 

(J
ij

) C :N) = -I 
N 

(4 ) 

where IN is the N x N unit matrix. We assume the repeated index summation 

convention here and henceforth. The quantity Jij is known as the Poisson 

tensor or the cosymplectic form. It is not difficult to show that it 

transforms as a contravariant tensor under a change of coordinates. '!hose 

transformations which preserve its form, and hence the form of the Eqs. (2), 

the equations of motion, are canonical. 

The constructive approach differs from the above in that one is not 

concerned with any underlying action principle nor with (initially at least) 

the necessity of canonical variables. The emphasis is placed on the algebraic 

properties of the Poisson bracket. A system need not have the canonical form 

of Eqs. (2) with Eq. (3) to be Hamiltonian. To make the idea more precise we 

introduce a few mathematical concepts. '!he quantities on which the Poisson 

bracket acts are differentiable functions defined on phase space. The 

collection of all such functions is a vector space (call it n) under addition 

and scaler multiplication. The Poisson bracket is a bilinear function which 

maps n x n to n. Also note that the Poisson bracket possesses the following 
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two important properties: (i) [f,g] = - [g,f] for every f,g e: Q' and (ii) the 

Jacobi identity, Le., [f, [g,h]] + [g, [h,f]] + [h, [f,g]] = 0 for every f,g,h 

e: Q. A vector space together with such a bracket defines a Lie algebra. 

Property (i) requires that the Poisson tensor be antisymmetric and property 

(ii) requires the following: 

o (5) 

One can show that sijk transforms contravariantlYi hence if it vanishes 

identically in one coordinate frame it does so in all. Similarly anti symmetry 

is coordinate independent. The covariance of properties (i) and (ii) suggests 

the converse outlook: if a system of equations possesses the form 

·i 
Z i, j = 1,2 ••• 2N (6) 

where Jij is antisymmetric and fulfills the Jacobi requirement, but is not of 

the form of Eg. (4), then it is Hamiltonian. This outlook is justified by a 

theorem due to Darboux (1882) which states that assuming det(Jij) * 0 

(locally) canonical coordinates can be constructed. (The proof of this 

theorem may be found in Refs. 7, 8, and 9.) Hence in order for a system to be 

Hamiltonian it is only necessary for it be representable in Heisenberg form 

with a Poisson bracket that makes Q into a Lie algebra. The constructive 

approach simply amounts to constructing Poisson brackets with the appropriate 

properties. 

The rigorous generalization of the above ideas to infinite dimensional 

systems requires the language of functional analysis and the differential 

geometry of infinite dimensional manifolds. (See Ref. 7, Ch. V and Refs. 10 -
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15.) This of course is not our purpose here~ rather we simply parallel the 

above. The Poisson bracket for a set of field equations usually has the 

following form: 6 

N 
[F,G] = I J 

k=1 
(7) 

where the integration is taken over a fixed volume. The quantities on which 

the bracket acts are now functionals, such as the integral of the Hamiltonian 

density [e.g., Eg.(13)]. The functional derivative is defined by 

dF 
d£ (nk + £W) I 

£=0 

of J - WdT on
k 

of 
- <-o-Iw> n

k 

where the bra-ket notation is used to indicate the inner product <f I g> 

J fg dT. In terms of this notation Eg. (7) becomes 

[F ,G] (8) 

where the 2N quantities nk and TIk are as previously the 2N indexed quantities 

u i • The canonical cosymplectic density has the form 

In noncanonical variables the quantity (Oij) may depend upon the variables ui , 

and further it may contain derivatives with respect to the independent 

variables. In general anti symmetry of Eg. (8) requires that the (Oij) be an 
< . 

anti-self-adjoint operator. The Jacobi identity places further restrictions, 

analogous to Eg. (5), on this quantity. We defer a discussion of this to the 
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Appendix where the Jacobi identity for the bracket we present· [Eq. (15)] is 

proved. The extension of the Darboux theorem to infinite dimensions has been 

proved by J. Marsden. 14 For a discussion pertinent here see Ref. 15. 

