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Abstract

MAGNETIC ISLANDS IN TOROIDALLY CONFINED PLASMA.

The production of magnetic islands in toroidal confinement systems is examined
analytically and numerically in several contexts: (1) The resistive dynamics of magnetic
islands is examined analytically, including curvature and pressure. A Grad-Shafranov
equation is derived to describe the MHD equilibria of thin islands. The resistive evolution is
then obtained. Interchange effects are very important for small islands and progressively less
so for larger ones. (2) A numerical method for eliminating stochasticity in vacuum magnetic
fields is introduced. Application of this method shows that stochasticity can be made
negligible by proper choice of the coil cbnﬁguration. It is possible to increase the equilibrium
f-limit by factors of two or more over that of a simple, ‘straight’ coil winding law. (3) The
production of magnetic islands by the introduction of plasma pressure into non-axisymmetric
confinement configurations is analysed, assuming scalar pressure. Far from the rational
surfaces a procedure based on linearization in § applies. Singularities at the resonant surfaces
are resolved with a non-linear analysis. Scaling is found by using the approximation of
nearly circular flux surfaces, Island size depends dramatically on whether or not a magnetic
well is present. If a magnetic hill is present, islands overlap for arbitrarily low pressure.

1. RESISTIVE DYNAMICS OF MAGNETIC ISLANDS

Here we analytically derive the resistive nonlinear
dynamics of thin maegnetic islands including the effects of
pressure and curvature. This combines and extends the
nonlinear island calculation of Rutherfordll] and the linear
stability results of Glasser, Greene and Johnson [2,

A principal result is that there is a critical island
width Ax_,. Islands wider than Ax, are dominated by A,
measuring the magnetic free energy, while narrower islands are
dominated by pressure and curvature in the island vicinity.
Axc is given by

Ax3A; ~ Ky (E+F) . (1)
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where E, F, H and DI = E+F+H are standard measures of
magnetic curvature 2] s = JT:ZﬁY, and A4 is the finite-§
generalization[g] of A’. k, is roughly 6.3.

To obtain this result, a Grad-Shafranov equation is -
derived for thin islands which describes the resonant
magnetic field in the island vicinity. Interestingly, the
curvature enters this nonlinear equation through an expression
proportional to the Mercier ideal interchange criterion.

The resistive evolution is then obtained. H is
relatively unimportant in the resistive dynamics, similarly to
the linear theory

An expansion in the tokamak inverse aspect ratio ¢ is
used for simplicity, using either § ~ ¢ or § ~ €. We believe
the essential physics for general geometries is similar.

For tokamaks with stabilizing curvature and destabilizing
A’, Equation (1) gives the minimm island width for growth.
This matches 1linear theory in the following sense. An
island just barely into the Rutherford regime, whose width
equals the linear layer width, requires a A’ to overcome
curvature stabilization, which scales as the critical A’ of
linear theory. Only for high 8, § ~ ¢, can Axc be a
significant fraction of the minor radius. For destabilizing
curvature and stabilizing A, Equation (1) gives the saturated
island width for a single resistive interchange.

Nonlinear islands grow relatively slowly, so following
Rutherford we neglect inertia. Therefore, our starting
equations are '

jxB = Vp (2)

-

Ve, = BeVpxV(-1/B%) (3)

end Ohm's lew E, = nj,. The right-hand side of Equation (3)
was neglected in Rutherford's treatment.

The island grows on an equilibrium field
By = VyxV(q(x)® — ¢). with safety factor q(¢) and toroidal
angle ¢(. We focus attention on the region near a rational
surface with 2 = m/n = qq- We define a periodic angle
coordinate o = ¢ - (/qo. Al]l quaentities f have resonant and
nonresonant parts. Since these parts generally behave
differently, we_define an averaging operator to select out the
resonant part, f(x,a) = §d¢ f(x,a,¢)/$d¢; the nonresonant part
is T = f—-f. We also define :

[A,B] = V¢« (VAXVB) (4)

Equations (2) and (3) are now ordered for the case of
islands which are thin compared to the minor radius. Also, an
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aspect ratio expansion is_used. However, we keep terms one
additional order higher[S] than usual in ¢, but not in g.
This is accurate enough to give the lowest-order -average
curvature for f§ ~ € or f ~ ¢”.

The total average magnetic flux, wh’ through a helical
ribbon o = const, plays the role of a flux function for the
island. In the island region, the perturbed flux (2 is given
by the covariant ¢ component of the vector potential.

21 is obtained from Ampere’'s law, which for thin islands
is

2

v . .
xIF— =1 ()
dy :

where 1 is the covariant ¢ current. @1 is found by
multiplying Equation (5) by |Vx| © and averaging. I is found
by considering the average and nonresonant parts of Equations
(2) and (3). To requisite order P is a function of V- 1 is
given by

Ty T1 = [5,5] + [5.8] - (.11 (6)

where h gives the effect of curvature, h = —I/Bg + 2P0/Bg.

