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Reduced magnetohydrodynamics (RMHD) is a principal tool for understanding nonlinear 
processes, including disruptions, in tokamak plasmas. Although analytical studies of RMHD 
turbulence are useful, the model's impressive ability to simulate tokamak fluid behavior has been 
revealed primarily by numerical solution. A new analytical approach, not restricted to turbulent 
regimes, based on Hamiltonian field theory is described. It is shown that the nonlinear (ideal) 
RMHD system, in both its high-beta and low-beta versions, can be expressed in Hamiltonian 
form. Thus a Poisson bracket, { , I, is constructed such that each RMHD field quantity Si 
evolves according to ti = (SoH j, where H is the total field energy. The new formulation makes 
RMHD accessible to the methodology of Hamiltonian mechanics; it has lead, in particular, to the 
recognition of new RMHD invariants and even exact, nonlinear RMHD solutions. A canonical 
version of the Poisson bracket, which requires the introduction of additional fields, leads to a 
nonlinear variational principle for time-dependent RMHD. 

I. INTRODUCTION 

A. Reduced magnetohydrodynamics 

The term "reduced magnetohydrodynamics" (RMHD) 
refers to a number of simplified approximations to ordinary 
magnetohydrodynamics (MHD). The original versions of 
RMHD, with which this work is concerned, were construct­
ed to describe nonlinear plasma dynamics in large aspect­
ratio tokamak geometry. 1-3 Thus the ordering parameter E is 
the inverse aspect ratio; one assumes the following ratios, in 
particular, to be of order E: (1) scale length transverse to the 
magnetic field B: scale length along B; (2) poloidal compo­
nent ofB: toroidal component ofB; and (3) time for compres­
sional equilibration (compressional Alfven time): time scale 
of interest (shear Alfven time). In addition, the plasma pres­
sure p is assumed small, either p -,; B 2 ("low-beta RMHD") 
or p - EB 2 ("high-beta RMHD"). The RMHD set is present­
ed in Sec. II; for a detailed derivation we refer the reader to 
the original work by Strauss. 2.3 

As a model for high-temperature tokamak plasma be­
havior, RMHD is crude in several respects. Of course its 
MHD origin precludes any treatment of potentially impor­
tant, nonideal or kinetic effects, a circumstance which is in­
adequately remedied by resistive versions of RMHD. Even 
within the ideal context, RMHD omits, for example, density 
gradient terms and ion acoustic propagation. Perhaps most 
seriously, the RMHD simplification of tokamak geometry 
can yield misleading results in certain linear contexts (e.g., 
interchange stability); it provides an inaccurate version of 
tokamak magnetic field curvature.4 

To be weighed against such drawbacks are the four 
main advantages ofRMHD. 

(1) It is numerically tractable. The ideal version, being 
parameter-free, involves only a single temporal scale. Fur­
thermore, only two or three scalar fields need to be advanced 
in time. 

-) Also the Department of Physics, University of Texas, Austin, Texas 
78712. 

(2) It is conceptually simple. The significance of the field 
quantities (magnetic flux, electrostatic potential, pressure) is 
transparent and the physical content of the equations is 
clear. 

(3) Its derivation is internally consistent. The equations 
result from a systematic neglect of 0 (~) terms, with few ad­
ditional simplifications. 

(4) Most importantly, the RMHD system simulates the 
actual nonlinear behavior of tokamak discharges.5 Its pre­
dictions--concerning nonlinear kink deformations, flux sur­
face destruction, and plasma disruption, for example--have 
a qualitative reliability which few tokamak theoretic con­
structs can equaL 

For these reasons (especially the last), RMHD has be­
come a principal tool in the interpretation of tokamak ex­
periments. Most major tokamak facilities routinely use com­
puter solutions to some version of RMHD, and several 
research teams are devoted to uncovering its implications. It 
is significant, ifunsurprising, that the great bulk of this theo­
retical effort has been strictly numericaL The relatively few 
analytical investigations ofRMHD have been devoted either 
to improving the system itself (for example, by the inclusion 
of various nonideal effects) or to examining its consequences 
in certain turbulent regimes. 

The present work is motivated by the belief that 
RMHD deserves more extensive analytical study. Our cen­
tral theme is the Hamiltonian description ofRMHD, in both 
its low-beta and high-beta versions. 

B. Hamiltonian dynamics 

In this subsection we briefly review what is meant by a 
Hamiltonian system of equations. Contrary to conventional 
textbook treatments, we emphasize the algebraic properties 
of the Poisson bracket. This emphasis frees one from the 
requirement of canonical variables and thus is a more gen­
eral setting.6-8 In recent times there has been a wealth of 
work for both finite and infinite degrees of freedom systems 
that is related to this point of view.9-14 For simplicity of 
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exposition we describe finite systems prior to the field formu­
lation that is our concern. 

The standard route to a Hamiltonian description is to 
Legendre-transform the Lagrangian, which is constructed 
on physical bases. This yields the Hamiltonian and the fol­
lowing 2N first-order ordinary differential equations: 

ilk = [qk,H], Pk = [Pk,H], k= 1,2, ... ,N. 

Here the Poisson bracket has the form 

[f,g] = f ( af ag _ af ag ) 
k='1 aqk apk aPk aqk 

= af J ij ag . (I) 
ar az j 

The last equality ofEq. (1) follows from the substitutions, 

. ~k' i = k = 1,2, ... ,N, 
z'= 

k' i=N+k=N+ I,N+2, ... ,2N, 

and 

(2) 

where In is the N X N unit matrix. (Repeated index conven­
tion is used.) The matrix Jij is called the cosymplectic form 
and it can be shown to transform as a contravariant tensor 
under a change of coordinates. Recall those transformations 
that preserve its form are canonical. 

The approach taken here is that there is no concern that 
theJ ij take the form given by Eq. (2). Rather, we require only 
that the Jij endow the Poisson bracket, as given by Eq. (1), 
with the following properties: 

(i) (f,g] = - [g!], 

(ii) [J,[g,h)) + [g,[h!)) + [h,(f,g)) = O. 

