
.-
" 

Reprint from 

PLASMA PHYSICS 
AND CONTROLLED 

NUCLEAR FUSION RESEARCH 
1984 

PROCEEDINGS OF THE 
TENTH INTERNATIONAL CONFERENCE ON PLASMA PHYSICS 

AND CONTROLLED NUCLEAR FUSION RESEARCH 
HELD BYTHE 

INTERNATIONAL ATOMIC ENERGY AGENCY 
IN LONDON, 12-19 SEPTEMBER 1984 

In three volumes 

VOLUME 2 

INTERNATIONAL ATOMIC ENERGY AGENCY 
VIENNA, 1985 



I\, 

IAEA-CN-44/E-I1I-9 

MAGNETIC ISLANDS IN TOROID ALL Y 
CONFINED PLASMA 

M. KOTSCHENREUTHER, A.Y. AYDEMIR, 
D.C. BARNES, J.R. CARY, J.D. HANSON, 
R.D. HAZELTINE, P.I. MORRISON 
Institute for Fusion Studies, 
University of Texas at Austin,. 
Austin, Texas, 
United States of America 

Abstract 

MAGNETIC ISLANDS IN TOROIDALL Y CONFINED PLASMA. 
The production of magnetic islands in toroidal confinement systems is examined 

analytically and numerically in several contexts: (1) The resistive dynamics of magnetic 
islands is examined analytically, including curvature and pressure. A Grad-Shafranov 
equation is derived to describe the MHD equilibria of thin islands. The resistive evolution is 
then obtained. Interchange effects are very important for small islands and progressively less 
so for larger ones. (2) A numerical method for eliminating stochasticity in vacuum magnetic 
fields is introduced. Application of this method shows that stochasticity can be made 
negligible by proper choice of the coil configuration. It is possible to increase the equilibrium 
,B-limit by factors of two or more over that of a simple, 'straight' coil winding law. (3) The 
production of magnetic islands by the introduction of plasma pressure into non-axisymmetric 
confinement configurations is analysed, assuming scalar pressure. Far from the rational 
surfaces a procedure based on linearization in ,B applies. Singularities at the resonant surfaces 
are resolved with a non-linear analysis. Scaling is found by using the approximation of 
nearly circular flux surfaces. Island size depends dramatically on whether or not a magnetic 
well is present. If a magnetic hill is present, islands overlap for arbitrarily low pressure. 

1. RESISTIVE DYNAMICS OF MAGNETIC ISLANDS 

Here we analytically derive the resistive nonlinear 
dynamics of thin magnetic islands including the effects of 
pressure and curvature. This combines and extends the 
nonlinear island calculation of Rutherford[l] and the linear 
stability results of Glasser, Greene and Johnson [2], 

A principal result is that there is a critical island 
width 6Xc ' Islands wider than 6Xc ar~ dominated by 6', 
measuring the magnetic free energy, while narrower islands are 
dominated by pressure and curvature in the island vicinity. 
t.xc is given by 

(1) 
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where E, F, Hand DI = E+F+H are standard measures of 
magnetic curvature[2] , s = vl-4D!, and ~~ is the finite-p 
generalization[2] of ~'. k2 is roughly 6.3. 

To obtain this result, a Grad-Shafranov equation. is . 
derived for thin islands which describes the resonant 
magnetic field in the island vicinity. Interestingly, the 
curvature enters this nonlinear equation through an expression 
proportional to the Mercier ideal interchange criterion. 

The resistive evolution is then obtained. H is 
relatively unimportant in the resistive dynamics, similarly to 
the linear theory [2]. 

An expansion in the tokamak inverse aspect ratio E is 
used for simplicity, using either p - E2 or p - E. We believe 
the essential physics for general geometries is similar. 

For tokamaks with stabilizing curvature and destabilizing 
~', Equation (1) gives the minimum isl.and width for growth. 
This matches linear theory in the following sense. An 
island just barely into the Rutherford regime, whose width 
equals the linear layer width, requires a ~' to overcome 
curvature stabilization, which scales as the critical ~' of 
linear theory. Only for high p, P - E, can ~xc be a 
significant fraction of the minor radius. For destabilizing 
curvature and stabilizing ~', Equation (1) gives the saturated 
island width for a single resistive interchange. 

