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A bracket formulation for irreversible fields analogous to that for hamiltoni~n fields is presented. The formulation con­
tains a bracketwith symmetric and antisymmetric components and a generator of time translation .. Plasma examples are 

. given when:the generator of time translation is the energy, entropy and Helmholtz free energy, ' , 

In recent times many fundamental non dissipative equations describing fluids and plasmas have been shown to 
be hainiltohlan field theories in tenns of generalized Poisson brackets (GPB). (For review see refs. [1-4] *1). Here 
we report on afonnalism for irreversible yet conservative systems. As an example we consider the plasma kinetic 
equation that is,composed of the VIasov-Poisson (VP) equation with a collision term, which includes the Landau 
as well a~ theLenard~Balescu fonns (see e.g. ref. [5]). Additional examples including fluids and nonconservativ~ 
systems were given in refs. [6,7] .-

Recall that a GPB is a bilinear, antisymmetric operator that is a derivation on functionals and satisfies the 
Jacobi identity.'The GPB need not be the usual Poisson bracket; hence fields that do not possess standard orca­
nonical fonn can sometimes still be expressed as follows: 

(1) 

where the hamiltonian functional H is the generator of time translation and the quantities 1j;i are the field compo- . 
nents. This formulation can capsulate the Lie symmetries of the field, and has been instrumental in obtaining non~ 
linear criteria for fluid and plasma equilibria [8,9]. 

Systems that are dissipative would not a priori be expected to fit into the fonn of eq. (1). Indeed it is not clear 
what functional should be the generator of time translation, and which algebraic properties of the binary bracket 
operator will lead to a rich structure. 

We address the first point above by recalling that in classical thennodynamics the equilibrium state can beob­
tained by either the energy Or entropy extremum prinCiples. In this sense we view the energy, a function of the 
extensive variables, as the "generator" of equilibria, or alternatively the entropy can generate equilibria. More­
over, additional extremum principles exist interms of the thennodynamic potentials. For dynamical systems a 
natural extension ofthis is to choose these quantitie~;s th~ generators of time translation. That is, we desire a 
binary operator such that the dynamical field equations can be represented in the fonn 

(2) 

where the quantity M can be the energy, entropy, etc. For the examples addressed here we present brackets where 
M is the energy E, entropy S and Helmholtz free energy F. At the end of this note we show how these representa­
tions can be unified. 

1 
Permanent address: Department of Physics and Institute for Fusion Studies, University of Texas at Austin, Austin, TX 78712, 
USA. . 

*1 Ch. 9 of ref. [1) deals with GPBs for ordinary differential equations. 
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If eq. (2) is to govern the evolution of all functionals of the dynamical variables then the binary operator must 
be bilinear. Alsq the brackets presented are derivations in each argument. In each of the representations given here, 
as in ref. [6] , there is a symmetric as well as antisymmetric component. This is analogous to splitting an operator 
into self-adjoint and skew-adjoint parts. Additional properties will be subsequently noted. 

The dynamical system we consider is 

af (z t) = -v· af + a¢ (x' f)· af + ~ f w .. (z Z,)(af(z) f(z') _ af(z') fez») dz', 
at' ax ax'" av aVi If' aVj" av;., ' 

(3) 

where f(z, t) is the phase space density for a specie's of particles and z = (x, v) denotes a point in ph'ase' space. For 
simplicity only one species is treated. The quantity ¢(x;f) == J Vex, x'TJ(i)az~here Vis the Single particl~ po­
tential (assumed spatially invariant). The tensor Wij is also a function of z - z' and nee.d not be further specified 
except for the following symmetries: (i) wuCz, z') = Wji(z ,z'), (ii) wij(z, z') = wij(z', z), and importantly (iii) (Vi 
- vi)wij = O. These properties are satisfied by both the Landau form, where 

WJf) = (L/g) (Oij -gigj/g2)0(x -x') (4) 

(here L is a constant, 0ij is the Kronecker delta, o(x - x')is the Dirac delta andgi = Vi =- vi) and the Lenard­
Balescu form (see ref. [5]). These properties are not fortuitous for they guarantee momentum and energy con­
servation. 