III. Noncanonical Poisson Bracket 

The equations under consideration are the following: 

= - (9) 

V.v = 0 (10) 

Here we use the usual Euclidian coordinate system with uniformity in the z 

direction (which has unit vector z). The quantity w(~,t) = ze'iJ X ~(~,t), 

where x = (x,y), is the vorticity and v is the flow velocity such that 

vez = O. (For the guiding center plasma w corresponds to the charge density 

and v to the E x B drift velocity.) For an unbounded fluid v can be 

eliminated from Fq. (9) by16 

v ( 11) 

where we display only the arguments necessary to avoid confusion. Here 

'" 
~ = z x 'iJK(~ I~") and K( ~ I~") is the Green function for Laplace' s equation in 

two dimensions, 

122 
= -- In I(x-x") + (y-y") 

27T 
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The integration in Eq. (11) is over the entire x-y plane; dT _ dxdy. In this 

form Eq. (10) is satisfied manifestly. Equation (9) becomes 

(12) 

Equations (9) and (10) are known to possess conserved densities; that is, 

quanti ties which satisfy an equation of the form p + V.J = p, 
t -

consistent 

wi th Eq. ( 1 2) • Clearly any function of w is conserved. In addition, the 

kinetic energy is conserved which is the natural choice for the Hamiltonian. 

With the density (mass) set to unity we have 

~{ w} 

= 
1 
2 J K(~I~') w(~') w(x) dT dT' (13) 

The functional derivative of Eq. (13) is the following: 

oH 
ow = -J K(~I~') w(x') dT' (14 ) 

We introduce the Poisson bracket17 

[F,G] J {OF OG} 
w(x) ow' ow dT ( 15) 

{ } af acr acr af where f g = -- ~ - ~ -- • , dX ay ay ax One observes that the discrete vortex Poisson 

bracket is nestled inside the field Poisson bracket. In Sec. IV we will see 

how to regain the discrete bracket from this field bracket. It is not 

difficult to show from Eqs. (14) and (15) that 
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[w,H] -f w MdT' • 'lw 

Clearly this bracket is antisymmetric by virtue of the anti symmetry of the 

discrete bracket. We prove the Jacobi identity in the Appendix. 

We note by examination of Eg. (15) that any two functionals of ware in 

'" involution 1 that is, if F.{W} = f F. {W)dT (for i=1,2) are two such functionals 
1. 1. 

where the F. are arbitrary functions of w, then 
1. 

Also, substitution of any 

integration by parts yields 

[F., H] a 
1. 

such F. and H [Eg. 
1. 

( 13) ] into Eq. (15 ) and 

In particular, we see (when F. 
1. 

w2 ) that the enstrophy commutes with the 

Hamiltonian. 

The close relationship between this functional Hamiltonian formulation 

and the conventional formulation of Sec. II .is seen by Fourier expanding the 

vorticity in a unit box with periodic boundary conditions, 

(16 ) 

* where k = (k
1

, k ). The reality of w implies 
- 2 

w
k 

= w_
k 

• If we suppose for the 

moment that w{x) depends upon some additional independent variable ~, then we 

have the following for some functiona1 18 ;: 
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dF f of dW dx dy (17) 1fil = ow d)1 

From this we see for )1 = wk upon Fourier inversion that 

of 1 
ow = 2 

( 21r) 
I 
k 

( 18) 

where the F on the left hand side is treated as a functional of W while the 

F of the right hand side is to be regarded as a function of the variables 

W
k 

• Substituting Eqs. (16) and (18) into Eq. (15) yields, 

[F,G] 

The Hamiltonian becomes 

H = 21T2 I 
& 

and the equations 

" 

I 
z. (~ x 

~ 2 
R, R, 

of motion are 

&) 
W,q, ~-R, = I 'Jk,,q, 

R, --

where Jk,R,' the cosymplectic form, is 

z. (& x ~) 

(21T)2 w~+& 

dH 

dWR, 
( 19) 

(20) 

Clearly, Eq. (19) is of the form of the finite degree of freedom equations, 

Eqs. (6), of Sec. II except here the sum ranges to infinity. The form Eq. 
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(20) is obviously antisymmetric anq it is not difficult to verify Eg. (5). 