Nonlinear islands grow relatively slowly, so following 
Rutherford we neglect inertia. Therefore, our starting 
equations are 

(2) 

(3) 

and Ohm's law Ell = 1) j ll' The right-hand side of Equation (3) 
was neglected in Rutherford's treatment. 

The island grows on an equilibrium field 
~o = VxxV(q(X)~ - ~), with safety factor q(~) and toroidal 
angle~. We focus attention on the region near a rational 
surface with i = min = qO' We define a periodic angle 
coordinate a = ~ - ~/qo' All quantities f have resonant and 
nonresonant parts. Since these parts generally behave 
differently, we define an averaging operator to select out the 
resonant part, f(x,a) = Jd~ f(x,a,~)/Jd~; the nonresonant part 
is I = f-f. We also define 

. 
[A,B] = V~.(VAxVB) (4) 

Equations (2) and (3) are now ordered for the case of 
islands which are thin compared to the minor radius. Also, an 
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aspect ratio expansion is used. However, we keep terms one 
additional order higher[3] than usual in E, but not in ~. 
This is accurate enough to give the lowest-order average 
curvature for p - E or p - E2. 
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The total average magnetic flux, ~h' through a helical 
ribbon a = constJplays the role of a flux function for the 
island. In the island region, the perturbed flux ~1 is given 
by the covariant <" component of· the vector potential. 

~l is obtained from Amp~re's law, which for thin islands 
is 

(5) 

where I is the covariant (current. ~1 is found by 
multiplying Equation (5) by IVxl-2 and averaging. I is found 
by considering the average and nonresonant parts of Equations 
(2) and (3). To requisite order p is a function of ~h. I is 
given by 

[p,h] + [p,fi] - [~,I] (6) 

'. '.2 4 ' 
where h gives the effect of curvature, h = -l/BO + 2PO/BO· 

Without pressure and curvature, I is a function of ~h; h 
gives the effect of average normal curvature, and the last two 
terms give the effect of geodesic curvature and 
Pfirsch-Schluter currents. 

Explicit expressions for the last two terms are obtained 
using' the nonresonant parts of Equations (2), (3) and (5). 
The calculation is lengthy but similar to linear theory, since 
the magnetic nonlinearity is negligible for the nonresonant 
component. The sum of these terms can be written in the form 
[P,hg ], with hg depending on the geodesic curvature. 

With this form, Equation (7) is easily solved: 

(7) 

where J is an. arbitrary function. 
The results for I are substituted into Equation (5), and 

equilibrium quantities are Taylor-expanded about the rational 
surface X = XO. We thus obtain a Grad-Shafranov equation 
describing the flux function ~h in the island region; 

(8) 
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function, where G1 and G2 are (to 
and H divided by 

where J* is an arbitrary 
relevant order in c) E+F 
(ap/aXo)(qo/{aqlaxo»)2. 
E+F+H> 1/4. 

The Mercier instability criterion is 

It remains to determine J*(~h) and the dynamics. The 
average of Ohm's law and Faraday's law give to lowest order 

(9) 

where ~ is the electrostatic potential, and ~ is the 
resistivity. As in Rutherford's[l] analysis, Equation (9) is 
flux-averaged_(denoted by < » at constant ~h' thus 
determining <I> and eliminating? J* is determined from <I>. 
Matching to the exterior region far from the island introduces 

To solve Equation (8) analytically we assume that: (1) a 
single harmonic m dominates in ~h {e.g. the most unstable 
one}, so that ~h s q6(x-Xo)2/q5 + A(X,t) cosma; (2) A(X,t) is 
nearly constant in X near the island. This requires a 
subsidiary expansion in which G1 and GZ are small. 

