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A Hamiltonian formulation, in terms of a non-canonical Poisson bracket, is 
presented for a nonlinear fluid system that includes reduced magnetohydro­
dynamics and the Hasegawa-Mirna equation as limiting cases. The single-helicity 
and axisymmetric versions possess three nonlinear Casimir invariants, from 
which a generalized potential can be constructed. Variation of the generalized 
potential yields a description of exact nonlinear stationary states. The new 
equilibria, allowing for plasma flow as well as partial electron adiabaticity, are 
distinct from those found in conventional magnetohydrodynamic theory. They 
differ from electrostatic stationary states in containing plasma current and 
magnetic field excitation. One class of steady-state solutions is shown to provide 
a simple electromagnetic generalization of drift-solitary waves. 

1. Introduction 
Solitary wave phenomena have a demonstrated importance in fluid dynamics, 

for example with regard to oceanic or atmospheric currents (Flier! et al. 1979). 
The possible significance of such nonlinear coherent motions in plasma physics, 
although less well established, is drawing increased theoretical attention. In 
particular, solitary drift waves (large-.amplitude, coherent electrostatic distur­
bances in a non-uniform magnetized plasma) have been extensively studied 
(Larichev & Reznik 1976; Meiss & Horton 1983; Pavlenko & Petviashvili 1984; 
Mikhailovskii et al. 1984). 

The present work extends the analysis of solitary drift waves to the electro­
magnetic case: we allow for large-amplitude perturbations of both the electro­
static and magnetic fields. Such extension is motivated by the fact that 
disturbances observed in tokamak experiments, including those that are 
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relatively coherent, often involve significant magnetic excitation. Furthermore, 
the electromagnetic generalization of drift solitary waves has intrinsic interest. 

A second, closely related, purpose of our work also extends previous theory. We 
show that the Hamiltonian formulation (Morrison & Hazeltine 1984) of reduced 
magnetohydrodynamics (RMHD) (Strauss 1976, 1977) can be generalized to 
include non-magnetohydrodynamical effects, such as electron adiabaticity. Thus 
we present a generalized Poisson bracket, {F, G}, where F and G are functionals 
of the field variables, in terms of which the dynamical equations can be expressed 
in Hamiltonian form. The bracket formalism facilitates the identification of 
various integral invariants, simplifies the derivation of solitary wave equations, 
and provides insight into nonlinear stability issues (Holm et al. 1985; Hazeltine 
et al~ 1984b). 

Both extensions exploit a reduced inclusive system (Hazeltine 1983) that has 
been shown to include the physics of both RMHD and the Oharney-Hasegawa­
Mima equation (OHM) (Hasegawa & Mima 1977; Oharney 1948). Recall that the 
OHM equation, which first occurred in ocean current investigations (Oharney 
1948), is the conventional starting point for studies of electrostic drift-wave 
nonlinearity. The inclusive system (an electromagnetic generalization of OHM 
that also incorporates non-fluid effects into RMHD) provides a natural setting 
for the study of generalized Hamiltonian plasma dynamics and generalized 
solitary wave behaviour. 

In § 2 we briefly review the physics contained in the reduced inclusive system, 
and introduce our basic notation. § 3 presents the Hamiltonian expression of this 
system, considers its nonlinear significance, and identifies the key integral 
invariants. Equations describing a particular class of nonlinear solutions (the 
electromagnetic solitary waves) are derived in § 4. 

2. Reduced inclusive system 
2.1. Notation 

The nonlinear system analysed here was first derived in tokamak geometry, 
following procedures similar to those of RMHD. However, because the plasma 
beta is assumed small, toroidal curvature effects do not enter and the system is 
also pertinent in slab geometry. It uses three appropriately normalized fields: 
cj>, the electrostatic potential; ljr, the parallel component of the magnetic vector 
potential, or poloidal magnetic flux; and X' the plasma density perturbation. 
For the explicit normalizations, as wen as details of the derivation, the reader is 
referred to Hazeltine (1983). The following introductory comments are intended 
to clarify the physical interpretation of the system. 

