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BRACKET FORMULATION FOR IRREVERSIBLE CLASSICAL FIELDS
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'
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A bracket formulation for irreversible fields analogous to that for hamiltonian fields is presented. The formulation con-
tains a bracket with symmetric and antisymmetric components and a generator of time translation. Plasma examples are

- given when the generator of time translatlon is the energy, entropy and Helmholtz free energy . ) o ‘

In recent tlmes many fundamental nond1531pat1ve equatlons describing fluids and plasmas have been shown to
be hamiltonian field theories in terms of generalized Poisson brackets (GPB). (For review see refs. [1—4] ), Here
we report on a. formahsm for irreversible yet conservative systems. As an example we consider the plasma kinetic
equation that is:composed of the Viasov—Poisson (VP) equation with a collision term, which includes the Landau
as well as the Lena:rd Balescu forms (see e.g. ref. [5]). Additional examples including fluids and nonconservative
systems were given in refs. [6,7]. » ‘

Recall that a GPB is a bilinear, antisymmetric operator that is a derivation on functionals and saﬁsﬁes the
Jacobi identity. The-GPB need not be the usual Poisson bracket; hence fields that do not possess standard or ca- -

nonical form can sometlmes still be expressed as-follows: P

vifar= (U Hlapg s i=1,2, .., , ' _ 1

Where the hamiltonian functional H is the generator of time translation and the quantities Wi are the field compo-
nents. This formulation can capsulate the Lie symmetries of the field, and has been instrumental in obtaining non--

linear criteria for fluid and plasma equlhbna [8,9].

Systems that are dissipative would not a priori be expected to fit into the fonn of eq. (1). Indeed it i 1s not clear .-

what functional should be the generator of time transla‘uon and which algebraic propertles of the bmary bracket
operator will lead to a rich structure.

We address the first point above by recalling that in classical thermodynamics the equ111br1um state can be ob-
tained by either the energy or entropy extremum principles. In this sense we view the energy, a function of the
extensive variables, as the “generator” of equilibria, or alternatively the entropy can generate equilibria. More-
over, additional extremum principles exist in terms of the thermodynamic potentials. For dynamical systems a.
natural eXtension of this is to choose these quant1t1es as the generators of time translation. That is, we desire a
binary operator such that the dynamical field equations can be represented in the form

0Wifor={Y , MYy, i=1,2,..N. | . @

where the quantity M can be the energy, entropy, etc. For the examples addressed here we present brackets where
M is the energy E, entropy S and Helmholtz free energy F. At the end of this note we show how these representa-
tions can be unified.

! Permanent address: Department of Physics and Institute for Fusion Studies, University of Texas at Austin, Austin, TX 78712,
USA. .
1 Ch. 9 of ref. [1] deals with GPBs for ordinary differential equations.
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If eq. (2) is to govern the evolution of all functionals of the dynamieal variables then the binary operator must

be bilinear. Also the brackets presented are derivations in each argument. In each of the representations given here,

as in ref. [6] , there is a symmetric as well as antisymmetric component. This is analogous to splitting an operator
into self-adjoint and skew-adjoint parts. Additional properties will be subsequently noted.
The dynamical system we consider is

Len=—vZL+LwnZ

wi]-@,zr)(ag’g%) @)-2 (f/)f(Z)) &', )

where f(z, t) is the phase space density for a species of particles and z = (x, v) denotes a point in ph‘aieﬁ space. For.
simplicity only one species is treated . The quantity ¢(x; /)= [ V(*,x'Y. f(z') dz", where Vs the single particle ; po-
tential (assumed spatially invariant). The tensor wy; is also a function of z — 4 and need not be further specified
except for the following symmetries: (i) w;i(z, z = wii(z,2 "), (i) wilz, z 'Y= wijz', z), and importantly (111) v,

l)wl] 0. These properties are satisfied by both the Landau form, where

L ’
wff = W) (6 — £iglg")8 (v —x) | @
(here L is a constant, §;; is the Kronecker delta, 6 (x —x ") is the Dirac delta and g; = v; — v}) and the Lenard—

~Balescu form (see ref. [S]). These properties are not fortuitous for they guarantee momentum and energy con-
. servation. .