The pre.ssure profile P{~h) near the island is assumed to 
be dominated by diffusion. The pressure gradient is 
maintained by sources deep in the plasma interior and is 
determined for slowly growing islands by the condition that 
the flux of pressure is constant. In view of the large 
anomalous transport inferred from experiments, we simply 
assume·a large constant diffusion coefficient in the island 
region. 

The resulting evolution equation for A(O,t) is best 
expressed in terms of the island width !:,X = 4 Jq5A/(aqo/ax). 

(10) 

where s = -1 + vl-4DI ' kl ~ 3, k2 ~ 6.3. For ~=O, this 
agrees with Rutherford's result (the island width grows 
linearly with time). The driving term from pressure dominates 
for !:,X < !:,Xc given by Equation (1). 

2. ELIMINATION OF STOCHASTICITY IN STELLARATOR 
VACUUM FIELDS 

We describe here' a numerical method of optimizing the 
coil winding law in stellarators to greatly reduce magnetic 
stochasticity in the vacuum magnetic field. For numerous 
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FIG. I: Surfaces of section of unoptimized and optimized stellarators. 

examples it has led to much higher usable plasma volume, 
rota t i on number '1r and inver se aspect ratio. 
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The crucial ingredient of this method is a measure of the 
nonintegrability (i.e. size of island or amount of 
stochasticity), called the residue. First, the coil winding 
law is given as a function of several parameters. Those 
parameters are then varied to minimize the stochasticity. 

Consider a field line through the points (RO'zO'~) and 
(R,z,(+2n/m), where R, z and ~ are cylindrical coordinates, 
and m is the field periodicity. The qth iterated return map 
is Nq(RO'zo) = (R,z). The residue[4] of a fixed point of Nq 
is related to the eigenvalues of the linearization of Nq. For 
an integrable system without island structure,the eigenvalues 
are unity and r=O. We thus expect, and have found in 
practice, that reducing the residue decreases the 
stochasticity near the corresponding rational surface. 

In the following example, the coils are wound on a torus 
with major radius RO = 1 and minor radius r =0.3. The coils 
are wound on a function ~«(), where ~ is the ordinary poloidal 
angle about RO = 1, z=O. The parameters we vary are the 
Fourier coefficients of ~. 

I>, The top of Figure 1 shows the surface of section for an 
unoptimized stellarator with .2.0 = 2, mO = 5, BO = 1, two 
helical coils, and '1raxis =0.72. 

The bottom of Figure 1 shows the results of minimizing 
the. residues of the fixed points with rotation numbers 1/3, 
1/4, 1/5. The usable area is clearly substantially larger. 
ewas increased by 8070, <'1r> by 1570. A rough estimate[5] of the 
equilibrium ~ limit for a stellarator is ~ - <'1r2>e. Here, 
~eq was increased by a factor of 2.4. eq 
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3. PRESSURE-INDUCED EQUILIBRIUM ISLANDS IN 3-DIMENSIONAL 
PLASMAS 
Here, we consider the plasma equilibrium resulting from 

the introduction of a small amount of plasma pressure into a 
nonaxisymmetric vacuum magnetic field with good flux surfaces, 
free of islands. We examine the pressure-induced islands 
within the MHO model. As in the resistive island dynamics 
section, local interchange effects are analysed (but without 
an aspect ratio expansion) and found to be important. 

Newcomb[6] noted that there is a singularity at each 
rational surface in the equilibrium MHD equations which leads 
to the requirement that fdi/B must be constant on each 
surface. This is not generally true for vacuum magnetic 
fields. The islands at the rational surface resolve the 
singularity and relax this constraint. 

An analytic formula for the induced island width is 
derived under the approximation of nearly circular flux 
surfaces. Magnetic perturbations arise both from currents far 
from the resonant surface and from those in the island region. 
Once ~ exceeds a threshold value ~t' island size depends 
strongly on whether there is a magnetic well. ~~ is typically 
quite small. Island widths in regions of good average 
curvature do not increase for ~ > ~t. This occurs because the 
external magnetic perturbation is attempting to drive the 
island against stabilizing interchange forces. 