The equations are expressed in terms of effec~ively Oartesian co-ordinates 
(x, y, z); in the tokamak case, z can be identified with the toroidal angle, while x 
and yare co-ordinates in the poloidal cross-section. The basic ordering parameter 
is denoted by 
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and can be identified with the tokamak inverse aspect ratio. This parameter 
appears in the normalized magnetic field, given by 

B =~(1-ex)-e~x'V.L7.jr+0(e2), (1) 

where 'V.L = ~8/8x+f)8/8y 

is the (normalized) gradient in the poloidal plane. Equation (1) expresses the 
presumed dominance of the vacuum magnetic field, which is purely toroidal. 

A geometrical assumption, complementary to (1), is that the' longitudinal' or 
toroidal scale length is relatively large: 8/oz = O(e). Then, for any scalar S, 

'VS = 'V.LS+O(e), 
and (1) implies 

B. 'VS = e[8S/oz-~. 'V.L 7.jr x 'V .LS] + 0(e2). (2) 

A more compact expression of (2) uses the conventional Poisson bracket 

[j, g] =~. 'V .Lix 'V .Lg, (3) 
and the definition 

'Vui == 8i/8z- [7.jr,il (4) 

Thus B. 'VS = e'VIlS + 0(e2). Note that 'VII is a nonlinear parallel gradient, involving 
the total poloidal flux, 7.jr, including non-equilibrium contributions. 

The RMHD time-scale is measured with respect to a/evA' where a is a poloidal 
length and v A is the Alfven speed. It corresponds to shear-Alfven evolution 
and yields Ojot = O(e), making the transverse electric field predominantly 
electrostatic: 

(5) 

However, because of the long parallel scale length, the electrostatic and electro­
magnetic terms make comparable contributions to Ell: 

E,I = -e2('V 1I9 + 87.jr/ot) + 0(e3
). (6) 

Equation (5) shows that the perpendicular drift velocity, 

VE = B-2E x B = e~x 'V .L9+0(e2), (7) 

is primarily electrostatic, whence 

vE.'VS = e[9,S]+0(e2), (8) 

for an arbitrary function S. The e factors in (5)-(8) reflect the rela:tively slow (on 
the scale of compressional Alfven waves) motions of interest. 

Like RMHD and OHM, the inclusive system assumes weak variation of the 
plasma density, n. That is, n ~ no' where no is a temporal and spatial constant. 
The field variable X measures the departure of n from no; it is treated linearly in 
the sense that X2 and higher-order terms are neglected in the equations of motion. 
A prominent example of such linearization concerns the adiabatic or Maxwell­
Boltzmann limit, 

(9) 

where e is the electronic charge, Q) is the unnormalized electrostatic potential, 
and ~ is the electron temperature measured in units of energy. The relation 

ax= 9, (10) 
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where (X is a constant, corresponds to the linearization of (9) for n ~ nco Because 
(X measures the (squared) ratio of ion-acoustic gyroradius to transverse scale 
length, we call it the scale-length parameter. (By 'ion-acoustic gyroradius' we 
refer to the thermal Larmor radius of ions at the electron temperature.) 

Equation (9) or (10) corresponds physically to the instantaneous equilibration 
of electrons with a slowly evolving potential; this limit is interesting because, 
while assumed to hold universally in CHM, it is entirely inaccessible to RMHD. 
The system presently being described is inclusive essentially' because it neither 
forbids, nor insists upon, equation (10). 

Finally we introduce the abbreviations, 

J = V~1fr, U = V~if;. (11) 

It is clear from (1) that J measures the parallel current density, Joc -~. V x B. 
Similarly, (7) shows that U oc~. V X vE measures the parallel fluid vorticity. 

2.2. Dynamical equations 

The inclusive system consists of three equations: a shear-Alfven law, 

oU jot+ [if;, U] + VII J = 0; 
a generalized Ohm's law, 

o1fr jot + VII if; = 'i}J + (XVII X; 
and an electron conservation law, 

(12) 

(13) 

(14) 

Equation (12) describes vorticity evolution in a manner identical to RMHD; 
it is derived by neglecting O(e3) terms in the parallel curl of the magnetohydro­
dynamical equation of motion. Curvature terms are absent because the plasma 
pressure is assumed to be O(e2). 

Equation (13) equates the parallel electric field (recall (6)) to the sum of the 
Ohmic parallel current and the parallel pressure gradient ('Hall term '). Because 
the model is isothermal, the pressure gradient is proportional to 'IX. The para­
meter 'i} is a normalized measure of collisional resistivity. Most of our subsequent 
analysis is restricted to dissipationless evolution: 'i} will be neglected. 

