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Hamiltonian Field Description of
Two-Dimensional Vortex Fluids and

Guiding Center Plasmas .
by

Philip J. Morrison
Plasma Physics Laboratory, Princeton University

Princeton, New Jersey 08544

Abstract

The equations that describe the motion of two-dimensional vortex fluids
and guiding center plasmas are shown to possess underlying field Hamiltonian
structure. A Poisson bracket which is given in terms of the vorticity, the
physical although noncanonical dynamical variable, casts these egquations into
Heisenberg forme. The Hamiltonian density is the kinétic energy aensity of the
fluid. The well-known conserved quantities are seen to be in involution with
respect to this "Poisson bracket. Expanding the vorticity in terms of a
Fourier-Dirac series transforms the field description given here into the
usual canonical equations for discrete vortex motion. A Clebsch potential
representation of the vorticity trénsforms the noncanonical field description

into a canonical description.




I. Introduction

This paper is concerned with the Hamiltonian field formulation of the
equations which describe the advection of vorticity in a two-dimensional
fluid. These equations have received a great deal of attention in the past
thirty years and are believed to model the large scale motions which occur in
atmospheres and oceans. They have also arisen in the study of plasma
transport perpendicular to a uniform magnetic field, the so-called guiding
center plasma.‘l’2 (For recent reviews see Refs. 3 and 4.)

It has been known for some time that a system of discrete vortex (or
charge) filaments possesses a Hamiltonian description.S The equations of

motion are

dax, dy.
oH i _ oH (1)

T 3y, ki at ax,
1 1

th vortex which has coordinates x; and

where ki is the circulation of the 1 i

Yie The Hamiltonian, H, is the interaction energy and for an unbounded fluid

has the form

-1

H=5;

] ¥k, InR .,
i>5 14 J

where Ri'2 = (xi-xj)2 + (yi-yj)z. The wvariables x. and y; are canonically

3 i
conjugate. The formulation we describe here is a field formulation which
possesses this underlying discrete dynamics.

In Sec. II we briefly review some aspects of finite degree of freedom

Hamiltonian dynamics. The emphasis here is placed on the Lie algebraic

properties of the Poisson bracket. This is used as a framework in which to



explain the "constructive" approach to Hamiltonian dynamics. Such an approach
frees one from the prejudice that a system need be in canonical variables to
be Hamiltonian. This section is then concluded by the extension of these
notions to infinite degree of freedom or Hamiltonian density systems. In Sec.
IIT we present a Poisson bracket that renders the vortex equations into
Heisenbérg form, This formulation is novel in that it is noncanonical. 1In
the remainder of this section we discuss involutivity of the well-known
constants of motion for this system, Fourier space representation and
truncation. In Sec. IV we expand the vorticity in a Fourier-Dirac series
which, upon substitution into the Poisson bracket of Sec. III, yields the
canonical discrete vortex description of‘the Introduction. Following this we
introduce Clebsch potentials which also bring the Poisson bracket into
canonial form. Finally, we obtain a spectral description where complex
conjugate pairs are canonically conjugate. A quartic interaction Hamiltonian

is obtained.

ITI. Constructive Hamiltonian Dynamics

The standard approach6 to a Hamiltonian description is via a Lagrangian
description. One constructs a Lagrangian on physical bases and through the
Legepdre transformation kassumingvconvexity) obtains the Hamiltonian and the
following 2N (where N is the number of degrees of freedom) first order

ordinary differential equations:
q = [q /H] p, = [p /H] k=1,2,...N . (2)

Here the Poisson bracket has the form




N . s
[£,9] = Z (iig_ _9f 29g ) - of i3 39'- . (3)

k=1 9% 9P 3P dq 9zt 5927

The last equality of Eg. (4) follows from the substitutions,

i {qk for i =k = 1,2...N

z = p, fori=N+k=(N+1)... 2N

and
(a7) = " | (a)

where I. is the N x N unit matrix. We assume the repeated index summation
convention here and henceforth. The quantity JiJ is known as the Poisson
tensor or the cosymplectic form. It is not difficult to show that it
transforms as a contravariant tensor under a change of coordina;:es. Those
transformations which preserve its form, and hence the form of the Egs. (2),
the equations of motion, are canonical.

The constructive approach differs from the above in that one is not
concerned witﬁ any underlying action principle nor with (initially at least)
the necessity of canonical variables. The emphasis is placed on the algebraic
properties of the Poisson bracket. A system need not have the canonical form
of Egqs. (2) with Eq. (3) to be Hamiltonian. To make the idea more precise we
introducg a few mathematical concepts. The quantities on which the Poisson
bracket acts are differentiable functions defined on phase space. The
collection of all such functions is a vector space (call it Q) under addition
and scaler multiplication. The Poisson bracket is a bilinear function which

maps  x  to Q. Also note that the Poisson bracket possesses the following



two important properties: (i) [f,g] = - [g,f] for every f,g € Q and (ii) the
Jacobi identity, i.e., [f,[g,hl] + [g,[h,f1] + [h,[f,g]] = 0 for every f,g,h
e Q. A vector space together with such a bracket defines a Lie algebra.