There must hold for all functionsJ, g, and h defined on phase 
space. Property (i) requires that J ij be antisymmetric and 
property (ii), the Jacobi identity, requires the following: 

Sijk = Jil aJ jk + pi aJ
ki + Jkl aJij = o. (3) 

az1 az1 az1 

Equation (3) is trivially satisfied for the form of Jij given by 
Eq. (2), though in general it is a severe restriction. It can be 
shown that S ijk transforms contravariantly; hence if the Ja­
cobi identity is satisfied in one frame it is satisfied in all 
frames. Similarly, antisymmetry is coordinate independent. 
This suggests the following outlook: if a system of equations 
possesses the form 

;.i _ J- ij aH .. - 1 2 N 
~ - ., l,j - , , ... , , azJ 

where jij is antisymmetric and satisfies Eq. (3), then it is 
Hamiltonian. This outlook is justified by a theorem due to 
Darboux which states that assuming det(jij)#O (locally) a 
canonical coordinate system exists. 

Turning now to systems of infinite dimensions we note 
that the generalization of Eq. (1) for a system of field equa­
tions is 
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=( ~F IOij ~a). 
~U' ~uJ 

(4) 

Here the Poisson bracket acts on functionals F, G of the field 
variables 11k and 1Tk and partial derivatives are replaced by 
functional derivatives that are defined in the usual way by 

dF [11k +EW] I = (~Iw). 
dE E= 0 ~lIk 

(5) 

The bracket stands for the usual inner product 

(fig) = ffg dr. 

We now carry over the ideas for finite degree of freedom 
systems. We define a system to be Hamiltonian if it can be 
written, for some Hamiltonian functional H, in the form 

aui =Oij~H 
at ~uj' 

where ° ij is a matrix (in general nonlinear) operator that 
endows a Poisson bracket defined by the second equality of 
Eq. (4) with the properties (i) and (ii). Antisymmetry requires 
that ° ij be anti-self-adjoint. The Jacobi requirement for a 
specific case is taken up in the text. For the general case we 
direct the reader to Ref. 14. A major goal of this paper is to 
present the operator ° ij with these desired properties such 
that the ui,s are the usual field variables for RMHD. 

c. Overview of results 

Section II is composed of two subsections. In Sec. II A 
we briefly review how RMHD is asymptotically obtained 
from MHO. Here we define our notation and our coordinate 
system. In Sec. II B we discuss integral invariants. A com­
parison is made between the invariants of ideal MHD and 
those ofRMHD that survive the asymptotics. In the course 
of investigating these invariants, a class of exact, nonlinear, 
uniformly propagating solutions to RMHD were discov­
ered. ls A novel result of this subsection is the presentation of 
a new class of invariants for single-helicity RMHD. These 
invariants are a natural by-product of the generalized Pois­
son structure obtained in Sec. III. Quantities that commute 
with all Hamiltonians are known as Casimir invariants l6

-

the new invariants are of this type. Casimir invariants are 
important because together with the Poisson bracket they 
enable the construction of global nonlinear stability criteria 
for nonlinear solutions. Arnold 16 used the Hamiltonian 
structure for two-dimensional inviscid, incompressible 
fluids to prove nonlinear stability. Arnold's result has been 
invoked by Meiss and Horton l7 in order to ascertain the 
stability of solitary drift waves. Recently the technique was 
utilized by Holm et al. 18 to prove stability for three-dimen­
sional compressible fluid flow. Applications involving 
RMHO nonlinear solutions will be the subject of a future 
publication. 19 

The main portion of this paper is presented in Secs. III 
and IV. The Poisson brackets are described and the Jacobi 
identity is proven for both the low- and high-beta theories. In 
Sec. IV B we present the Hamiltonian description in terms of 
the usual discretization employed for tokamak numerics, 
i.e., we use Fourier transforms in the poloidal and toroidal 
angles. We leave the radial variable alone, but finite differ-
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FIG. 1. Tokamak coordinate system. Ro is the distance to the minor toroi­
dal.axis. The closed curve is used to schematically indicate a poloidal plane 
which has a characteristic size a. ' 

ence schemes can be worked out within the generalized Pois­
son bracket context. Discretization in this manner automati­
cally insures energy conservation. 

Section V is concerned with the transformation of our 
~eneralized Poisson brackets to canonical form. The equa­
tIOns of motion in these variables are presented; analogous 
equations for ordinary fluids have been numerically inte­
~rated. Having obtained a canonical Hamiltonian descrip­
tion we take the short step to produce a variational principle 
that yields Hamilton's equations of motion. Nonlinear vari­
at~onal principles are useful in that one can employ Ray­
leigh-Ritz or trial function approximations. A variational 
principle for the regularized-long-wave equation, which was 
obtained by the same route as that described in Sec. V, has 
been used to successfully predict the phase shift of solitary 
wave scattering. 20 

. Section VI summarizes our conclusions and this appli­
catIOn. Comments concerning incorporation of dissipation 
into the formalism are also included. 

II. REDUCED MHD: EQUATIONS AND CONSTANTS 

A. Equations of motion 

The reduced MHD equations are obtained by asymp­
totically ordering the equations of ideal MHD. The funda­
mental small parameter is the inverse aspect ratio, E = a/ Ro' 
where a and Ro are the minor and major radii, respectively 
(see Fig. 1). The fluid velocity v = vir Z + U I is scaled with the 
poloidal Alfven speed vp = BPJ/J41Tp, where p is the mass 
density and BPJ = aBo! R (Bo is the scale for the toroidal 
field). The ordering causes parallel dynamics to become de­
coupled, so that vrr does not enter the final closed system. 
The ordering also renders V·v = 0 (E). Time is scaled with 
Tp = a/vp while distances in the toroidal (z) direction are 
scaled with Ro and poloidal distances are scaled with a. The 
dimensionless gradient operator is V = EZ(a/aZ) + VI' The 
scaled magnetic field is represented in the form 

B=ZI(1 +EX)+EVIt/lxZ+EZh+O(~). (6) 

The first term is the vacuum toroidal field, the second is the 
poloidal field represented in terms of the scaled poloidal flux 
t/I, and the third term represents the deviation from the 1/ R 
toroidal field due to the presence of the plasma. Note that 
R = Ro( 1 + EX). The function h is determined from the ideal 
MHD momentum balance equation. One obtains to order E 

VI (.8 12 + h) = 0, (3 = 81Tp1B ~E. 
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Here p is the plasma pressure. In the high-beta version of 
RMHD, p is chosen to scale as E. The previous low-beta 
v~rsion avoided p~essure effects by scaling p-~; this ver­
sion may be obtamed from that of Eqs. (2)-(4) by setting 
(3=0. 