The second term in (14) represents perpendicular advection of electrons, as 
can be seen from (8). The third term gives the divergence of electron parallel 
flow, which is proportional to the current because ion parallel flow is presumed 
small: 

(15) 

The divergence of the perpendicular electron flow is of higher order in e. 
We next briefly review the relation between (12)-(14) and other nonlinear 

systems, following Hazeltine (1983). 
Low-beta RMHD is recovered from the inclusive system by neglecting (X in 

(13), as is appropriate for perturbations with scale lengths much larger than the 
ion-acoustic gyroradius. Because X is decoupled in this limit, low-beta RMHD 
involves only two coupled fields. This system is commonly used to simulate non­
linear kink and tearing evolution in tokamaks. 
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To obtain OHM, one assumes the electrons to be adiabatic, 

(XX = cp, 
as in (10). Then (14) implies 'IIuJ = -oX/at, and (12) becomes 

oU/ot+[cp, U] = (X-IOcp/ot, 
which is the OHM equation for the electrostatic field. 
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(16) 

(17) 

Equilibrium magnetic shear enters the inclusive system through the parallel 
gradient terms; it is evidently missing in the OHM case, equation (17). Meiss & 
Horton (1983) adopt a different generalization of (17), which is electrostatic in the 
sense that 1jf is presumed given. They retain the effects of shear, even in the 
adiabatic limit, by including ion parallel flow terms, unlike our equation (15). 

Other electromagnetic models, differing from the present model by the inclu­
sion of ion parallel dynamics and various finite gyroradius effects, have also been 
derived (Drake & Antonsen 1984; Hazeltine et al. 1984a); such descriptions 
necessarily involve additional field variables. 

3. Hamiltonian formulation 

3.1. Generalized Poisson brackets 

In this section we present a Poisson bracket acting on functionals of the fields that 
allows the dynamical equations to be expressed ill Hamiltonian form. Such a 
description provides access to the theoretical technology of Hamiltonian 
dynamics: variational principles, mapping and transformation theory, and so on 
(Morrison 1982; Marsden & Morrison 1984). The Poisson bracket is especially 
valuable in the study of conservation laws, or integral invariants (Morrison & 
Hazeltine 1984). A certain class of such invariants, described below, plays a 
critical role in treatments of linear and nonlinear stability (Holm et al. 1985; 
Hazeltine et al. 1984b). 

For notational simplicity we represent the three independent field variables by 
a vector, ;(x, t), with (61) 62' 63) = (U, 1jf,X); notice that U = 'II~ cp, rather than cp 
itself, is chosen to measure the electrostatic field. The following argument is also 
simplified by assuming that ;(x, t), together with its gradients, vanishes for 
sufficiently large Ixl. In other words, we consider the infinite-space problem, with 
homogeneous boundary conditions. 

Because the 6i do not occur in conjugate pairs, the formulation derived here is 
not canonical. Instead it uses the non-canonical Poisson-bracket version of 
Hamiltonian mechanics: a generalized bracket acting on functionals of the 6i will 
allow the field equations to be expressed as 

o;/at = {;, H}. (18) 

Here H(;) is the Hamiltonian functional, whose explicit form is given below, and 
the bracket, { , }, satisfies four requirements: 

(i) it is linear in both its arguments, 

{E,F+G} = {E,F}+{E,G}, 
etc.; 
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(ii) it is antisymmetric, 
{F, G} = -{G,F}; 

(iii) it is a derivation, in the sense that 

{E,FG} = F{E,G}+{E,F}G; 

(iv) it satisfies the Jacobi identity, 

{E,{F, G}}+{F, {G,E}}+{G,{E,F}} = o. 
Here, of course, E, F and G are arbitrary functionals. 

(19) 

(20) 

(21) 

The bracket { , } will be called the 'outer' bracket, distinguishing it from the 
'inner' bracket, [ , J, of(3), which acts on the 6i' (The reason for this nomenclature 
will become apparent presently.) As suggested by properties (i)-(iv), the outer 
bracket is a natural extension of the inner one, from the space of functions to that 
f'unctionals. 

Before making the outer bracket explicit, we introduce two notational con­
ventions. Integrals over the infinite spatial domain are abbreviated by defining 

(f> == J dxj. 

