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The standard quasilinear equations of plasma physics are shown.to possess an algebraic structure, although the system 
is dissipative. The energy functional yields the evolution equations and the conservation laws, in analogy to hamiltonian 
systems. . 

Our recent discovery [1] of a hamiltonian structure 
for the V1asov equation with Coulomb interaction (dis­
covered independently by Gibbons [2]) has led us to 
search for an algebraic structure for the corresponding 
dissipative system, the quasilinear diffusion equations 
for an unstable plasma. By analogy to the hamiltonian 
structure,we desire a bracket and an energy functional 
that yield the evolution equations and conservation 
laws. However, this bracket cannot be a Lie algebra, 
implying a hamiltonian structure, since the quasilinear 
system possesses a Liapunov functional, the entropy, 
expressing irreversibility. 

In the interests of simplicity and clarity, we deal 
here with the simplest case, a uniform unmagnetized 
plasma, with one species of resonant particles and one 
wave branch. The particle distribution in momentum 
space isf(p), and the total particle energy functional is 

JC(f)= J d3pH(p)f(p) , (1) 
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where H(p) is the single-particle energy. The wave ac­
tion distribution in wave vector space is J(k) , and the 
total wave energy functional is 

JC(J) = J d3k w(k)J(k) , (2) 

where w(k) is the wave dispersion relation. The total 
energy, 

JC(f, J) = JC(f) + JC(J) , 

contains no interaction term. The resonant wave­
particle" interaction appears in the bracket, eq. (5). 

(3) 

Consider now two observables, Q1 (f, J) and 
Q2(!, J). We search for a bracket algebra: {Q1' Q2} 
= Q3, which is bilinear, antisymmetric, and operates 
on Q1 and Q2 with first functional derivatives. In ad­
dition, we demand that observables evolve in time as 

Q= {Q, JC(f, J)}. (4) 

Since the quasilinear evolution equations are kn6wn, 
a short search yields the desired result: 
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R = a{k)k - V 0 [w(k) -k - V H(p)]k -V, V= 'O/'Op , 
(6) 

and cx(k) is a coupling constant. The resonant wave­
particle interaction resides in R. This bracket does not 
satisfy the Jacobi identity, and hence is not a Lie al­
gebra. 

Applying eqs. (4)~and (3) to f(p), we obtain the 
diffusion equation:: . 

-f(p) = V- D(p) - vf(p) , (7) 

D(p) = j d3k kkcx(k) 0 [w(k) -k- VH(p)]J(k). 

Applying eq. (4) to J(k), we obtain the linear growth 
equation: 

j (k) = 2'Y(k)J(k) , (8) 

2'Y(k) = j d3p cx(k) 0 [w(k) -k - V H(p )]k - V f(p) . 

These are the standard equations of quasilinear theory, 
with resonant interactions, and no refinements (such 
as resonance broadening). 

The conservation laws should now follow directly. 
from (4). Energy conservation, .. 

JC= {X, X}= 0, (9) 

is a trivial consequence of the antisymmetry of (5). 
For conservation of momentum 

~ 
P(f, J) = j d3p pf(p) + j d3kkJ(k) , (10) 

we have 

P = J d3p J d3k[pw(k) ~kH(p)]J(k)Rf(p), 

406 

which vanishes, upon integration by parts. The 
Liapunov functional, 

S(f) = -J d3p f(p) lnf(p) , (11) 

evolves monotonically, as found from eq. (14): 

s= J d3p jd3kcxwJf-1(k-Vf)2o(W-k-VH) 

~O. (12) 

These results raise a number of questions for future 
investigation: 

(i) How is the algebraic structure discussed here 
related to the underlying Lie structure of the Vlasov 
system, in particular to the fundamental work of 
Marsden and Weinstein [3]? 

(ii) How can this structure be modified to take 
into account resonance broadening and more recent 
improvements to quasilinear theory [4]? 

(iii) How can this structure be generalized to deal 
with nonuniform magnetized plasma, and with non­
linearities, such as the ponderomotive hamiltonian 
[5]? 

(iv) :qo similar algebraic structures exist for other 
dissipative systems, such as the Boltzmann equation? 
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