In the case of bad curvature, the island width scales 
linearly with ~ for ~ > ~t. The island in this case is a 
saturated resistive interchange (as in the previous section), 
and the exterior currents play the role of an initiating 
perturbation. It is significant that then the island scales 
with mode number i' as 1/i'. Since the mean spacing of 
rational surfaces with rotation number ~ =m/i (for both 
m, i < i') scales as 1/i,2, island overlap always occurs for 
sufficiently high i. 

We choose flux coordinates X,~,~ of the vacuum magnetic 
field, ~o = VxxV~ + ~(X)V~xVX· ~ is chosen to be a constant 
times the scalar potential[7] of BO' and the Jacobian 

2 -J = Y/BO' 
The currents in the exterior region are computed by 

linearization in the plasma pressure, 11 x ~O = VPl' 
The perpendicular current is obtained directly. V.j = 0 

gives the parallel current j II' Define j II = Q~. After Fourier
transforming in ~ and ~, Q = I Qim ei(i~-m~) we obtain 

im ' 

( 11) 

where ~(Xim) = miL Note that J'im is proportional to the 
variation of fdi/B on a flux surface. The singularity in the 
linearized equations is resolved by islands, thus determining Q. 

" 

.' 



IAEA-CN-44/E-I1I-9 229 

Since the singularities are integrable, the vector 
potential b:l of the perturbed magnetic field can be found by a 
Green's function integration. This gives a formal solution: 

b:l(x,R.,m) = ~I(x,R.,m) + I !?(x,R.,m,R.',m')QR.' m' (12) 
1 ~ ,m' , 

To make further analytical progress, we introduce the 
d approximation of nearly circular flux surfaces. This 

decouples the harmonics. Expressions can then be obtained in 
terms of the equilibriwn profiles. For large R., these depend 
only on local quantities at the resonant surface, and the 
covariant ( components of Equation (12) (which produce the 
islands) are 

-RO 
(dP J ) 

-1 d [r(3E J{ ;d-t-] C( 
aR.2 dr R.m dr dr R.m dr 

(13) 

D( 
RO 

[1 + (mr 2 1/2 
aR. iR) ] 

0 

where RO is the mean major radius of the magnetic axis, and r 
is the minot radius of the magnetic surface. 

The solution for the interior region is formally almost 
identical to that in the case of resistive islands, except 
that ( is now proportional to the magnetic potential. Since 
we are considering here low (3, h is taken as' I/B2 , and the 
last two terms of Equation (6) can be neglected. Again for 
low-{3, the constant ~ approximation[l] is made. The arbitrary 
function J(~) is determined from the condition that the. 
average toroidal current must vanish (corresponding 'to 'a 
resistive steady state). 

Boozer[7] has pointed out that resistive diffusion near a 
resonant surface becomes singular for nonvanishing JR.m and 
tends to flatten the pressure profile, This diffusion has 
been computed for the present case with an island at the 
resonant' surface. Again, the island resolves the singularity. 
For sufficient.ly large islands (corresponding to 
(3 > R,2 j R.n/J oo ' which is extremely low-(3) this diffusion is 
smaller than the nonresonant diffusion ,and causes little 
flattening. There is some island-induced resonant diffusion, 
but this virtually never reduces the space-integrated current 
from the interior region by more than a factor U - 1_- 1/2. 

We again assume a single harm2nic dominates in ~1 with 
coefficient AR.m' Having obtained Q as a nonlinear fun:ction of 
th.e island width,Equation (12) becomes, for circular flux 
surfaces: 
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(14) 

where aJOO/ar gives tne magnetic well. For low-~, Aim - ~2 
the island width - ~1/2, and the island current term - ~37 is 
negligible. All terms are comparable at ~ - ~t· For ~ » ~t 

the third term becomes large. 
For the good curvature case, the second and third have 

the same sign. Thus, the third balances the first, resulting 
in slower island growth with~. For the bad curvature case, 
the second and third nearly cancel, leading to a larger 
island, almost independent of C~. This is the saturated state 
of a resistive interchange. 
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