Vlasov-Poisson bracket. If the tensor Wij is set to zero then eq. (3) becomes the VP equation. The GPB for thi~ 
. system was introduced in ref. [10]. In this case the generator of time translation, the hamiltonian, is the total func­
tional 

D[f] = fT(z)f(z)dz+~ ffV(z,z')f(z)f(z')dzdz', 

whereT(z) = ~v2 is the particle kinetic energy. The GPB is the following: 

{A,BJvp = f fez') [OA/of(z'), oB/8f(z')] dz' . 

Here A andBare functionals and oA/of(z), the functional derivative, is defmed by 

OA/o[(~) = (d/de)A[f(z') + eo(z -z')] I ,,=0 

(5) 

(6) 

and [f,g] = af/ax· ag/av- af/av· ag/ax. Observe of(z)/of(z') 7,0 (z - z') and oE/of(z') = T + V=h, the par­
ticle energy. Evidently the following is equivalent to the VP equation: 

af/at = if, E}yp = -[f, h] . (7) 

The VP b.racket is an essential ingredient in the following. 

Energy representation. Eq. (2) for t/Ji = fin this case is 
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It is reasonable that a portion of {A, B}E should be {A, B}yp; the remaining portion should conserve momentum {A; B 
and energy. We introduce 

{A, B}E = {A,B} yp + (A,B)E ' 

where 
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J( a oA a ~)(~ oB _.l...~) y'/!) (z Z') dz dz' 
(,A,B)E = aUj of(z) - au; Of(ZI) aUi of(z) aui Of(zl) If .' 

(10) 

and 

T(E)( ') = !'(f( ') af(z) aWij ( I) +f( ) af(z') aWij( I)) .. Z, Z 2 Z a a z, z Z lIZ, Z 
If uk uk aUk aUk 

(11) 

. h (E)C" ')-T(E)( ') (E)( ')- (E)C ') d-a / - / 1 •• Notmg t at Tij z, z - ji Z, Z ,Tij z, z - Tij z, z , an Wij aUk - -OWij aUk> It IS easy to show that 
eq. (8)using eqs. (5), (6), (9)-(1 1) is equivalent to eq. (3). We note that in spite of the fact that (A, B)E is symmet­
ric it conserves. energy and (Pi> B)E = 0 for all B where Pi = J u/(z) dz. Because of bilinearity it must yield entropy 
production upon insertion of S = -J fez) lnf(z) dz with E. Recall S has the property {S, B}vp = 0 for all B *'2 . 

Entropy representation. In this case the quantity M is S as defmed above. We introduce antisymmetric and 
symmetric parts as follows: 

{A, B} S = {A, B}yPS + (A, B)s ' (12) 

where 

{A,B}VPS = J f(zi)h(zl;f) [OA/of(ZI), oB/of(ZI)] dz' , (13) 

andh is thepartic1eenergy as previously defined. Observe that while {A, B}yp is the expected value of~he ordi­
nary phase space Poisson bracket, {A, B}vps is the moment of the energy times this quantity. [We note thatthere 
is room for generalization where the entropy, and hence eq. (13) can be defined in terms of any convex function 
of f] . The symmetric part is given by , . 

..._ J" '( a OA a OA )'(~ oB _ ~~) r-(/;)(z Zl) dz dz' 
(A, B)s - OUj of(z) - oui of(z ') oUi of(z) oui of(t')" If ' 

(14) 

where TijS) = ~wijf(z)f(Z'). Eqs. (13) and (14) with S produce eq. (3). Observe that (E, B)s = (Pi, B)s = 0 for all 
B, and that any functional C such that oC/of= function of fhas the property {C, B}vps = 0 for all B. 

Helmholtz free energy representation. The generator of time translation in this representation is the free energy 
F[f] =E[f] - TS[f] , where Tis constant *3 . The bracket in this case is composed ofeq. (6) and (14), i.e. 

{A, B}F = {A, S}vp + CA, B)F, 

where (A, B)F is iden¥cal to eq. '(14) except TijS) is replaced by 

Tt)::,;· ~(wij72T)f(i)J(i'~-------- _.-.... 

It is evident from the preceeding that eq. (15) with F will produce eq. (3). 