Vlasov—Poisson bracket. If the tensor wj; 1s set to zero then eq. (3) becomes the VP equation. The GPB for this

= System was introduced in ref. [10]. In this case the generator of time translation, the hamiltonian, is the total func-

tlonal

DUl = [TE)7@) iz +3 e oo | » “
Wheie 'T )= %uz is the particle kinetic energy. The GPB is the following:

. Bhe - J ey bapse, oneren . - ®

HereA and B are functionals and 64/8 f(z) the functional der1vat1ve is defined by -

- 5A/6f(z) (d/de)A[FE' ) + €8z —2" )]l =g

and [f,g] = offox - dg/dv— Of/dv- dg/dx. Observe §f(z)/8f(z') = 8(2 —z ) and §E/61(z’ ) T+V=h, the par-

: tlcle energy. Evidently the following is equivalent to.the VP equatlon
offr= U, Elyp=—If 1] - | B ()

The VP bracket is an essential ingredient in the following.

Energy representation. Eq. (2) for ¢ = fin this case is
offor = {£,E)g . - o ‘ ®)

It is reasonable that a portion of {4, B}  should be {4, B}VP, the remaining portlon should conserve momentum
and energy. We introduce

U Blp=UB @By, L | ©)

where
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(3 54 o 4 /2 B £) |
. B _f(avj 51@)  av] 5f(z’))(8v,~ 8f(z) au 5f( ))7{ G2 & : (10
and
ow;; ‘
P -0 52 5 e e G )2 ak(» a). | an

Noting that T(E)(z z')= T(E)(z z"), T(E)(z z')= T(E)(z z),and aw,]/avk —awl]/avk,rc is easy to show that

eq. (8).using egs. (5), (6), (9)—(11) is equ1va1ent to eq. (3). We note that in spite of the fact that (4, B)g is symmet-
ric it conserves energy and (P;, B)g =0 for all B where P; = [ v;f(z) dz. Because of bilinearity it must yield entropy
productioh upon insertion ofS =—f f(Z)‘ In f(z) dz with E. Recall S has the property {8, B}yp=0forall B 2

Entropy represenmnon In this case the qua.nt1tyM is S as deﬁned above. We introduce antisymmetric and
symmetric parts:: as follows:

{4,B}g= 14, B}VPS+(A B)S, | d . o o az
where . o ‘ ,‘ _ , | _ C L ’
4, Blyps = f f(z DA, BBISFEN ' | ‘ Can

and nis the partlcle energy as previously defined. Observe that while {4, B}VP is the expected value of the ordi-
nary phase space Poisson bracket, {4, Blypg is the moment of the energy times this quantity. [We note that there
is room for generalization where the entropy, and hence eq. (13) can be deﬁned in terms of any convex function
of f] The symmetric part is given by »

B ov'; 8f(z’ d; 8f@)  av) sfE’) )

where T(S) = l]f(z)f(z ). Egs. (13) and (14) with S produce eq. (3). Observe that (E, B)g= ( B)S 0 for all
B, and that any functional C such that 8C/8f = function of f has the property {C, Blypg =0 for all B.

Helmholtz free energy representation. The generator of time translatlon in this representatlon is the free energy
F[f] =E[f] = IS[f], where T is constant **. The bracket in this case is composed of eq. (6) and (14), i.e.
where (4, B) - is identical to eq. (14) except T( ) i replaced by

T = (@ 2D FETE Y ae)
It is evident from the preceeding that eq. (15) with F will produce eq. (3).