At first, one might think that a truncation of the J would yield a 
~,& 

finite Hamiltonian system which to some accuracy would mimic the original. 

Unfortunately, the process of truncation destroys the Jacobi identity. One 

must seek a change of variables which allows truncation. canonical variables 

are suited for this purpose and in the next section we discuss this. 

IV. canonical Descriptions 

As was noted in Sec. III, the Poisson bracket for the discrete vortex 

picture is embedded in that for the field. To see the connection between the 

two, we expand the vorticity (distributed vorticity) as follows: 

w(x) = \' k 
L i 
i 

o (x-x ) 
- -i 

(21) 

where o(x) is the Dirac delta function, the k i are constants and w obtains its 

t dependence through the x, 
-1 

Then using Eg. (17) we obtain the identity 

aF k.L of 
ax, = i ax ow 

]. 

x= (x"y,) 
- 1], 

'" 

(22) 

where the functional F on the left hand side is now to be regarded as a 

function of the variables xi and Yi. Similarly we obtain the relation for 

aF/ay,. Substituting Egs. (21) and (22) into Eg. (15) yields 
]. 

[F ,G) = I 1 (~~ 
J
' k, ax, ay, 

J J J 

~~) 
ay, ax, 

J J 

(23) 

Further, if we substitute Eq. (21) into the Hamiltonian, Eg. (13), we obtain 
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k. k. In R .. 
~ ] ~J 

Since this is singular along the diagonal i=j, we remove the self-energy of 

each vortex and obtain the usual result 

H 
-1 
2 I k.k. In R .. 

1T i>j ~ ] ~J 
(24) 

Equations (23) and (24) reproduce the Eqs. (1). Hence, we see that expansion 

of w in a Fourier-Dirac series is a particular way of discretizing, a way 

which allows truncation without destroying the Hamiltonian structure. We now 

discuss another approach. 

The cosymplectic form, Eq. (20), suggests by its linearity in w 
~+& 

that 

a quadratic change of variables (i.e., w ~ ~2, where ~ is the new variable) is 

needed in order to achieve canonical form. Such a transformation [given by 

Eq. (31)] removes the nonlinearty present in the Poisson bracket and places it 

in the Hamiltonian [Eq. (30)]. Enroute to arriving at this result we 

introduce a Clebsch potential representation of the vorticity,21 

w=~h_~h 
ax ay ay ax 

(25) 

This substitution transforms the Poisson bracket, Fq. (15), into canonical 

form. Clearly, Eq. (25) is not uniquely invertable. We have the local gauge 

- --condi tion that any function 1/1, such that 1/1 x__ - 1/1 X = 0, can be added to 1/1 
x"y y x 

(and likewise for X). 

The chain rule for functional differentiation yields 



o 

-13-

of of A 

OW = V 0 (OW z X VX) 

A 

of of A 

oX = - V 0 (OW z X VW) (26) 

where on the left F is now regarded as a functional of wand Xo The canonical 

Poisson bracket for X and W is 

[F,G] 

which upon substitution of Egso (26) yields the bracket Ego (15). Clearly W 

and X satisfy 

o oH 
W = oX 

oH 
X = --oW 

Upon Fourier transformation Egso (27) become 

We now introduce the field variable ~k as follows: 

* * 
~k + ~-k 

1 ( -) W
k 
=-

27T /2 

~k - ~-k 
( -) 

/2 

(27 ) 

(28) 