Without pressure and curvature, 1 is a function of % h
gives the effect of average normal curvature, and the last two
terms give the effect of geodesic curvature and
Pfirsch-Schlliter currents.

Explicit expressions for the last two terms are obtained
using the nonresonant parts of Equatiomns (2), (3) and (5).
The calculation is lengthy but similar to linear theory, since
the magnetic nonlinearity is negligible for the nonresonant
cgmponent. The sum of these terms can be written in the form
[p.h_], with h_ depending on the geodesic curvature.

gWith this form, Equation (7) is easily solved:

T=3(p) +p () (b+ny) | (D)

where J is an. arbitrary function.

The results for I are substituted into Equation (5), and
equilibrium quantities are Taylor—expanded about the rational
surface y = Xg- We thus obtain a Grad-Shafranov equation
describing the flux function Yn in the island region:

2

3%y

— = 1, (¥y) + (xxg)(G;+Gp)
axz

ap(wh)

™ (8)
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where J, is an arbitrary function, where G1 and‘Gz are (to
relevant order in ¢) E+F and H divided by
(ap/axo)(qo/(aq/axo))z. The Mercier instability criterion is
E+F+H > 1/4. .
It remains to determine J, (w ) and the dyneamics. The
average of Ohm’'s law and Faraday s law give to lowest order

o 1 - -
el . [V 9] = 01 (9)

where ¢ is the electrostatic potential, and 7 is the
resistivity. As in Rutherford’'sl! analysis, Equation (9) is
flux-averaged_(denoted by < >) at constant Yy, thus
determining <I> and eliminating ¢. J, is determlned from <I>.
Matching to the exterior region far from the island introduces
Ax.

To solve Equation (8) analytically we assume that: (1) a
single harmonic m dominates_in W (e.g. the most unstable
one), so that wh qé(x—xo)z/qo + A(x,t) cosma; {(2) A(x,t) is
nearly constant in y near the 1sland. This requires a
subsidiary expansion in which G1 and GZ are small.

The pressure profile p(wh) near the island is assumed to
be dominated by diffusion. The pressure gradient is
maintained by sources deep in the plasma interior and is
determined for slowly growing islands by the condition that
the flux of pressure is constant. In view of the large
anomalous transport inferred from experiments, we simply
assume.a large constant diffusion coefficient in the island
reg1on

The resulting evolution equation for A(O t) is best

expressed in terms of the island width Ay = /qu/(aqo/ax).

k
1 Ay a8’ E+F
- = A + k
n ot AxAY 2 " ay (10)

where s’ = -1 + \/1—4DI k=3, ky = 6.3. For =0, this
agrees with Rutherford’s result (the island width grows
linearly with time). The driving term from pressure dominates
for Ax < Ax, given by Equation (1).

2. ELIMINATION OF STOCHASTICITY IN STELLARATOR
VACUUM FIELDS

We describe here a numerical method of optimizing the
coil winding law in stellarators to greatly reduce magnetic
stochasticity in the vacuum magnetic field. For numerous




ey

TAEA-CN-44/E-III-9 227

0.} T T T T 1

0.0

T
’

-0l 1 ! 1 1 1
07 1.0 R 1.3

o.l T T T T T

z
0.0

T
N

- 0| ] 1 1 1 . - !
07 1.0 R 13

FIG.1. Surfaces of section of unoptimized and optimized stellarators.

examples it has led to much higher usable plasma volume,
rotation number + and inverse aspect ratio.

The crucial ingredient of this method is a measure of the
nonintegrability (i.e. size of island or amount of
stochasticity), called the residue. First, the coil winding
law is given as a function of several parameters. Those
paremeters are then varied to minimize the stochasticity.

Consider & field line through the points (Ro,z0 ¢) and
(R,z,{+2n/m), where R, z and ¢ are cylindrical coordinates,
and m is the field periodicity. The gth iterated return map
is Nq(RO z ) = (R,z). The residuel4] of a fixed point of N%
is related to the eigenvalues of the linearization of N%. For
an integrable system without island structure,the eigenvalues
are unity and r=0. We thus expect, and have found in
practice, that reducing the residue decreases the
stochasticity near the corresponding rational surface.

In the following example, the coils are wound on a torus

with major radius Ry = 1 and minor radius r =0.3. The coils
are wound on a function 7(¢), where 7 is the ordinary poloidal
angle about R, = 1, z=0. The parameters we vary are the

Fourier coefficients of 7.

The top of Figure 1 shows the surface of section for en
unoptimized stellarator with 25 = 2, my = 5, By = 1, two
helical coils, and taxis —O0- 7.

The bottom of Figure 1 shows the results of minimizing
the residues of the fixed points with rotation numbers 1/3,
1/4, 1/5. The usable area is clearly substantially larger.
ewas increased by 80%, <+> by 15%. A rough estimatel5] of the
equilibrium § limit for a stellarator is 6 ~ <+">g. Here,
ﬁeq was increased by a factor of 2.4.
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3. PRESSURE-INDUCED EQUILIBRIUM ISLANDS IN 3-DIMENSIONAL
PLASMAS

Here, we consider the plasma equilibrium resulting from
the introduction of a small amount of plasma pressure into a
nonaxisymmetric vacuum magnetic field with good flux surfaces,
free of islands. We examine the pressure—induced islands
within the MHD model. As in the resistive island dynamics
section, local interchange effects are analysed (but without
an aspect ratio expansion) and found to be important.