Unz‘]j/ing three-forms. All of the brackets presented are cohtained within the following trilinear operators:
4;B,Ct = [ 7@) [84/87E")] [8BI5f(") , 5CI87E")] &2, an

*2 Kaufman reports results similar to these for a hybrid formulation where the symmetric bracket uses entropy to geneérate evolu-

tion [11].
#3 Grmela introduced a bracket for the Boltzmann collision term for which F is the generator. His bracket is neither symmetric

~nor antisymmetric, but does possess similar degeneracy properties [12].
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and

N _
a0t/ (55 56 o) (5 a6 - o} 5f(e")\ovi ) avf o1/

54 @ SA)(Q 5B 0 53)(3 5C 9 50)'

awi]. v-’>
X r'(z, 2)f2)f() dz &z’ . ’ (1)
Uy K
We note ,
{E5A, B}= {4, Blypg 5 — 14;8, B} = {4, Byxp o .o e _ — 'v s, 20)
(4,B,E)=(4,B)g, (4,8 5= B)y. | @

_Clearly eq. (17) is antisymmetric in B and C. (In the case where-the entropy is proportional to £2 it further be-
comes permutation symimetric.) From eq. (5) we see that d¢; / dvy, is symmetric under interchange of mdlces
hence eq. (18) is symmetric. (Note also g 8w;;/dug = ~w;). |

Remarks. 1. Collision operators like those presented here are derived by truncaﬁng the BBGKY hierarchy.
-'Some truncations are hamiltonian (e.g. the VP equation), while others that involve assumptions like Bogoliubov’s

- hypothesis result in diffusion. Since the hamiltonian formulation for the hierarchy is now avaﬂable [13], we hope

~torunderstand the structure presented here in this context.

2 Gene;alized Poisson vb;ackets can be used as a means of classifying equations. Many different equations, when
- represented in their natural physical variables; possess the same GPB (e.g. the VP, two-dimensional Euler and plasma
- guiding center drift equations {2] ) but possess different hamiltonians. Although the equations are different, since
+:the GPBs are the same these systems automaﬁcally have a common infinite set of conservation laws (Casimirs).
o These constants manifest degeneracy in the bracket. New: conservation laws have been discovered in this manner._.
. [6] . The symmetric brackets also possess constants {e.g. (E[f], B)g = 0 for all B} and hence can similarly serve as
a means of classification. Results presented in ref. [7] indicate that constitutive relations can be couched in the
form of these brackets. In the case of the Navier—Stokes equation the relevant brackets contain terms that corre-

e spond to entropy production via heat flow and viscous dissipation. For systems with coupled fluxes the Onsager
“ relations are-contained within the brackets. The formalism may- prov1de a useful fra_mework for the covariant de-

St scr1pt1on of media.

w3 The notlon of splitting an operator into two parts in order-to isolate behavior has precedence (e.g. fesponse
: .functlons are split into hermitian and anti-hermitian components). The degree to which our symmetric forms can
- describe behavior of the solution is currently under investigation. Since these forms describe the “non-hamiltonian”

v -part of a system, it is evident that they embody-the breaking of Liouville’s theorem. Hence, they should describe

. “non-hamiltonian” behavior such as-the existence of attracting or strange attracting sets. An example of this oc-
. curs here.where thé H-thedrem is embodied in the definitness of (£, S)z and (S, S)g. Since attracting sets are re-
ilated to stability we speculate that a generalization of the technique used in ref. [8] may be possible.

.- 4. Just as GPBs possess underlying geometrical interpretation one would expect the same for the brackets pre-
. -sented here, or perhaps similar structures. As noted, present efforts are concerned with understanding this formal-
- rismin hght of the structure underlying the hierarchy. The hierarchy bracket [13] is related to a filtered Lie
* algebra, a structure that.also appears in the context of pseudo-differential operators (see ref. [14] for proceedings
. of a conference dealing with Kac—Moody algebras). Moreover, since we have brackets with symmetric as well as
antisymmetric components a connection with graded Lie algebras and supersymmetiy is sought [15].
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