Unifying three-forms. All of the brackets presented are contained within the following trilinear operators: 

{A;B, c} = J fez) [OA/of(ZI)] [oB/of(ZI) , oC/Of(ZI)] dz', 

(15) 

(16) 

(17) 

*2 Kaufman reports results similar to these for a hybrid formulation where the symmetric bracket uses entropy to generate evolu­
tion [11]. 

*3 Grll).ela introduced a bracket for the Boltzmann collision term for which Fis the generator. His bracket is neither symmetric 
nor antisymmetric, but does possess similar degeneracy properties [12]. 

425 

I: 
I' 

I 

I 



Volume 100A, number 8 PHYSICS LETTERS 

and 

AB =.!.f(~ OA_~~)(~ oB _l~)(~ oC_~~) 
( , , C) 2 aUi of(Z) aUt of(z') aUj ofC!) au; of(z') aUk of(z) aUk of(z'} 

aw·· x -;(z, z')f(z)f(z') dz dz' . 
aUk 

We note 

{E;A,B}={A, B}vps, {A ;S,B}~{A,B}.vp , __ . 

(A,B,E) = (A, B)s ' (A,B, S) = (A, B)E . 

20 February 1984 

(18) 

(19,20) 

(21,22) 

Clearly eq. (17) is antisynunetric in Band C. (In the case where the entropy is proportional to f2 it further be­
comes permutation synunetric.) From eq.(5) we see that aWij/aUk is synunetric under interchange of indices; 
hence.eq. (18) is synunetric. (Note also gkawif/aUk = -wi;) 

Remarks. 1. Collision operators like those presented here are derived by truncating the 13BGKY hierarchy. 
Some truncations are hamiltonian (e.g. the VP equation), while others that involve assumptions like Bogollubov's 
hypothesis result in diffusion. Since the hamiltonian formulation for the hierarchy is now available [13] , we hope 
to understand the structure presented here in this context. . 

2: Generalized Poisson bpckets can be used as a means of classifying equations. Many different equations, when­
represented in their natural physical variables, possess the same GPB (e.g. the VP, two-dimensional Euler and plasma 
guiding center drift equations [2] ) but possess different hamiltonians. Although the equations are different, since 
the GPBs are the same·these systems automatically have a conunon infinite set of conservation laws (Casimirs) . 

. These constants manifest degeneracy in the bracket. New conservation laws have been discovered in this manneL 
· [6]. The symmetric brackets also possess constants {e.g. (E[j] ,B)s = 0 for ailB} and hence can similarly serve as 

a means of classification. Results presented in ref. [7] indicate that constitutive relations can be couched in the 
form. of .these brackets. In the case of the Navier-Stokes equation the relevant brackets contain terms that corre­
spondto .entropy production via heat flow and viscous dissipation. For systems with coupled fluxes the Onsager 
relations are contained within the brackets. The formalism may provide a useful framework for the covariant de-

· scription of media. 

-3: The notion of splitting an operator into two parts in ordeTto isolate behavior has precedence (e.g. response 
Junctions are split into hermitian and anti-hermitian components). The degree to which our synunetric forms can 
describe behavior of the solution is currently under investigation. Since these forms describe the "non-hamiltonian" 

· part of a system, it is evident that they embody the breaking of Liouville's theorem. Hence, they should describe 
"nowhamiltonian"behavior such as the existence of attracting or strange attracting sets. An example of this oc­
curs here where the Hctheorem is embodied in the definitness of (E, S)E and (S, S)s. Since attracting sets are re­

•. ll!-t~d to stability we speculate that a generalization of the technique used in ref. [8] may be possible. 

~4. Just as GPBs possess underlying geometrical interpretation one would expect the same for the brackets pre­
sented here, or perhaps similar structures. As noted, present efforts are concerned with understanding this fonnal­
ism in light of the structure underlying the hierarchy. The hierarchy bracket [13] is related to a mtered Lie 
algebra, a structure that also appears in the context of pseudo-differential operators (see ref. [14] for proceedings 

, of a conference dealing with Kac-Moody algebras). Moreover, since we have brackets with synunetric as well as 
antisynunetric components a connection with graded Lie algebras and supersynunetiy is sought [15]. 
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