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Abstract

A method is presented for obtaining Liapunov functionals (LF) and
proving nonlineaer stability. The method uses the generalized Poisson
bracket (GPB) formulation of Hamiltonian dynamics. As an illustration,
certaln stationary solutions of ideal reduced MHD (RMHD) are shown to
be nonlinearly stable. This 1includes Grad-Shafranov and Alfvén

solutions.
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l1. Introduction

To establish stabilicty, the LF method!™3 relies on the existence
of conserved quantities that are used to bound the growth of
perturbations from equilibrium. This method has been used to show
linearlized stability of plasma and £fluid equilibria-“'6 Here we
present an algorithm for proving nonlinear stability based on the LF
method using the GPB, or noncanonical Hamilronian formalism. One finds
there are often Casimir functionals that Poisson commute with all
functionals and these enable one to obtain variational principles for
equilibria of varlous Hamiltonian theories. Thege equilibria can then
be tested for linear Liapunov stability and, in many fluid and plasma

2,3,7-9 nonlinear stahilicy (stability to finite

examples,
perturbations) has been proven. For RMHD, which 1s a system used for
tokamak modnling,ln we find explicit criteria for nonlinear stabllity
of Grad-Shafranov equilibria and equilibria with poloidal flow,

including nonlinear Alfvén waves. Elsewhere, stability of more

realistic tokamak systems is treated.’

2. GPB Formalism

The GPB formalism uses a conserved functional H (Hamiltonian)
together with a Poisson bracket operator on pairs of functionals to

represent field equations in the form
34,-1 - 4
5o (x.8) = {(¥',H) 1= 1,000, , (1)

where the wi denote the field components, and the GPB, { , } 1is

(i) bilinear, (ii) antisymmetric, (iii) satisfies the Jacobi identity,
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the GPB yields the requisite constants. The stability analysis
presented here uses the energy and the Casimirs, but we note that
additional constants such as momentum may also be utilized when

additional symmetries are present.

8. Equilibria are obtained from a wvariational principle that
employs the Hamiltonian and the Casimirs. Evidently from Eq. (1)
equilibria occur for #1 such rthat {wi,H} = ). If we lert C denote a
linear combination of the Casimirs, then {ﬂitl} = 0, where I = HC.

Equilibria occur when the first variation of I vanishes; l.e.,

pI(§] « 6% = [ ¥tdr=0 . (2)
Gy

Usually Casimirs dinvolve free functions; so a whole class of

equilibria is often obtained by this step.

C. Linear stabilicy, ) T stability to infinitesimal

perturbations 5% about $E, can be shown by taking the second

variation of Eq. (2). This yields a gquadratic form in ﬁti.
Definiteness of this form implies stability of the linearized
equations, but does not guarantee stability to finite perturbations
for dynamics governed by partial differential equations. A further
condition, sometimes called strong positivity, is required. This

amounts to a convexity estimate, which we treat in the next step.
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D. Showing nonlinear stability requires constructing a norm for

the solution space of the system. This will be accomplished if one
can find quadratic forms Ql and Q, that satisfy the following for

all finice aJ:

Qu[8¥) < H[$g+ad] - HI Y] - DH[%,] « 4% (3a)

Qy[8%] < Cl$+8%] - Cl¥] - DCI ) = 8% (3b)
and

1ag1? = Qp[ad] + Qplad] > 0 for a3 20 . (3c)

Finding the conditions for the equilibria to satisfy

Eqs. (3a) and (3b) is typically not difficultc, but the positcivity
condition Eg. (3c) can require some ingenuity. To see why this
construction gives stability, note that I in step ¢ 1s a constant

of motion; so

1a01% € I[We)] = I[ %] = DI[] = AWE)
= I[WE=0)] = I[%,]

= I 8%,) , (4)

where b;{tiﬂ} = d;o‘ Thus, the norm of the perturbation, Ia;lz, is
bounded by a constant for all time. Suppose this constant is small
when 1Ayl is small. (This 1is proven easily by putting quadratic
upper bounds on the quantity I[ﬁﬁ] in Eg. (4).) Then, the

equilibrium §, is nonlinearly Liapunov stable as defined -above.