The dynamical equations obtained from the ordering 
described in the previous paragraph are 

at/l aifJ A --at + a; =z·VIt/lXVIifJ, (7) 

au aJ A a(3 --at + az =z·VIt/lXVIJ +Z·VI UXVIifJ - ay , (8) 

and 

(9) 

Here we have introduced the stream function ifJ defined by 
VI = zxVifJ, the vorticity U=ViifJ, and the toroidal current 
J = vi t/I. The Poisson brackets for Eqs. (2)-(4) and impor­
tant subsets thereof are obtained in Secs. III and IV. 

Equation (7) simply expresses E·B = 0, where 
E = - V cP - c - I a A/at is the electric field. The variable 1/1 
is ~ normalized measure of B·A (A is the vector potential) 
whIle ifJ measures the electrostatic potential CPo The nonlin­
ear term corresponds to B·VCP. Equation (8) is the reduced 
vorticity equation, usually obtained from the curl of the 
equation of motion; its two nonlinearities correspond to ad­
vection and the parallel current gradient. Finally, Eq. (9) 
describes pressure advection, corresponding to the approxi­
mate incompressibility of RMHD dynamics. 

The version of RMHD given above evidently does not 
contain resistive effects; however, consistent with the 
RMHD ordering, one can add 1]Vi t/I to the right-hand side 
of Eq. (18), where 1] is a normalized resistivity. One would 
not expect such a dissipative system to be Hamiltonian. We 
comment further upon this issue in Sec. VI. 

B. Constants of motion 

A dynamical system such as RMHD possesses a con­
served density if there exists a quantity R that satisfies an 
equation of the form 

aR - +v·c=o, 
at 

(10) 

where Rand C are composed of the dynamical variables of 
the system. Clearly for each such quantity R there corre­
sponds an integral constant of motion, since 

:t f R dr = f V·C dT = O. ( 11) 

In Eq. (6) the integral extends over the fixed domain of inter­
est and the second equality arises if the surface term vanish-
es. 

The equations of ideal MHD are known to possess 
many conserved densities. These are shown in Table I along 
with the RMHD remnant obtained under the ordering of the 
previous subsection. For a discussion of the ideal MHD con­
stants and the symmetries they generate we refer the reader 
to Ref. 14. In the table, cases where the remnant appears to 
be trivial are left blank. Of the nontrivial remnants the natu-
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TABLE I. Invariants of MHO and reduced MHO. 

MHO invariant Comments RMHO remnant Comments 

M= f pdr 

p= f pvdr 

L= f xXpvdr 

Casimir invariant 

U( p, s) is the internal energy For low-f3 version {3--+n. x is 

H = f ( ~ pv2 + pU + ~2) dr per unit mass. s is the entropy H = f ~ (lVl ~ 12 + IVl,W - 2/3x) dr Cartesian coordinate in 
per unit mass. poloidal plane. 

G = f (px - pvt) dr 
Center of mass constant. 

Appeared in Ref. 14. 

g arbitrary. This should be 

S= f pS(s)dr 
S arbitrary. Casimir 

invariant. 
P, = f g(f3)dr 

opposite f pg( pp - r) dr. We write the 

equation of state more generally 
usingS. 

D= f Ddr 

v= f v'Ddr 

A = f A·Ddr 

Barotropic flow or 
D·Vs = O. Casmir invariant. 

Casimir invariant. 

v= f Vl~·Vlr{!dr 
A= f r{!dr 

farbitrary. <P any advected 
quantity. Appeared 
in Ref. 21. 

Q = f f( ~~ - [r{!, <P 1 ) dr 

The special case where <P is pressure 

andfis the identity function was 
given in Ref. 2. 

c= f Uh(r{!)dr 
h arbitrary. Single helicity. 
Casimir invariant. Low beta. 

ral choice for the Hamiltonian is, of course, H. This is used in 
the upcoming sections. 

The quantity C, which appears to have no MHD ante­
cedent, is the Casimir invariant mentioned in the Introduc­
tion. It is conserved for the two-dimensional and hence sin­
gle-helicity models of Sec. III. It was obtained by 
recognizing that the Poisson bracket in this case is identical 
to that for the incompressible Euler equations in two dimen­
sions. This structure is well understood. 22,23 

It is easy to see that V, the cross helicity, is a special case 
of C where h (¢') = ¢'. The invariants C are the cross-helicity 
analog to the class of invariants associated with the magnetic 
helicity. These invariants have been proposed as constraints 
on turbulent relaxation. 24,25 

III. LOW-BETA THEORY 

A. Two dimensions 

In this section we construct a Poisson bracket for the 
simplest version of reduced MHD, in which the interchange 
term on the right-hand side ofEq. (8) is neglected. The result­
ing system describes the nonlinear behavior of current-driv­
en modes, such as the kink mode, and is consistent with the 
ordering 8rrp/B ~ S c. We further simplify, initially, by neg­
lecting z derivatives, thus considering a two-dimensional 
system. Axisymmetric disturbances are oflimited interest in 
themselves. However (as becomes explicit in the following 
subsection) the axisymmetric system is equivalent to one 
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possessing helical symmetry. and the helically symmetric 
case has considerable intrinsic importance. I 

Hence we consider the system 

if = [¢',J] + [U,t,6 ], 

¢ = [¢',t,6 ], 

U = V~t,6, J = V~¢'. 

(12) 

(13) 

(14) 

Here we use a bracket notation which has become conven­
tionaP: 

(IS) 

Because this bracket presently will be embedded in the field 
Poisson bracket, we refer to it as the "inner" bracket. The 
inner bracket is a divergence, 

[J,g] = V1'(gzXV1f), 

which satisfies the crucial identity 

(16) 

J dx1j[g,h] = J dX1 g[hl] = J dX1 h [f,g], (17) 

for any functionsJ, g, and h. Equation (17). in which dX1 
=dx dy and the integrals extend over the entire plasma vol­
ume, depends upon the neglect of surface terms. Such neg­
lect is not usually serious; however, the present formalism 
must be applied with care to situations in which the plasma 
boundary significantly affects the dynamics. We note in 
passing that several of the conservation laws presented in 
Sec. II are immediate consequences of Eq. (17). 
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Our objective is to write Eqs. (12)-(14) in Hamiltonian 
form. That is, we seek a suitably defined "outer" bracket 
[F,G ), which acts on functionals of U and 1/1. The outer 
bracket must be antisymmetric, 

[F,G) = - {G,F); 

must satisfy Jacobi's identity, 

(18) 

[E, {F,G ) ) + {F, { G,E II + {G, {E,F ) ) = 0; (19) 

and must yield Hamilton's equations, in the (generally non­
canonical) form 

if = (1/1,H J, 
U= [U,H). 