Property (i) requires that the Poisson tensor be antisymmetric and property

v(ii) requires the following:.

i ki kg 3 ij

ijk _ 183 g3k PR e e R (5)

+ J %J
9Z

One can show that siJX transforms contravariantly; hence if it vanishes
identically in one coordinate frame it does so in all. Similarly antisymmetry

is coordinate independent. The covariance of properties (i) and (ii) suggests

the converse outlook: if a system of equations possesses the form

i _ 3 BH.

= 3 “i,3 = 1,2...2N (6)

92
where Eij is antisymmetric and fulfills the Jacobi regquirement, but is not of
the form of Egqe. (4), then it is Hamiltonian. This putlook is justified by ;
theorem due to Darboux (1882) which states that assuming det(Jij) ¥ 0
(locally) canonical coordinates can be constructed. (The proof of this
theorem may be found in Refs. 7, 8, and 9.) Hence in order for a'system to be
Hamiltonian it is énly necessary for it be representable in Heisenberg form
with a Poisson bracket that makes  into a Lie algebra. The constructive
approach simply amounts to constructing Poisson brackets with the appropriate
properties.

The rigorous generalization of the above ideas to infinite dimensional
systems requires the language of functional analysis and the differential

geometry of infinite dimensional manifolds. (See Ref. 7, Ch. V and Refs. 10 =~



15.) This of course is not our purpose here; rather we simply parallel the
above. The Poisson bracket for a set of field equations usually has the

following form:6

“N ~ ~ ~ ~

o SF_ 8G 8G_ §F

F.6) = ] [ (et -t o) ar (7)
k=1 k Tk %Mk Mk

where the integration is taken over a fixed volume. The guantities on which

the bracket acts are now functionals, such as the integral of the Hamiltonian

density [e.g., Eq.(13)]. The functional derivative is defined by

A ~

dF 8 _ §F
e (M * ew)| . = [ =— wdr = <§;—|w>
€=

k k
where the bra-ket notation is used to indicate the inner product <flg> =

J fg dt. In terms of this notation Eq. (7) becomes

ra) = <&y ol &, (8)
Su su’
where the 2N quantities N, and 7, are as previously the 2N indexed quantities

ui. The canonical cosymplectic density has the form

In noncanonical variables the quantity (Oij) may depend upon the variables ut,

and further it may contain derivatives with respect to the independent

variables. In general antisymmetry of Eq. (8) requires that the (Oij) be an
.

anti~self-adjoint operator. The Jacobi identity places further restrictions,

analogous to Eq. (5), on this quantity. We defer a discussion of this to the



Appendix where the Jacobi identity for the bracket we present [Egq. (15)] is
proved. The extension of the Darboux theorem to infinite dimensions has been

14

proved by J. Marsden. For a discussion pertinent here see Ref. 15.

IIT. Noncanonical Poisson Bracket
The equations under consideration are the following:
w, == vV ' (9)
Vev = 0 . (10)

Here we use the usual Euclidian coordinate system with uniformity in the =z
direction (which has unit vector ;). The quantity w(g,t) = ;-V X Y(E't)'

where x = (x,y), is the vorticity and v is the flow velocity such that
g-; = 0. (For the guiding center élasma w corresponds to the charge density

and v to ‘the E x B drift velocity.) For an unbounded fluid v can be

eliminated from Eg. (9) by16
v=[ox)M (xlx) ar" , (11)
where we display only the arguments necessary to avoid confusion. Here

M=z x VK(§I§‘) and K(x|x”) is the Green function for Laplace's equation in

two dimensions,

1 2 2
R(x|x”) = 27 1n V(x=x") + (y-y*) .