4, ERMHD

Assuming helical symmectry, the equations af RMHD are

a* - _?E - —_
E {¢F1¢I ¥ at {¢1-” [*‘YU] » {5}

where %(r,9,t) is che helical flux, U(r,8,t) Is the scalar vorticicy,
[£.8] = E_I{frgﬂ—fagr}. J= 7§ and U = v24. This system conserves
energy, H = % f {|E¢|2 - JEwlz}dr. where dt = rdrd8. The GPB for
Eq. (5) is the Lie-Poisson bracket associated to the semidirect-product
Lie group of canonical transformations acting on functions on mz;”'”
hence its Casimirs are known to be C, = J E()dt and C, = [ ue(pdr,

where F and © are arbitrary smooth functions of . Varying the

functional I = H+E1+E2 vields

DI-(86,80) = | [84(=T24+77C) + SU(-T2y+UG#F )]dT , (6)

from which we obtain the equilibrium coanditions ¢ = G(y) and
‘?2'# - (?EG]Gw - F‘# = 0. Two special cases are of interest: (i) G =0,
which vields the RMHD Grad-5hafranov equation ‘1'21; = F,‘I, and
(ii) G(%) = ¢, which implies F = constant and #=¢. In the latter case,
the specific form of ¢ is not further constrained. The case ¢=y¢
corresponds to flow at the poloidal Alfvén speed and can be interpreted
as nonlinear Alfvén waves in the wave frame. We shall investigate

nonlinear stability of a class that includes both (i) and (11).
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Taking the second variation of I and rearranging terms ylelds

D21+(80,69% = [ (1986 - WG, 8912 + 17607 (1-6%)

+ (8D2CLPC + Fyu + G « (Gy 0] T .

This quantity is posicive definire if 1Ggl < 1 and
3
wav G+ Fw - ng . {Gﬁﬁgﬁ] > 0. In case (i) the latter condition

becomes F*& > 0, which is a severe restriction (monotonicity) on the
helical current; while in case (i) we obtain
Dzlo{im.ﬁwiz - j | Vés - Eiwlzdt. In this Alfvén.uave case, we see that
4 and ¢ can each grow arbitrarily large; however their difference 1is
bounded in time. This 1is consistent with the kink mode instabilicy
that RMHD is known to puﬂsess.l4

Resonant kink modes ("internal kinks") can occur when 7y vanishes

at some radius, Tgs and when VI(r;) does not vanish. In case (1),

E-T - Fwﬁw ¥
so that Fg, has a pole at r,. To allow for such singularitv.l5 one
must reinterpret statements concerning F** as referring to irts
canonical regularization, in the sense of Gel’fand.!®
For nonlinear stability it is necessary to show convexity. Since

H 1s already quadratic, we let Q, = H. If we let C be the right-hand

side of Eq. (3b), then for RMHD we obtain

C = [ [Ua(FCugrtd) = F(d) = F(¥p)A%)

+ BU(F(4at89) = F(9y) ) + Gl¥g+a¥) = G(¥e) = G’ (g auldr .
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I1f we assume the functions F and G satisfy F* >q, 2F,, >p and

ZG*¢ » s for constants q,p,s, then E > Qy, where

Qp = | [pU (802 + qauae + sCaw?Jar .
Hence, we obtain

0+ = 5 J [13a0) - qawi? + (1-a2) 17802

+ (pU+s)(a9)? JdT &

Thus, q1+q2 » 0 when (1) |q! €1 and (ii) pUE+s > 0. Liapunov

}IIZ as a norm and

stability 1is established upon regarding (Ql+q2
further requiring Fw < Q, 2Fyy ¢ P and ZG¢¢ < 5 for constants Q,P,5, in
order for i[ﬁwe,ﬁwol, which equals i[&ﬁﬁ] in Eq. (4), to have a
quadratic upper bound.

In case (ii) for Alfvén waves, the second variation analysis for
linearized stability is equivalent to the convexity analysis for
nonlinear stabilicy, since 1 is quadratic. For Grad-Shafranov
equilibria we obtain nonlinear stability, provided F# (negative of the

helical current) is a decreasing function of ¢ (with a bound on its

slope, so that E[ﬁ*o'ﬁwb] has a quadratic upper bound).
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