(20) 

(21) 

Here H is the energy introduced in Sec. II, appropriately 
simplified for low beta and axisymmetry: 

(22) 

We simplify notation by using the same symbol to denote the 
general energy integral and its various simplified versions. 

The quantity H is manifestly a functional of the reduced 
MHD fields. Note that the fields 1/1 and U can themselves 
also be interpreted as functionals; for example, 

1/1(xl ) = f dX~O(Xl - x~)1/1(x~). (23) 

Such interpretation is called for in Eqs. (20) and (21). 
A generic form for the Poisson bracket can be inferred 

from previous work: 

(24) 

where (SI'S 2) = (¢" U), a sum over repeated indices is implied, 
and the functional derivative as noted in the Introduction is 
defined by 

-F[S+€w] = dX l W-. d f 8F 
d€ 8S 

(25) 

The quantities Wij are to be chosen to satisfy Eqs. (18)-(21). 
From Eqs. (20) and (21) it can be seen that Wij must depend 
linearly upon the Si' 

Before proceeding further with Eq. (24), we turn our 
attention to H, which must now be considered as a func­
tional of 1/1 and U. After partial integration, Eq. (22) becomes 

H= - + f dX l [U¢ + 1/1J] 

= - ~ fdXd UK(U) + 1/1V~1/1], 
where K represents the operator inverse to V~ :K (V~ I) = f 
Because Vi, and therefore K, are self-adjoint operators, we 
see that 

8H = _ ¢ 8H = _ J. 
8U '81/1 

(26) 

It follows in particular that the equations of motion can be 
expressed as 

U= [~~ ,1/1] + [!~,U], (27) 
and 
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. [8H J 1/1= 8U,1/1· (28) 

We now return to Eq. (24), and consider the quantity 
f 1/1,H ). In view of the identity (17), this can be written as 

[1/1,H) = fdx~ 81/1 [8H ,Wij]' 
8Si 8Sj 

But 81/118si vanishes unless i = 1, in which case it is the iden­
tity operator [cf. Eq. (23)]. Thus 

[1/1,H) = [ 8H ,Wlj ] . (29) 
8Sj 

Comparing the right-hand sides ofEqs. (28) and (29), we see 
that Eq. (20) will hold only if 

WI I = 0, W12 = 1/1. 
Analogous consideration of [ U,H) readily shows that we 
must choose 

W12 = 1/1, W22 = U, 

in order to reproduce the right-hand side of Eq. (27). 
We conclude that the bracket defined by 

[ 
8F 8GJ) 
8U' 81/1 

(30) 

yields the correct two-dimensional equations of motion (the 
subscript refers to the dimensionality). It is a proper Poisson 
bracket if, in addition, { ) 2 is antisymmetric and satis­
fies Jacobi's identity. Since antisymmetry is a trivial conse­
quence of the antisymmetry of the inner bracket and the 
symmetry of Wij = Wii' the remainder of this subsection is 
devoted to verifying the Jacobi identity. 

Our demonstration is grossly simplified because of two 
symmetries: antisymmetry in the bracket and symmetry in 
the second variation. Consider the general bracket of Eq. 
(24). We can evidently write 

8 [F.G) _ fd 8Wij [OF 8G] A 
8S

k 
' - Xl 8S

k 
fJS

i
' 8S

j 
+ k' (31) 

where Ak involves higher-order functional derivatives of F 
and G. For the purpose of verifying Jacobi's identity, one can 
always neglect A k • The point is that the terms in Ak are 
consistent with Eq. (19) for any symmetric Wij' essentially 
because 8210Si 0Sj is effectively self-adjoint. The reader in­
terested in seeing a proof of this is directed to Ref. 14. 

In our case, Eqs. (30) and (31) yield 

:1/1 (F,G) 2 = [ ~: ' ~~] + ( ;~, :~ J + A I' 

fJ (F G) _ [fJF fJG] A 
8U ' 2 - 8U' fJU + 2' 

and therefore, 

{E,{F,G )2)2 = J dX l {1/1([ !: ' [ ;~, :~]] 
+ [ ;~ , [ :: ' :~] + [ ;~, :~]]) 
+ U [t5E [t5F t5G 11} . (32) 

fJU' fJU' fJU 
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Here irrelevant terms, involving theA k , have been omitted. 
It can be seen from Eq. (32) that the outer bracket will satisfy 
Jacobi's identity provided only that the inner one does. This 
is obvious with regard to the term which is weighted by U, 

[ 8E [8F 8G]] 
8U' 8U' 8U . 

It is also true for the ",-weighted terms, because functional 
derivatives with respect to '" occur uniformly in these terms: 
once on E, once on F, and once on G. Hence it suffices to 
verify that 

[f,[g,h ]] + [g,[h/]] + [h,[f,g]] = O. (33) 

But Eq. (33) can be established by elementary means (for 
example, by noting the resemblance of the inner bracket to 
the classical Poisson bracket). 

We conclude that the equations 

ip = {""H 12' if = { U,H 12 (34) 

indeed yield a Hamiltonian representation of two-dimen­
sional, low-beta, reduced MHD. 

We remark in closing this subsection that the bracket 
given by Eq. (30) has a mathematical interpretation as the 
dual of the Lie algebra of a semidirect product. 11 This will be 
discussed in a forthcoming publication.26 

B. Three dimensions 

Here we generalize the low-beta bracket to allow for 
arbitrary asymmetry. It is convenient to use cylindrical co­
ordinates, 

(x,y,z)--+(r,e,; ), 

where 

x = r cos e, y = r sin e, z = ;. 
The coordinates e and; are conventional poloidal and toroi­
dal coordinates, respectively, while r is a dimensionless mi­
nor radius. Evidently, the operator V 1 = xa/ ax + .va/ ay be­
comes 

Vl=ri.+ o~. 
ar r ae 

To treat the; (or z) derivatives in Eqs. (7) and (8), it is helpful 
to introduce a three-dimensional gradient operator, defined 
by 

A. A a 
V=V1 +;-. (35) a; 

Note that V differs from the true, normalized gradient, 
which contains a factor a/ R in the toroidal derivative term. 
The present definition implies? = V; and therefore 