The integration in Eq. (11) is over the entire x-y plane; dr = dxdy. In this

form Eg. (10) is satisfied manifestly. Equation (9) becomes

w, = —f w(x”) @(5]5’) dt” « V w(x) . (12)

Equations (2) and (10) are known to possess conserved densities; that is,
quantities which satisfy an equation of the form pt + Ved = 0, consistent
with Eq. (12). Clearly any function of w is conserved. In addition, the
kinetic energy is conserved which is the natural choice for the Hamiltonian.
With the density (mass) set to unity we have

2

H{u} = [ - ar = 5 [ mxlx®) « Mxlx") w(x®) w(x’?) &t &’ ot

N

- % [ R(xlx”) w(x”) w(x) dr at° . (13)

The functional derivative of Eq. (13) is the following:

o1

5, = - K(xlx™) wx?) ar” . (14)

We introduce the Poisson bracket17

SF 8C

F,61 = [ utx) (& 8 e, (15)

where {f,g} - 3£ 3g _ 3g 3F . One observes that the discrete vortex Poisson
9x oy 9y 9ox
bracket is nestled inside the field Poisson bracket. In Sec. IV we will see

how to regain the discrete bracket from this field bracket. It is not

difficult to show from Egqs. (14) and (15) that



<

w, = loH] = -[wMar” Vo .
Clearly this bracket is antisymmetric by virtue of the antisymmetry of the
discrete bracket. We prove the Jacobi identity in the Appendix.

We note by examination of Egq. (15) that any two functionals of w are in
involution; that is, if Ei{m} = f Fi(m)dr (for i=1,2) are two such functionals

where the Fi are arbitrary functions of w, then
[?1,F2] =0 .

Also, substitution of any such Fi and H [Eq. (13)] into Eq. '(15) and

integration by parts yields

[Fi, H] =0 .

In particular, we see (when Fi = mz) that the enstrophy commutes with the

Hamiltonian.
The close relationship between this functional Hamiltonian formulation
and the conventional formulation of Sec. II .is seen by Fourier expanding the

vorticity in a unit box with periodic boundary conditions,
w= ) uw e ' , (16)
x K

. *
where k = (k1, k2). The reality of w implies wk i IR If we suppose for the

moment that w(x) depends upon some additional independent variable u, then we

A

have the following for some functional18 F:



-10~

GF Bw
f&u 8u x dy . , : (17)

From this we see for py = W, upon Fourier inversion that

SE 1 8§ e_ika§ (18)
Sw 2 dw !
(2m) k k

where the F on the left hand side is treated as a functional of w while the

F of the right hand side is to be regarded as a function of the variables
wk o Substituting Egs. (16) and (18) into Eg. (15) yields,

w

k+2
~ -~ - G
B ] i BB
k,L (27) 2

The Hamiltonian becomes

2ﬂ2

o>
]

ze(k x %) -
w=1—— g = 1T, -, (19)
- & 2 &.._ & _’& wz
where Jk I the cosymplectic form, is
’
z+ (g x k)
J = — . (20)
k4 (2m? K%L

Clearly, Egq. (19) 1is of the form of the finite degree of freedom equations,

Egqs. (6), of Sec. II except here the sum ranges to infinity. The form Eg.



-11=-

(20) is obviously antisymmetric and it is not difficult to verify Eq. (5).

At first, one might think that a truncation of the Jk . would yield a
’ ’

finite Hamiltonianvsystem which to some accuracy would mimic the originale.

L 'Unfortunately, the process of truncation destroys the Jacobi identity. One

must seek a change of variables which allows truncation. Canonical variables

are suited for this purpose and in the next section we discuss this.
IV. Canonical Descriptions

As was noted in Sec. III, the Poisson bracket for the discrete vortex
picture is embedded in that for the field. To see the connection between the
two, we expand the vorticity (distributed vorticity) as follows:

wix) =) k, 8(x=x ) , (21)
- . 1 - -1

1

where 6(§) is the Dirac delta function, the ki are constants and w obtains its

t dependence through the §i . Then using Eq. (17) we obtain the identity

>
>

oF a 6
3%, - %i 9% Su (22)
l —
X = (Xi:Yi)
b R
where the functional F on the 1left hand side is now to be regarded as a
o function of the variables x; and yi+ Similarly we obtain the relation for

aF/Byi. Substituting Egs. (21) and (22) into Eg. (15) yields

(23)

Ao 1 ,9F 3G  9F 3G

(F,61 =) — ( - )
. %, 9%, dy. 0y, ox.
3 3 9%y Fy ¥4 Xy

Further, if we substitute Eq. (21) into the Hamiltonian,.Eq. (13), we obtain
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:— 1 Xk InR. .
47 i™y i3
i,3

Since this is singular along the diagonal i=j, we remove the self-energy of

each vortex and obtain the usual result

= —% Y kiky In Ryg o o . (24)
i>3

Equations (23) and (24) reproduce the Egs. (1). Hence, we see that expansion

of w in a Fourier-Dirac series is a particular way of discretizing, a way

which allows truncation without destroying the Hamiltonian structure. We now

discuss another approach.