Then the functional derivative, 8F /86i' of any functional F(6i) is given by 

dF(6i+6w)/d6Ie=o == (w8F/86i)' (22) 

We frequently abbreviate this derivative with a subscript, e.g. Fu == 8F /8U. The 
function w(x) in (22) is arbitrary (provided surface terms can be neglected). 

3.2. Explicit formulation 

The energy functional for (12)-(14) is 

H = !(IV' .L1fr12+ IV' .L¢12+ ax2), (23) 

the sum of magnetic field energy, fluid kinetic energy and fluid internal energy. 
The easily verified identities (for homogeneous boundary conditions) 

U[g,hJ) = (g[h,f]) = (h[j,gJ) (24) 

can be used to show that H is constant in the ideal ('fJ = 0) limit. It is therefore a 
natural choice for the Hamiltonian functional H(6). -

It is evident that the functional derivatives, 14, are given by 

Hu = -¢, Hifr = -J, Hx = ax. (25) 

The minus signs in the first two ofthese expressions arise from partial integration. 
Hence the equations of motion can be written as 

au/at = [Hu, UJ + [Hy" 1frJ - OJ /az, } 

ax/at = [Hu ,xJ+[Hifr,1frJ-OJjaz, 

a1fr/at = [Hu ,1frJ + [Hx' 1frJ- aax/az. 

(26) 

We obtain the outer bracket from (26), following the procedure of Morrison & 
Hazeltine (1984). It is convenient to begin with the two-dimensional (axisym-
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metric or helically symmetric) case, in which z-derivatives can be presumed 
to vanish. Then we seek an outer bracket of the generic form. 

(27) 

where the a,iik are constants, and a sum over repeated indices is implied. The 
bracket form of (27) is common for equations that describe two-dimensional 
continuous media in terms of Eulerian variables. Next, we examine the case 
F = ~ andG = H, and determine the a,'s by requiring that (18) and (27) reproduce 
(26). The resulting outer bracket is given by 

{F, G}2 = (U[Fu, GuJ)+(x[Fx' GxJ) + (1fr([Fifr, Gu + GJ - [Gv"Fu +FxJ) 

+ (X([Fx' GuJ - [Gx' FuJ), (28) 

where the subscript on the left-hand side refers to the dimensionality. 
This bracket is manifestly linear in F and G, and antisymmetric in the sense of 

(19). By using the corresponding properties of the inner bracket, one can straight­
forwardly show that {,} also satisfies (20) and (21). Verification of the Jacobi 
identity is similar to previous analysis (Morrison & Hazeltine 1984), so we omit 
the details. In fact, the quantities a,iik[gi' gkJ are the components of a Lie product 
acting on n-tuples of functions. Here the Lie algebra is an extension of that 
associated with canonical transformations, which has the product [ , ]. 

Thus (23) and (28) provide a Hamiltonian formulation of the two-dimensional 
equations of motion. 

The generalization to three dimensions can also be obtained by following 
previous (Morrison & Hazeltine 1984) procedures. One finds that the outer 
bracket, 

{F, G} = {F, Gh+(Fu oGifr/oz)-(Gu of>jr/oz) + (F>jroGxf 0 z)-(G>jroFxfoz) 

+(FxoGu/oz)-(GxoFu/oz), (29) 

reproduces the three-dimensional equations of motion, while satisfying (19 )-(21). 

3.3. Oasimir invariants 

The inclusive system possesses a variety of integral invariants. For example, it 
can be seen that any integrated linear combination of the basic fields, with 
ai = constant, 

(30) 

is invariant, oL/ot = o. Another obvious example is the energy, H. One can 
demonstrate such conservation laws by direct manipulation of the original 
system; thus energy conservation is verified by integrating the sum of (12) 
multiplied by cp, (13) multiplied by J, and (14) multiplied by -a,x. 

Generalized Poisson brackets clarify the study of integral invariants for several 
reasons. They often simplify the proof that a given integral is constant; thus the 
constancy of H follows immediately from the Hamiltonian equations (18) and the 
fact that {H, H} =: 0, i.e. from the antisymmetry of the bracket. Brackets also 
allow the systematic derivation of constants of motion (Morrison & Hazeltine 
1984). Perhaps most importantly, a Poisson bracket formulation permits one to 
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distinguish an especially useful class of integral invariants: the Casimir invariants 
(Sudarshan & Mukunda 1974; Marsden & Morrison 1984) or 'Casimirs'. 