A A A A A A 

[f,g] = V;·VfxVg = V·(gV; xVf), (36) 

[f,g] = ~ ( af ag _ ag af) . 
r arae arae 

(37) 

We next introduce a new inner bracket, the "poloidal" 
inner bracket. It is defined analogously to Eq. (36): 

A A A. A A A 

[f,g]p==ve·vfxvg = v·[gve xVf]. (38) 

The word "poloidal" refers to the ve factor; in this sense, Eq. 
(36) provides the "toroidal" inner bracket. Both brackets can 
be seen to satisfy 
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J dxf[g,h ](Pi = J dxg[h/](Pi = J dx h [f,g](PI' 

(39) 

as in Eq. (17). Here and below 

JdX= J dX1 dz= frdrfdefd;, 

and surface terms are presumed to vanish as usual. 
The essential property of the poloidal inner bracket is 

that it allows us to write, for any function/, 

af = _ [ r I] . 
a; 2 P 

(40) 

Hence the three-dimensional, low-beta equations of motion 
[Eqs. (7) and (8)] can be written as 

ip = ["',~ ] + [ ~ ,~ L ' 
if = [""J] + [ ~ ,J L - [~, U ] . 

Alternatively, we may use the three-dimensional Hamilton­
ian, 

H = ~ J dx [(V 1 ~ )2 + (V 1 ",)2] , 

which also satisfies Eqs. (26), to write 

. [8H] [8H r] 
'" = 8U'''' + 8U' 2" / (41) 

if = [8H '''] [8H r ] [8H u] 8",''1' + 8",' 2 P + 8U' . (42) 

Observe that Eqs. (41) and (42) differ from the two-dimen­
sional system only in that ["'I] is replaced by 
["'I] + [r/2/]p' We therefore obtain the three-dimen­
sional outer bracket by making an analogous replacement in 
Eq. (32): 

{F,G 13= J dX{ "'([ ~: ' ~~] + [ ~~, ~~]) 
r ([ 8F 8G] [8F 8G]) 

+ 2" 8", ' 8U P + 8U' 8", P 

+ u[ ~~, ~~]} 
J r ([ 8F 8G] = {F,G1 2 + dX2" 8",' 8U P 

[ 8F 8G]) + 8U' 8", P • (43) 

Alternatively, Eq. (43) can be written in the form 

{F,G h = {F,G 12 + J dx ( 8F ~ 8G 
8", a; 8U 

8G a 8F) 
- 8", a; 8U . (44) 

A bracket of the form of the second term of Eq. (44) has 
previously appeared in Refs. 13, 14, and 27. For its geometri­
cal interpretation, see Ref. 13. The argument of the previous 
subsection quickly shows that this bracket yields the correct 
equations of motion, 

(45) 
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and it is obviously antisymmetric. Hence we tum our atten­
tion to Jacobi's identity. 

The nested three-dimensional bracket {E, {F,G 1313' 
will contain: nested two-dimensional brackets, coming from 
the first term ofEq. (44); nested brackets involving only po­
loidal inner brackets, corresponding to the second term; and 
cross terms involving both poloidal and toroidal inner brack­
ets. The first two of these contributions are easily seen to 
satisfy Eq. (19), so we may restrict our attention to the cross 
terms. These can be simplified by means of Eq. (31), and 
there remains only 

{E,{F,GI313= dx- -, -,-J r {[ 8E [8F 8G] ] 
2 8,p 8U 8U p 

+ [8E [8F 8G] 
8U' 8,p' 8U 

[ 8F 8G]]} A + 8U' 8,p p + . (46) 

Here, as usual, A represents the terms which are already 
known to satisfy Jacobi's identity. Because functional ,p de­
rivatives are symmetrically distributed in Eq. (46), it can be 
seen that { 13 will satisfy Jacobi's identify provided that 
the quantity 

Z=fdX ~ [[e,[f,g]]p + [f,[g,e]]p + [g,[el]]pl 

vanishes, for any functions e,/, and g. We use Eqs. (39) and 
(40) to find 

Z = f dx{e ~ [f,g] + f :; [g,e] + g :; [el]}, 

and then combine Eqs. (36) and (38) to obtain 

Z = - f dx Ve.VfxVg. 

The integrand in this last expression is a divergence. Hence, 
with our usual neglect of surface contributions, 

Z=O, 

and the Jacobi identity is satisfied. 
We close this section by considering the specialization 

of the three-dimensional bracket to the single-helicity, or 
helically symmetric, case. The helical symmetry constraint 

af 1 af 
a; - qo ao ' (47) 

where qo is the helicity (or rational safety factor), can be seen 
to imply 

[f,g]p = (l/qo)[f,g]· (48) 

Hence Eqs. (41) and (42) can be written as 

;Ph = [,ph'tP], (49) 

if = [,ph,Jh] - [tP,U], (50) 

where 

,ph =,p + r 12qo 

is the helical flux and Jh = V~,ph' We have noted that 
;p = ;Ph and that 

[,ph,J] = [,ph,Jh]' 

since Jh differs from J = V~,p only by a constant. It follows 
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that Eqs. (49) and (50) coincide with the two-dimensional 
system studied in the previous subsection; one needs merely 
to interpret ,p, in the two-dimensional formalism, as the heli­
cal flux. Similarly, in terms of the helically symmetric Ha­
miltonian, 

(51) 

the Poisson bracket ofEq. (30) can be obtained as the helical­
ly symmetric version ofEq. (43). 

IV. HIGH-BETA THEORY 

The results of the previous section applied to the equa­
tions obtained in the ordering 81Tp1B ~ :S C. Here we consid­
er the case where 81Tpl B ~ = 0 (E). This results in the inclu­
sion of the interchange term, - a/3 lay, in Eq. (3) and the 
pressure is seen to advect as in Eq. (4). The equations are thus 
generalized to include pressure-gradient driven instability. 

