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Nonaxisymmetric, Sharp Boundary, Toroidal Equilibria

H.L. Berk, J.P. Freidberg,* P.J. Morrison, and J.A. Tataronis**

One of the most intriguing problems in ideal magnetohydrodynamics (MHD)
concerns the existence of stationary equilibrium states with nested magnetic surfaces in
three dimensional toroidal geometry. Although this problem has been under scrutiny for
over two decades, an existence proof for such states has been accomplished only under sim-
plifying assumptions regarding the spatial symmetry of the geometry. Although toroidal
magnetic surfaces may exist in the absence of spatial symmetry, the topology of these
surfaces is generally complex because of the presence of magnetic islands and regions of
space Where magnetic field lines are ergodic.

To unravel the complex mathematical issues which are intrinsic to three-
dimensional geometry, it is useful to explore equilibrium states of simplified configura-
tions. Omne such example is the ideal MHD equilibrium problem of a sharp boundary,
nonaxisymmetric toroidal plasma. In the sharp boundary configuration, a toroidal sur-
face, S, separates a constant pressure, currént free region of plasma, R, from an external
vacuum region, V. The MHD solvability conditions for sharp boundary equilibria take on a
different form than that required for smooth pressure profiles with rational and irrational
magnetic surfaces. Existence of equilibria in this state requires that two conditions be
satisfied on S: (i) the plasma-vacuum interface be a magnetic surface for both the internal
plasma magnetic field, B;, and the external vacuum magnetic field, Be, and- ii) pressure
balance be maintained, i.e., 2P = B? — B?, where P is the plasma pressure. Given P and
B;, the problem is to determine single-valued solutions for B, which span the equilibrium
interface. Writing B. = V&,., the pressure balance equation acquires the form of the
Hamilton-Jacobi equation, which is a first order, nonlinear, partial differential equation
for the magnetic potential &, on the interface. The characteristics of this equation are the
lines of force of B, on the interface. Because the Hamilton-J acobi equation governs the
magnetic potential on the plasma interface, the problem for B, can be associated with
integfals of an equivalent Hamiltonian system, where the magnetic pressure difference,
(B2 — B?)/2, is the Hamiltonian function. In general, it is difficult to determine when the
single-valued condition on B, is exactly satisfied, as in all problems connected with inte-
grability of classical Hamiltonian systems. Single-valued solutions for B, appear explicitly
only if spatial symmetry is present. In the absence of symmetry, resonance phenomena
affect integrability of the system, and numerical solutions or expansions are required to
identify acceptable solutions. Perturbation studies of the Hamiltonian system, in terms of

either small pressure or weak asymmetry, have been carried out to obtain series solutions
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for B.. Although these approximate solutions satisfy the required periodicity constraints
of toroidal geometry, the convergence properties of the generated series remains to be es-
tablished. However, subject to the integrability conditions provided by the KAM theorem,
exact solutions for B, do exist. It can be demonstrated that the exact solutions can be
approached by adopting an iteration scheme based on renormalizations of the canonical
coordinates.

In this project, modeling of sharp boundary equilibria is aécomplished in terms
of a vacuum magnetic field, B,, which is generated by a suitable distribution of external
cui‘rents. The plasma-vacuum interface, S, of this configuration is identified with a closed
toroidal magnetic surface of B,, a,(r) = const., while the internal magnetic field, B;, is
proportional to B,, i.e., B; = 0B, where o is a constant. The poloidal currents in regidn
V determine the value of 0. - ‘

Tt is straightforward to find vacuum magnetic fields that have at least one
closed, toroidal, magnetic surface. Given some toroidal surface, S, the magnetic field
in the enclosed region, R, is derivable from a scalar potential, &, that satisfies Laplace’s
equation, subject to the constraint that the normal component (V®,) vanishes on S. These
conditions define a well-posed Neumann problem for #,: V?®, =0in R; #-V$, =0 on
S, where 7 is a normal vector on S. A more difficult problem is to find vacuum magnetic
fields that have a distribution of toroidal magnetic surfaces. Although a distribution of
magnetic surfaces is not required to construct sharp boundary plasmas, it may be desirable
for modeling equilibria with steep, but continuous, profiles.

The coordinate system adopted for our analysis is the triad, (g3, 92, ;). The
radial-like coordinate, referenced with respect to the toroidal magnetic axis of B,, is the
magnetic surface function, a,(r), which satisfies the expression, B, - Vo, = 0. The angle-
like coordinates, which label points on the magnetic surfaces, a,(r) = const., are the
variables, (g1,92). There is obviouSly considerable freedom in the choice of the ¢; and
g2. Convenient variables for certain applications are 8, and ¢,, based on the Clebsch
representation of B,, B, = Vp, = Va, X VS, where ¢, designates the scalar magnetic
potential for B,. In terms of the coordinates, (83, v, &), the exterior field has the form,
B, =V9®, = (09./08,)VBy+(0D./00y) Vi, +(89./0c,)Va,. Imposing the condition,
(V) B, =0 on S yields an expression for (09./80,); (89./0a,) = —|Va,| % (Vay, -
VB,)(08./88,). With this result, pressure balance across S acquires the form,

P} +|Vay|~2p} —2P By? = o, 1)

where p;, and po are respectively the derivatives, (8®./90,) and (8%./9p,). Equation
(1) is a first order, nonlinear, partial differential equation for the magnetic potential,
®.(By, ), on the surface S, which is labeled by some value of «,. The characteristics
of this equation are the lines of force of B, on S. Designating the left-hand side of Eq.
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(1) as H(p1,p2,41,92), where q; and g, are respectively the coordinates 8, and ©,, the
characteristic lines, represented parametrically as ¢; = ¢;(r) for ¢ = 1 and 2, satisfy a
two-degree of freedom, autonomous, Hamiltonian system,

dpi o _8H dqi . oH (2)
dr N qu ’ dr h ap,;’

which shows that ¢; and p; are conjugate variables. Because of this connection to Hamil-
tonian theory, canonical transformations and renormalization methods are useful in order
to solve the system for p; and p, that are single-valued over S. Another application of
Eq. (1) is to plasma configurations with steep but continuous pressure profiles. The only
required modification of Eq. (1) is that P is replaced by the pressure differences between

a point in the profile and the plasma center. The resulting expression and the equation,
V -B = 0, determine B in the profile.