(This form maintains the reality condition for W
k 

and X
k

.) In terms of these 

variables Egso (28) become 

3H =-- (29) 
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and the Hamiltonian has the form 

H = * * L S~_,m_,~,~ ~~_ ~m ~s ~t 
~+m=s+t 

where the matrix elements S are 
~,~,~,:!: 

z·(t x ~) z·(m x s) 
[--------,----- + 

1& -:!:I I~ - ~I 

zo(s x ~) z·(m x t) 

1& - ~I I~ - ~I } 

The quadratic transformation mentioned above is 

L 
t=k+~ 

iz. (:!: x &) 

( 21T ) 2 

(30 ) 

(31) 

Hence, we see the connection between Clebsch potentials and our bracket. This 

transformation allows discretization and truncation while not destroying the 

Hamiltonian structure. 

Acknowledgments 

I would like to thank J. M. Greene for his continuing support and 

encouragement of this work. Also, I would like to thank H. Segur for 

stimulating my interest in the 2-D fluid equations. I am grateful to C. 

Oberman, J. B. Taylor, and G. Sandri for many discussions which contributed to 

this paper. I would like to thank J. E. Marsden for sending me an early copy 

of Ref. 15. 

This work was supported by the u.s. Department of Energy contract No. DE-

AC02-76-CH03073. 



Q 

-15-

Appendix 

Here we generalize the method used by P. Lax22 for the Gardner bracket, 

" to prove the Jacobi identity for Eq •. (15). We suppose F{U} is a functional of 

the variable u. Recall the functional derivative is defined by 

We denote G = <oF I",> oU w • 

<OF Iw> 
ou 

G can again 

Performing a second variation we obtain 

~n G {u + nz} In=O = 
2" o F 

< -2 zlw> 
ou 

be regarded as a functional of u. 

2" 2 where the symbol <5 F/<5u is used to deno,!=-e an operator acting on z. By the 

equality of mixed partial derivatives this operator is self-adjoint, 

Let us now take the variation of a bracket [F,G] defined by 

[F,G] < of 
ou 

o oG > 
OU 

where the operator 0 is anti-self-adjoint. 

d 
[F ,G] {u + e:w} 

Ie:=o 

<5[F,G] 
1 w > de: < OU 

2" 2" 
< o F oOG of o G --w > + < ou 

0-- w > + < 
ou

2 OU 
ou

2 

00 
of w oG 
ou > OU OU 
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In this expression the first two terms are straight forward, the last comes 

from any dependence the operator O.may have upon u~ i.e., 

~ 0 (u + e:w) I de: 
e:=0 

Isolating w we obtain 

cO 
w 

- cu 

15 [F,G] = 15
2

; 0 c{; _ c
2

{; 0 15; + T (CF aG) 
cu cu2 au cu2 cu cu au 

(A-1 ) 

where the operator T comes from removing COw/cu from w. T is antisymmetric in 

its arguments. 

The Jacobi identity is 

s = <cE I 0 C[F,G]> + <cF I 0 c[G,E]> + <cG I 0 15 [E,F]> = 0 
Cll Cll cu cu cu au 

(A-2) 

Inserting Eg. (A-1) into (A-2) and using the self-adjointness of and the 

anti-self-adjointness of 0, we obtain 

s <CE lOT (CF 
Cll Cll 

aG» + <cF lOT (CG 
Cll cu all 

aE cG aE aF 
all» + <cu lOT (all ' au» = 0 • 

This equation is the functional equivalent of Eg. (5). 

Now consider the bracket, Eg. (15). We obtain 

" " 
15 [F,G] 

CW 
cF aG} cw ' aw + operator terms, 

(A-3) 
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where the first term is T (OF oG) and the remaining terms as shown above ow ' ow 
do not enter Eq. (A-3). Hence, 

s f {OE {OF = 00 ow' ow oG}} ow dT + cyc 

Clearly, S vanishes by virtue of the Jacobi identity for the discrete bracket. 
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