Newcombl®] noted that there is a singularity at each
rational surface in the equilibrium MHD equations which leads
to the requirement that de/B must be constant on each
surface. This is not generally true for vacuum magnetic
fields. The islands at the rational surface resolve the
singularity and relax this constraint.

An analytic formula for the induced island width is
derived under the approximation of nearly circular flux
surfaces. Magnetic perturbations arise both from currents far
from the resonant surface and from those in the island region.
Once f exceeds a threshold value ﬁt, island size depends
strongly on whether there is a magnetic well. 6# is typically
quite small. Island widths in regions of good average
curvature do not increase for £ > ﬁt. This occurs because the
external magnetic perturbation is attempting to drive the
island against stabilizing interchange forces.

In the case of bad curvature, the island width scales
linearly with g for g8 > 6t. The island in this case is a
saturated resistive interchange (as in the previous section),
and the exterior currents play the role of an initiating
perturbation. It is significant that then the .island scales
with mode number 2  as 1/2°. Since the mean spacing of
rational surfaces with rotation number + ='m/2 (for both
m, £ < %) scales as 1/1’2, island overlap always occurs for
sufficiently high £%.

We choose flux coordinates y,%,¢ of the vacuum magnetic
field, By = VxxV@ + +(x)V¢xVx. ¢ is chosen to be a constant
times the scalar potential 7] of By, and the Jacobian

J = 7/B8.

The currents in the exterior region are computed by
linearization in the plasma pressure, il x By = Vpy.

The perpendicular current is obtained directly. V+j =0
gives the parallel current j . Define j, = QB. After Fourier-

transforming in ¥ and ¢, Q = ) Q. i(&9-m¢) o 4eoin
2m '

—P{ (X)) .
Um = ———L(X)_E + Q¢ (XX gp) (11)

where f(le> = m/&. Note that Jym is proportional to the
variation of fdl/B on a flux surface. The singularity in the _
linearized equations is resolved by islands, thus determining Q.
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Since the singularities are integrable, the vector
potential él of the perturbed magnetic field can be found by a
Green’'s function integration. This gives a formal solution:

él(x,l,m) = Ci(x.2,m) + ¥ Q(X,l,m,k',m')Q£~,,m, (12)

2°,m’

To make further analytical progress, we introduce the
approximation of nearly circular flux surfaces. This '
decouples the harmonics. Expressions can then be obtained in
terms of the equilibrium profiles. For large £, these depend
only on local quantities at the resonant surface, and the
covariant ¢ components of Equation (12) (which produce the
islands) are

-R -1 2
- 2 (dp 4 e de-
¢ 4,2 (ar Tam) o (G i) /ar]

(13)

R . 2.1/82
D¢ £[1+[2£Rr—)]'
0

where Ry is the meen mejor radius of the magnetic axis, and r
is the minor radius of the magnetic surface.

The solution for the interior region is formally almost
identical to that in the case of resistive islands,'except
that ¢ is now proportional to the magnetic potehtial. Since
we are considering here low #, h is taken asbl/Bz, and the
last two terms of Equation (6) can be neglected. Again for
low—3, the constant ¢ approximation 1] is made. The arbitrary
function J(y) is determined from the condition that the.
average toroidal current must vanish (cbrresponding_io'a
resistive steady state).

Boozerl7] has pointed out that resistive d1ffus1on near a
resonant surface becomes singular for nonvanishing Jl and
tends to flatten the pressure profile, This diffusion has
been computed for the present case with an island at the
resonant surface. Again, the island resolves. the singularity.
For sufficiently large islands (corresponding to
g > 2° sz/J , which is extremely low—f) this diffusion is
smaller than the nonresonant diffusion and causes little
flattening. There is some island—induced resonant diffusion,
but this virtually never reduces the space-integrated current
from the interior region by more than a factor U ~ 1 — 1/2.

We again assume a single harmonic dominates in ¥, with
coefficient Al . Having obtained Q as a nonlinear function of
the island width,Equation (12) becomes, for circular flux
surfaces:
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ap Moo

1/2
UD ,,m) A
dr dr (XO a2 4m |

x sign(Aim)/|¢§| (14)

where GJO /dr gives t?e magnetic well. For low—g§, Agn ~ 3/2
the island width ~ g , and the island current term ~ §
negligible. All terms are comparable at f ~ ﬁt For g >> ﬁt
the third term becomes large.

For the good curvature case, the second and third have
the same sign. Thus, the third balances the first, resulting
in slower island growth with g. For the bad curvature case,
the second and third nearly cancel, leading to a larger
island, almost independent of C{‘ This is the saturated state
of a resistive interchange.
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