The defining property of a Casimir is easily understood. While any invariant, A, 
must 'commute' with the Hamiltonian, {A,H} = 0, the Casimirs are those 
invariants that commute with all functionals of the dynamical variables 

{O,F} = 0, for all F(Si)' (31) 

Evidently the invariant H is not a Casimir. On the other hand, since 

8L/8si = ai = constant 

it is easily seen from (29) that L in (30) is a Casimir invariant. 
Casimir invariants which (unlike L) depend nonlinearly on the field variables 

playa crucial role in nonlinear stability investigations, as shown in the following 
section. Here we display three nonlinear Casimirs for the two-dimensional 
bracket, (28): 

01 = (F(1fr), 

O2 = (xG(1fr), 

03 = (K(U - X). 

(32) 

(33) 

(34) 

Here F, G and K are arbitrary functions of their arguments. Proof that the 0i 
satisfy (31) is straightforward and omitted. 

4. Two-dimensional equilibria and solitary wave equations 

4.1. Generalized potential 

This section is devoted to studying time-independent solutions of the nonlinear 
field equations, or generalized equilibria. We restrict attention to the two­
dimensional system, with helical or axial symmetry. Equation (28) provides the 
relevant bracket. 

The equilibrium field variables, denoted by Se' evidently satisfy 

{;e' H(;e)}2 = O. (35) 
From the form of (28) it is clear that one class of equilibria is described by 
extrema of H: 

(36) 

But this is far from a general description of equilibrium; in fact, solutions to (36) 
are usually too restricted to be interesting. For a general description we note that 
one can add to H, in (35), any combination of the Casimir invariants, ai' since the 
0i generate null equations of motion. Because the 0i in (32)-(34) already involve 
arbitrary nonlinear functions, it suffices to consider a simple linear combination: 

1(;) == H(;) + ~ 0i(;)' (37) 
i 

The functional I will be called the generalized potential. Equilibria of interest 
satisfy' 

(38) 

RMHD applications of the generalized potential are considered by Hazeltine 
et al. (1984a) and Holm et al. (1985). The main points are that (i) requiring 
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definiteness in sign of the second variation of !gs(l;e) yields criteria sufficient for 
linear stability; (ii) in many cases it is possible to show that I is a convex Lyapunov 
functional of ;, and thus to investigate nonlinear stability, considering finite 
departures from equilibrium. Hence, both the linear stability analysis and the 
nonlinear stability method rely on the generalized potential. Stability of the 
reduced inclusive system's equilibria will be the subject of future work; here we 
restrict attention to the equilibrium problem itself. 

4.2. Equilibrium equations 

Mter substituting (23) and (32)-(34) into (37), one can straightforwardly com­
pute the first variation of I: 

8I = (o1/f( -J + Fifr +XGifr) + (ox(ax+ G+Kx)+(o¢( - U + V~Ku). (39) 

Thus the equilibrium fields must satisfy 

J = F'(1/f) + xG' (1/f) , 

ax+ G(1/f) = K'(U -X), 

¢ = K'(U-X), 

(40) 

(41) 

(42) 

with U = V~ ¢ and J = V~ 1/f. The primes denote differentiation with respect to 
argument (so that Kx = - K', for example); the e subscript is suppressed. 

Note that (42) omits a harmonic term, ¢o, where V~ ¢o = O. Because such zero­
vorticity contributions to ¢ would enter (42) alone, their omission is not serious. 
On the other hand, if the Casimir terms were omitted, using (36) instead of (37), 
the only resulting equilibria would correspond to ¢ = ¢o' In fact the equilibria 
described by (36) lack both vorticity and parallel current. 

It is not hard to verify that (40)-(42) indeed satisfy the time-independent 
versions of (12)-(14). Thus we have a variational principle for equilibria that in 
addition to poloidal flux involve poloidal flow and density variation. Equations 
(40)-(42) taken together can be viewed as a generalization of the large aspect­
ratio Grad-Shafranov equation. 