A. High-beta Poisson bracket 

In Sec. II it was noted that the conserved energy for 
high-beta RMHO is 

H = f + (jV1tP 12 + IV1,p12 - 2x/3)dx. (52) 

Note that this form differs from that used for the Hamilton­
ian in Sec. III by the addition of the pressure term, - 2x/3, 
which comes from the internal energy term of the ideal 
MHO Hamiltonian. The Poisson bracket of the previous 
section with this Hamiltonian will still produce the low-beta 
equations. In order to produce the high-beta equations, addi­
tional terms must be added to the bracket, Eq. (32). These 
terms will naturally involve functional derivatives with re­
spect to /3. Furthermore, since the equation for /3 is coupled 
to the equation for U, the Poisson bracket must involve func­
tional derivatives with respect to U. These remarks suggest 
that the following should be added to Eq. (43): 

{F,G 14 = f /3 {[ ~; , ~~] + [ ;~, ~~]}dX. (53) 

This form is clearly antisymmetric, but let us investigate its 
effect upon the equations of motion. Inserting U with the 
Hamiltonian, Eq. (52), yields 

{ U,H 14 = _ a/3 . 
ay 

This is the interchange term that is desired for the right-hand 
side of Eq. (8). Inserting /3 and the Hamiltonian in Eq. (53) 
yields 

{/3,H 14 = - [/3,tP ]. 

This is clearly seen to be the right-hand side ofEq. (9) written 
in "inner" bracket form. In summary, Eq. (43) plus Eq. (53) 
produces the high-beta RMHO equations with the Hamil­
tonian Eq. (52). It remains to show that this large bracket 
satisfies the Jacobi identity. 

As in Sec. II B, we observe that in order for 
{ , 13 + { 14 to satisfy the Jacobi identity, the fol-
lowing must vanish: 
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{F,{ G,F lJ + t = {F,{G,H 1313 + {F,{ G,H 1314 
+ {F,{G,H14h+ {F,{G,H1 414+ t, 

where the arrow indicates cyclic permutation. We have al­
ready shown that the first term makes no contribution. Like­
wise the third term vanishes since {F,G 14 has no explicit 
dependence on t/J or U. Hence it remains to show that 

(54) 

where we only need to worry about functional derivatives 
acting on explicit dynamical variable dependence. Equation 
(54) thus becomes 

{F,{G,HlJ4+ t = fdXP{[ ~;,[ ~~, ~~]] 

[ 8F [8G 8H]] 
+ 8U' 8P' 8U 

+ [ ;~ , [ ~~ , ~~]]} + t. 
Clearly this vanishes, as is always the case for brackets that 
depend linearly on the dynamical variables, by virtue of the 
Jacobi identity for the inner bracket. 

To summarize, we denote the three-dimensional, high­
beta Poisson bracket by 

1 = { 13+ { 14' 
or 

{FG 1 = fdX{t/J([ 8F 8G] + [8F 8G]) 
, 8t/J ' 8U 8U' 8t/J 

r ([ 8F 8G] [8F 8G]) 
+ 2 8t/J ' 8U p + 8U' 8t/J p 

+ u[ ;~, ~~] +p([ ~; , :~] 
+ [;~, ~~])}. (55) 

Then we have shown that the high-beta reduced MHD equa­
tions can be expressed as 

if = {t/J,H }, if = { U,H}, /3 = {P,H 1, (56) 

where H is the general Hamiltonian given by Eq. (52). 

B. Fourier decomposition 

In applications of reduced MHD, it is often convenient 
to represent the 0 variation of the fields in terms of Fourier 
components. We use the convention 

f(r,O) = L exp(im·Olfm (r), 
m 

so that 

fm(r) = (21T)-ZfdO exp( - im·Olf(r,O), 

with f _ m = f:· Here we have introduced the convenient 
abbreviations O==(O,t), 

and 

m=(m,-n). 

The asterisk denotes complex conjugation and 

f d 0== J~ 1T dO [1T dt· 
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In order to express the Hamiltonian theory in terms of 
Fourier amplitUdes, we consider first the decomposition of 
the inner brackets. For the toroidal bracket of Eq. (37), we 
compute 

[f,g]m = (21T)-Z§ dO exp( - im·O)[f,g] 

_ i" (( ')g afm' 'f. agm - m' ) - -£.,. m-m ,-- -m ,---
r m' m - m ar m ar 

i " ( afm' , a ) = - £.,. mgm_m' - - m -gm-mfm' . (57) 
r m' ar ar 

Notice that the radial derivative in the last term of Eq. (57) 
acts on both functions to its right. The poloidal bracket 
yields a similar form: 

[ i " ( afm' , a ) f,g]pm = - £.,. ngm _ m, -a -n -a gm-mfm' . 
r ~ r r 

Consider next some functional F of a fieldf, 

F[f] = f dxF(f,Vf, ... ), 

(58) 

where F is the corresponding density and the omitted argu­
ments are higher-order derivatives on! It is clear that Four­
ier decomposition offwill induce a functional of the Fourier 
coefficients, 

F [f • ./2' ... ] = frdrf dO F(~fm eXP(im.O)). (59) 

What is needed is a relation between the functional deriva­
tives 8F 18f and 8F 18fm . A convenient expression for 8F 18f 
is obtained from Eqs. (25): 

8F = aF _ V. aF (60) 
8f af a(Vf) + ... , 

while 8F 18fm is defined by 

d- f 8F - F [ ... ./m + E17m, ... ] = r dr 17m - . 
dE 8fm 

(61) 

From Eqs. (59) and (60) we compute 

~: = frdr17m(r)fdO 

. (aF aF ) X exp(lm·O) - - V· -- + ... . 
af a(Vf) 

(62) 

After comparing the integrand in Eq. (62) to the definition of 
Eq. (61), we see that 

8F = (21T)Z ( 8F) . (63) 
8fm 8f -m 

Let us apply this formula to the general Hamiltonian 
functional 

H = ~ f dr rf d 0 [(V 1 tP f + (V 1 t/J)Z - 2r cos op ] . 

The induced functional, n, is readily computed: 

H- 1" d {I atPm IZ 

m
Z

I IZ = - £.,. r r -- + - tPm 
2 m ar r 
+ 1 a:; I

Z 

+ m; It/Jmlz- 2''COSO)mPm}. 
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Notice that 

2(cos (})m = 8n,0(8m ,1 + 8m , - I) 

in terms of Kronecker delta functions. Hence only {31 0 and 
{3 _ 1,0 contribute to H. Recalling that ' 

8R = _ J 8R = _ A. 8R - _ x 
8if! '8U '1" 8{3 - , 

we can use Eq. (63) to obtain the formulas 

8H = _ (21T)2J 
8if!m -m' 

(64) 

(65) 

and 

(66) 

Equations (55), (57), and (58) can be combined to write 
the general Poisson bracket in terms of the Fourier coeffi­
cients if!m' Um, and 13m . We omit the result, which is straight­
forward to obtain, but consider explicitly the most impor­
tant special case: that in which the functional Fis a Fourier 
component of one of the three basic fields. It is evident that 
any Fourier coefficient, fm (r), can be considered as a func­
tional off(r,O); Eq. (25) provides the functional derivative 

8fm(r) = (21T)-2r- 18(r- ro)exp( - im.Oo). (67) 
8f(ro, 00 ) 

Hence {fm ,G} is well-defined for any functional G. Sup­
pose, for example, thatfm = if!m. Then Eq. (55) provides 

{if!m,G} = J rdrfdO{if![ 8:; ,~~] 
+ r [8if!m 8G]}. 