The cosymplectic form, Eq. (20), suggests by its linearity in mk+£ that

a quadratic change of variables (i.e., w ~ ¢2, where ¢ is the new variable) is
needed in order to achieve canonical form. Such a transformation [given by
Eq. (31)] removes the nonlinearty present in the Poisson bracket and places it
in the Hamiltonian [Eq. (30)]. Enroute to arriving at this result we

introduce a Clebsch potential representation of the vorticity,21

w = ¥ X _ 3y 3 (25)

This substitution transforms the Poisson bracket, Eg. (15), into canonical
form. Clearly, Eq. (25) is not uniquely invertable. We have the local gauge
condition that any function ﬁ, such that $xxy - ayxx = 0, can be added to V¥

(and likewise for y).

The chain rule for functional differentiation yields



¥

-13=-

§F §F °

sy =V oy 2 % ™)

§F 6% -

sx -V GpExw) (26)

where on the left F is now regarded as a functional of { and y. The canonical
Poisson bracket for y and V is
5 SF 6G &G SF
(F,61 = [ (

which upon substitution of Egs. (26) yields the bracket Eg. (15). Clearly

and'X satisfy

== Y === . @)

Upon Fourier transformation Egs. (27) become

-='1,aﬁ . e 1 3H
‘Pk 4 Xk—

. | (28)
E o (am? X K am?

We now introduce the field variable ¢k as follows:

.t LT
b3 () o )

~

)

(This form maintains the reality condition for wk and Xk.) In terms of these

variables Egqs. (28) become

. pH ok SH ‘
1§ = b, = - 3= (29)
= 3 - X



-14 -

and the Hamiltonian has the form

~ *
H= ) s ¢, & b b, (30)
L+m=s+t &Illll§lt & m ‘s 't
where the matrix elements S are
Lim,Sit
1 z-(E X &) z-(g X §) z-(§ X &) ze(m x t)
s = + e
gmst 2 U T &l Tm - 8] iz =2l Tm -t )
- 16m = - - - = - - -
The quadratic transformation mentioned above is
ize(t x 8)
= —_—— . 31
w ) bpdy (31)

A

Hence, we see the connection between Clebsch potentials and our bracket. This

transformation allows discretization and truncation while not destroying the

Hamiltonian structure.
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Appendix

Here we generaiize the method used by P. Lax22 for the Gardner bracket,

to prove the Jacobi identity for Eq. (15). We suppose F{u} is a functional of

the variable u. Recall the functional derivative is defined by

da > SF
—_— + = - .
= F {u ew} |€=0 <6u |w>
We denote G = <§E Jw>
Su

A
G can again be regarded as a functional of wu.
Performing a second variation we obtain

A

gl

- = S F
G {u + nz} |n=0 = <=3 z|w
su

where the symbol 52F/6u2 is used to denote an operator acting on z.

By the
equality of mixed partial derivatives this operator is self-adjoint,
27 2
< §_§ z |lw>=<z| ——gvv> .
du Su

Let us now take the variation of a bracket [F,G] defined by

" £§_é
[F,G] _<<Su 06u> ’

where the operator O is anti-self-adjoint.

a oA _ . S[F,G]
ae LFCl {u + ew} l S | v
e=0
2A A ~ 2/\ ~ 60 ~
=<§—%w|o§§>+<6—€' o-—csc'w>+<6—F 8¢
su Su " Su 2

Su Su Su >
Su
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In this expression the first two terms are straight forward, the last comes

from any dependence the operator O may have upon u; i.e.,

8o

v
Su *

e=0

Isolating w we obtain

§[F,G] _ 8°F 66 _ s%¢  SF

_ 86 _ 8%  ¢F SF 3G B}
3w - 2°%% 25t T (Gu ' Tu (a=1)
Su Su
where the operator T comes from removing 60w/6u from we T is antisymmetric in
its arguments.
The Jacobi identity is
SE G[FIG] SF G[GIE] 8G G[EIF] :
= = —1=> + <= ——tols —t=> =0 . A-2
S=¢ml oy >l 0T 2t 0T (A-2)
528
Inserting Eq. (A-1) into (A-2) and using the self-adjointness of 5 and the
Su
anti-self-adjointness of O, we obtain
SE SF  8G SF §¢  OE 56 §E  OF
= < — ~ — ) < (=, =)>=0.
S= Gl 0T (g 5 * a1 07 (G v 30 * Gu ! 07 (5g * 50
(A-3)

This equation is the functional equivalent of Eg. (5).

Now consider the bracket, Eg. (15). We obtain

§[F,G] _

(£ 8
Sw

rator terms
Sw ’ Sw } + ope !



w17 .-

SF  §G
Sw ' Sw

do not enter Eq. (A-3). Hence,

where the first term is 7T ( ) and the remaining terms &das shown above

S (SF  6G |
D S=f@{a:{&;:a}}d'r+cyc-.,

Clearly, S vanishes by virtue of the Jacobi identity for the discrete bracket.
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