4.3. Oonventionallimits 

Since (41) and (42) imply 
ax - ¢ = - G(1/f), (43) 

it is clear from (16) that the CHM limit corresponds to G = O. This choice, 
together with the assumption that the function K' is invertible, quickly yields 
the conventional description of drift-solitary waves (Meiss & Horton 1983): 

V~¢-¢/a = M(¢), 

where the function M is defined by 

M(K'(f)) = j, 

(44) 

for any j. Because K is in general unspecified, it is appropriate to consider M to be 
an arbitrary function of its argument. 
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The RMHD limit has IX = 0 and therefore, from (43), G(1fr) = cp. Thus in this 
case the electrostatic potential is constant on flux surfaces. It follows from the 
IX = 0 version of (41) that 

x = U -M(G(1fr)), 
and (40) beoomes 

Vi 1fr + G' (1fr) Vi cp = F' (1fr). (45) 

Here we have omitted a term involving MG' beoause G'(1fr) is already arbitrary. 
Equation (45) is easily recognized as a generalized, reduced Grad-Shafranov 
equation; it differs from the conventional (Strauss 1977) (G = 0) form in allowing 
for equilibrium perpendicular flow. 

4.4. Electromagnetic solitary wave equations 

Returning to the general case, we find it instructive to express (43) in terms of 
the Ex B velocity. From (7), 

(46) 

where v * == IXZ X V J..X and Bp == - z x V J..1fr measures the poloidal magnetic field. 
The case of vanishing v* corresponds to a stationary, nonlinear Alfven wave 
(Morrison & Hazeltine 1984); it has no parallel electric field because (2) implies 
that Ell oc [1fr, cpT in the two-dimensional case. Thus v* measures the departure 
of the fluid velocity from that of an Alfven wave. In the simplest case, 'X = X(1fr) is 
a flux function, so that any non-Alfvenic flow has Ell = 0 and the fluid remains 
frozen to the magnetic field. More generally; however, IXX =l= 0 allows a non­
dissipative slippage between field lines and fluid. 

Electromagnetic solitary waves differ from nonlinear Alfven waves because 
they allow for finite v*. They are described by the coupled equations, 

Vi cp-M(cp) = G(1fr), 

V'i1fr-F(1fr) = G'(1fr)cp, 

(47) 

(48) 

that result from (40) and (41) after X is eliminated using (43). The arbitrary 
functions M, G and F differ slightly from those introduced previously. 

Oontaining three arbitrary functions, (47) and (48) of course possess a wealth 
of solutions. We briefly consider the simplest class, in which 

(49) 

where y and K are constants. This choice evidently corresponds to frozen -field -line 
flow, with Ell = O. However, the non-Alfvenic velocity v* is evidently proportional 
to y - K and need not vanish. Substitution yields the consistency condition 

(50) 

which is only mildly restriotive. Equation (50) makes (47) and (48) equivalent; in 
faot they both assume the same form as (44), whose explicit solitary-wave 
solutions have been examined previously (Meiss & Horton 1983). Thus (49) 
provides a simple and natural electromagnetic generalization of drift-solitary 
waves. Of course it is far from the most general solution to (40)-(42). 
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5. Summary 
A previously derived nonlinear system, which includes RMHD and CHM as 

limiting cases, has been shown to possess a Hamiltonian structure in terms of 
generalized Poisson brackets. The bracket is given explicitly by (28) in the two­
dimensional case and by (39) for three spatial dimensions. These results generalize 
an earlier Hamiltonian formulation of RMHD (Morrison & Hazeltine 1984) by 
allowing for parallel electron pressure gradients, or electron adiabaticity. (We 
remark that Strauss (1976, 1977) considers both low- and high-beta tokamak 
orderings, while the present work is restricted to low beta.) 

Consideration of the bracket structure in the two-dimensional case has allowed 
us to construct three nonlinear Casimir invariants: exact constants of the motion 
that Poisson-commute with all functionals. Although related to invariants of 
RMHD, the Oasimirs defined by (32)-(34) are new. 

Mter using the Hamiltonian and Casimirs to co~struct a generalized potential, 
we have studied exact nonlinear, stationary solutions to the inclusive system. 
These two-dimensional equilibria extend previous results of electrostatic theory 
and RMHD; their general form is expressed in (47) and (48). Special cases ofthe 
generalized equilibria include a Grad-Shafranov equation that allows for 
equilibrium How, the conventional description of electrostatic drift-solitary 
waves, and a new solitary wave structure. The latter is similar to the drift-solitary 
wave, but fully electromagnetic. 
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