2 8if!' 8U p 

We use Eq. (39) to rearrange the integral 

{if!m,G} = J rdrf dO 8:; ([ ~~ ,if!J 

+ [~~, ~JJ, 
which then can be evaluated by means ofEq. (67): 

{if!m,G} 

= i ~ exp( _ im·Oo)( [ 8G if!J + [8G ~J ) 
j (21T)2 8U' 8U' 2 p 

= ([ ~~ ,if!J + [ ~~, ~Lt· 
Since a similar argument, using Eq. (23), shows that 

[ 
8G ] [8G r] 

{if!,G) = 8U ,if! + 8U '2" p , 

we have obtained the important result 

{if!,G}m = {if!m,G}, (68) 

which equates the Fourier component of a Poisson bracket 
with if! to the same bracket with the Fourier component of if!. 
It can be seen that Eq. (68) also holds when if! is replaced by U 
or{3. 
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The main point ofEq. (68) is that it permits immediate 
Fourier decomposition of Hamilton's equations, Eqs. (56): 

¢m = {if!m,R}, 

Um = {Um,H}, 

Pm = {{3m,R}, 

(69) 

where, as in Eq. (56), the Poisson bracket is that defined by 
Eq. (55). Thus the Fourier coefficients obey precisely the 
same equations of motion as the corresponding fields, when 
(and only when) these equations are written in Hamiltonian 
form. In this sense, Hamilton's equations are invariant un­
der Fourier decomposition. However, we note that the Ja­
cobi identity does not survive truncation: all Fourier har­
monics must be retained. It is also worth noting that energy 
conservation does survive truncation, because it depends 
only on antisymmetry of the bracket. 

Of course if!m (for example) is coupled to if!m" m' =1=m, as 
well as to U m' and 13m" Such couplings are explicit in Eqs. 
(57) and (58), and are implicitly included in Eqs. (69), by the 
definition of the outer bracket. This bracket similarly in­
cludes the effects of the Fourier components 13m ,m =1= ( ± 1,0), 
which are absent from the Hamiltonian. 

The main conclusion of this subsection is that the trans­
formation from the space (r,O) to the space (r,m) (Fourier 
discretization) is easily effected without modifying the defin­
ition of the outer bracket. 

v. INTRODUCTION OF POTENTIALS-CANONICAL 
FORM 

It is well-known that in order to represent Maxwell's 
equations in vacuum in canonical Hamiltonian form it is 
necessary to introduce the vector potential. In a similar man­
ner the generalized Poisson brackets presented here can be 
transformed to canonical form via the decomposition of our 
fields into "potentials." Decomposition of physical fields 
into subsidiary fields has an extensive precedence that in­
cludes work of Euler28 (1769) and Clebsch29 (1859). The 
reader interested in this history is referred to Ref. 14. Recent 
work concerned with the interconnection between noncan­
onical Poisson brackets, canonical variables, gauge group­
s,and variation principles can be found in Refs. 12, 14,21,23, 
30, and 31. 

In this section, we restrict our attention to the low-beta, 
single-helicity case of Sec. III A. The transformation to ca­
nonical variables, (Q,P), is effected; hence, the equations of 
motion are expressed in the form 

. 8R· 8R 
Q = 8P' P = - 8Q' (70) 

The canonical formulation involves four fields rather than 
the initial two (if!, U )-a fact which weighs against the appar­
ent simplicity ofEqs. (70). Nonetheless, the analogous poten­
tial decomposition for the ideal fluid has been ascerted by 
Buneman32 to be of numerical advantage. Next, in this sec­
tion we present the variational principle for which solutions 
to Eqs. (70) and hence RMHD are extremal functions. Vari­
ational principles are natural starting points for trial func­
tion or Rayleigh-Ritz approximations. The analogous vari­
ational principle for two-dimensional scalar vortex ad-
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vection has been used by Salmon for numerical integration. 33 

The canonical variables are related to t/J and U through 
the following: 

t/J = ;.V1Q1 XV1Q2 = [QI,Q2]' (71) 

and 

(72) 

With these definitions, we can compute the relevant func­
tional derivatives. For example, a functional F of t/J and U 
yields a corresponding functional F of (Q"Pj ) = I ,2 with 

~F [~F ] 
~PI = ~U,QI , 

~F _ _ [~F ] _ [~F p] 
~QI - ~t/J ,Q2 ~U' I , 

and so on. (Such formulas are derived from a functional deri­
vative version of the chain rule.) One readily finds that the 
outer bracket of Eq. (30) becomes 

f ( ~F ~G ~F ~G) 
{F,G b = ~ dX1 ~Pj ~Qi - ~Qi OPt' (73) 

which is manifestly canonical. For simplicity, the caret nota­
tion is suppressed on the right-hand side. 

The canonical bracket leads directly to Eqs. (70). Con­
sider, for example, the equation of motion ip = {t/J,H j. In 
view of the definition, Eq. (71), we have 

[QI,Q2] + [QI,Q2] = {[QI,Q2],Hj. 

Then Eq. (73) provides 

[Q(,Q2] + [Q(,Q2] = [ ;~ ,Q2] + [QI' ;~] . 
Therefore we can choose 

. ~H. 
QI = -, 1= 1,2. 

OPt 
(74) 

A similar calculation shows that 

. -oH . 
p. = ---, 1=1,2, 

, OQi 
(75) 

will produce if = { U.II j. Hence if Pi and Qi satisfy Eqs. (74) 
and (75), where the right-hand sides are obtained by treating 
H as a functional of P and Q, then the t/J and U obtained 
through Eqs. (71) and (72) necessarily satisfy Eqs. (12) and 
(13). 

Let us write Eq. (74) more explicitly. In view of Eqs. (26) 
and (72), 

~H [~H ] ~P = OU,Qi = - [tP,Q;]. , 
Hence we have 

Qi + [tP,Q;] =0, 

or, in terms of the reduced MHD fluid velocity, 

V=;XV1 tP, 
dQ. aQ. 
--' =--' +V·V1 Qi=0. 

dt at 
(76) 

Thus Eq. (74) simply implies that the Qi are constant in the 
rest frame of the fluid, 

A similar explication of Eq. (75) reveals that 
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(77) 

(78) 

where, as usual, J ==Vi t/J measures the toroidal current. The 
interpretation ofEqs. (77) and (78) is considered next. 

We first observe that the flow velocity, defined by 

(79) 

has the same vorticity as V. That is, 

;.V1 XV. = -;·VIX (~PiVIQi)=;·VIXV=U, 
in view of Eq. (72). Thus V. and V differ by a two-dimen­
sional gradient, 

and we can ensure that V 1· V. = V 1· V = 0 by requiring 

Vix=O. 

(80) 

In terms of canonical variables, the same requirement yields 
the constraint 

I (Pi V~Qi + V1 Pi·V1 Qi) = o. (81) 
i 

Equation (79) suggests choosing the Qi as spatial coordi­
nates: (x,y,t )~(QI,Q2,t). The Pi are then seen to be the co­
variant components of - V.' which evolve according to 
Eqs. (77) and (78). We write the latter in terms of the new 

coordinates, noting that the volume element Ii in (QI,Q2,t ) 
space is given by 

l/Ii = ;.V1Q1XV1Q2 = t/J. (82) 

Thus, for any vector A, 

(
a A·V1QI a A.V1 Q2) 

V1 ·A = t/J aQI t/J + aQ2 t/J ' 

and we find that Eqs. (71) and (72) can be written as 

dPI = _ t/J aJ , dP2 = _ t/J aJ . (83) 
dt aQI dt aQ2 

To understand Eqs. (83), we return to the single helicity 
equation of motion, 

if + [tP,U] = [t/J,J], 

which can be written as 

!!:.. ;.V1 XV = ;.V1 t/JXV1J = ;·V1 X(t/JV1J). 
dt 

Thus 

;.V1 X( dd: - t/JV1J) = O. 
Here we used the identity 

;.V1 X [(V·V1 )V] = V·Vd;·V1 XV), 

(84) 

which also enters the derivation of reduced MHD, and 
which can be verified directly. Equation (84) implies that 

dV 
- = t/JV1 J + V1 F, (85) 
dt 

where the arbitrary function F is evidently related to the 
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"gauge" function X of Eq. (80). Equation (85) can be seen to 
be equivalent to Eqs. (83). The latter therefore compactly 
express the covariant fluid acceleration, with a gauge choice 
which eliminates the V 1 F term. Since the vorticity, and thus 
also the dynamics of reduced MHD, are gauge independent, 
this gauge choice is appropriate. 

Equations (83) have the nice property of emphasizing 
the essential free-energy source for the class of motions perti­
nent to low-beta reduced MHD: current gradients. 

Now we construct the action principle that produces 
Eqs. (74) and (75) upon variation. Consider 

A [Q,P] = J dt (J dx p·6 - H(P,Q)) . (86) 

If we treat Q and P as independent variables, then the class 
of variations of A that allow the neglect of surface terms 
yields, for 8A 18Q(x,t) = 0, 

. 8H 
P = - 8Q(x) , (87a) 

and similarly for 8A 18P(x,t) = 0 we obtain 

. 8H 
Q= 8P(x)' (87b) 

If either the variational principle Eq. (86) or the symme­
try manifest in Eqs. (87) is to be utilized, then initial condi­
tions on t/J and U must be transformed into initial conditions 
on Q and P. This transformation is not unique-the choice 
must be tailored to the application at hand. 

VI. CONCLUSIONS 

To summarize, we have presented the Hamiltonian de­
scription of RMHD in both its high-beta and low-beta ver­
sions. Our main objective has been to make the extensive 
machinery of Hamiltonian theory applicable to an impor­
tant model of tokamak behavior. In particular, the formal­
ism is useful for understanding symmetries of a system, as 
evidenced by the presentation here of new conservation laws. 
These conservation laws enabled the discovery of a large 
class of exact nonlinear solutions, some of which have been 
found to possess Liapunov functionals. 19 Understanding the 
symmetries of a system is important when one does pertur­
bation theory. For example, it seems reasonable that one 
should approximate a Hamiltonian system by another Ha­
miltonian system. Perturbation within the noncanonical Ha­
miltonian context for field theories is a subject of current 
research. 

We also feel that the formalism could be useful for con­
structing numerical procedures. 32

,33 There are two possibili­
ties. First, one could start with the noncanonical bracket and 
discretize the spatial dependence. The resulting set of ordi­
nary differential equations in time automatically conserves 
energy, even upon truncation. Unfortunately, in terms of 
noncanonical variables, truncation usually destroys the Ja­
cobi identity. This situation can be remedied by a second 
approach, which is to use the canonical form presented in 
Sec. V. Discretization and truncation here result in a finite 
degree-of-freedom Hamiltonian system; it is guaranteed not 
to possess attracting sets, as it would possess in the dissipa­
tive case. 
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A glaring inadequacy for plasma applications of Hamil­
tonian formalisms is that they do not allow, in general, for 
dissipation. A possible way of including such phenomena is 
to generalize the formulation presented here by adding a 
symmetric bracket to the antisymmetric Poisson bracket. 
This notion is motivated by the fact that any operator can be 
split into self-adjoint and anti-self-adjoint parts. Symmetric 
brackets are not difficult to find for a variety of dissipative 
systems; e.g., Burgers-type viscous dissipation, kinetic equa­
tions with various collision operators, or resistive dissipation 
in a magnetic fluid. Resistive RMHD possesses the simple 
symmetric form 

J 8F 8G 
IF, G L = - TJ dx 8t/J 8t/J . 

Clearly, I t/J,H J s = TJ V~ t/J; hence, addition of this symmetric 
bracket to our previous Poisson [Eq. (55)] yields resistive 
RMHD. An interesting consequence is that evolution of the 
Casimir and other invariants is now governed entirely by the 
symmetric bracket. Further investigation of this generaliza­
tion, relating to stability and the underlying mathematical 
structure, is in progress. 
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