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A generalization of reduced magnetohydrodynamics is constructed from moments of the 
Fokker-Planck equation. The new model uses familiar aspect-ratio approximations but allows for 
(i) evolution as slow as the diamagnetic drift frequency, thereby including certain finite Larmor 
radius effects, (ii) pressure gradient terms in a generalized Ohm's law, thus making accessible the 
adiabatic electron limit, and (iii) plasma compressibility, including the divergence of both parallel 
and perpendicular flows. The system is isothermal and surprisingly simple, involving only one 
additional field variable, i.e., four independent fields replace the three fields of reduced 
magnetohydrodynamics. It possesses a conserved energy. The model's equilibrium limit is shown 
to reproduce not only the large-aspect-ratio Grad-Shafranov equation, but also such finite 
Larmor radius effects as the equilibrium ion parallel flow. Its linearized version reproduces, 
among other things, crucial physics of the long mean-free-path electron response. Nonlinearly, 
the four-field model is shown to describe diffusion in stochastic magnetic fields with good 
qualitative accuracy. 

I. INTRODUCTION 

The success of reduced magnetohydrodynamics 
(RMHD)I-3 in simulating the nonlinear dynamics of toka­
mak plasmas is well documented.4 Yet it is clear that certain 
RMHD approximations, such as the neglect of finite Lar­
mor radius (FLR) terms, are not always realistic. Especially 
as tokamak experiments enter higher-temperature regimes, 
various aspects of the model can appear less convincing-a 
circumstance that has stimulated the development of nu­
merous extended and generalized versions.5

-
8 

It should be emphasized that the weaknesses ofRMHD 
are most apparent in its linear limit, where comparison to 
more elaborate (e.g., kinetic) treatments is straightforward. 
But criticism based strictly on the linear predictions of 
RMHD is not appropriate. Observed plasma behavior is 
rarely linear, and the model is specifically intended to study 
nonlinear processes. Thus any reduced fluid model is to be 
judged by the degree to which it has captured the dominant 
nonlinear physics. RMHD is a preeminent success by this 
criterion; an alternative model is interesting insofar as it in­
cludes distinct physical processes of plausible importance in 
the nonlinear regime. 

The present generalization ofRMHD addresses the fol­
lowing specific considerations. 

A. Low-frequency evolution 

The characteristic MHD flow velocities are 

(1) 

where VA is the Alfven speed and Vthi =(2T;lmY/2 is the ion 
thermal velocity. The corresponding MHD frequencies are 

(2) 

where k represents a typical wavenumber. Equations (1) and 
(2) are pertinent under certain conditions, such as those char­
acterizing the final phase of a tokamak plasma disruption. 
However, the prevalent disturbances of interest evolve more 
slowly. Specifically, if we assume 

kpi<-l, (3) 

where Pi is the ion Larmor radius, 

Pi =vth;lfli , fli=eB /mic, (4) 

then typical speeds and frequencies of interest are estimated 
by 

V-(kpi)Vthi < VMHD , m-kV <mMHD • 

The orderings, (5), are appropriate in particular when 

ef/J/T-l 

and 

(5) 

(6) 

(7) 

where if> is the electrostatic potential and m. is the diamagne­
tic drift frequency. Of course m. terms importantly affect a 
large variety of linear disturbances; they are missing from 
RMHD because of Eqs. (I) and (2). The inclusion of drift 
effects, in a nonlinearly consistent manner, is a major objec­
tive of the present work. 

B. Long mean-free-path electron response 

Dissipation enters RMHD through the parallel Ohm's 
law, 

(8) 

where J II and Ell are, respectively, the parallel components 
of the current density and electric field ("parallel" means in 
the direction of the confining magnetic field) and Us is the 
conductivity of Spitzer and Harm.9 It has long been recog­
nized that Eq. (8) cannot bejustified under experimental con­
ditions of present interest. The "dc" conductivity pertains 
only to processes that are collision-dominated in both the 
temporal and spatial senses: 

m.(v, (9) 

(lO) 

where v is the electron collision frequency, k/l is the parallel 
wavenumber, and A is the collisional mean free path. The 
most important disturbances often satisfy Eq. (9), but they 
are consistent with Eq. (10) only in a very narrow neighbor-
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hood of the mode-rational magnetic surface. Furthermore, 
even when Eqs. (9) and (10) are satisfied, the linear response 
is not described by Eq. (8) unless wv :> (kll Vthe f Thus the 
long mean-free-path "ac" conductivity, u. (w,kll ,v), is typi­
cally more pertinent than Us' The inclusion of long mean­
free-path effects can dramatically alter both linear lO and 
nonlinear evolution. In particular, the model derived here 
provides a good qualitative description of electron diffusion 
in a stochastic magnetic field (see Sec. IV). 

Nonlinearly, one cannot expect any simple Ohm's law 
to be valid: one must generalize the/orm ofEq. (8), not just 
the coefficient. But the crucial physical processes that deter­
mine u. ~lectron inertia at large wand electron adiabati­
city at large kll-are amenable to straightforward nonlinear 
generalization. 

C. Compressibility 

The RMHD ordering scheme leads to an effectively in­
compressible plasma flow, even at high beta. Such simplifi­
cation is internally consistent, but it omits physical effects of 
proven qualitative importance. The model derived here in­
cludes (parallel, perpendicular, and diffusive) compressibili­
ty terms in nonlinear form. 

These comments summarize the weaknesses of RMHD 
that our generalized model is intended to remedy. Of course 
the new model has weaknesses as well. We believe the follow­
ing omissions, which also pertain to RMHD, are the most 
serious. 

(i) Temperature gradients. We assume both plasma spe­
cies to be isothermal, despite the fact that several linear in­
stabilities, such as tearing modes, can be critically affected 
by temperature variation. 1

0-
12 A nonlinear model that em­

phasizes electron temperature gradient effects (with cold 
ions) has been presented previously.s 

(ii) True kinetic effects. Here the qualifier refers to the 
fact that our model does include crucial features of the elec­
tron response that are often labeled kinetic. For example, the 
gross dependence of u. on kn and w is usually obtained from 
Vlasov-Krook theory, but it results here from the linear lim­
it13 of a fluid description that is qualitatively accurate even 
for kll A. :> 1.7 Examples of "true" kinetic effects are Landau 
damping and magnetic trapping of nearly collisionless elec­
trons; the latter seems by far the more important in param­
eter regimes of experimental interest. 

(iii) Higher-order finite-Larmor-radius (FLR) effects. 
Our model assumes the gyroradius to be small, in the sense of 
Eq. (3). Although kpi is not an explicit ordering parameter, 
the procedures adopted leave out a number of (kpif terms. 
(Other FLR terms are retained.) Note that for some distur­
bances of interest Eq.(3) is at best marginally satisfied. 

While fluid truncation may be problematic in the strong 
FLR case, kpi -1, we see no fundamental difficulty in re­
taining temperature gradients or trapped particles in a non­
linear fluid description. For example, trapping can be mani­
fested through anisotropy in the stress tensor of the Chew­
Goldberger-Low l4 form. Thus the omissions (i) and (ii) are 
primarily intended to simplify the final result, rather than to 
expedite the derivation. The point is that any fluid model 
represents a compromise between simplicity and realism. A 
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prominent virtue of the compromise represented by (i)-(iii) is 
that it yields a surprisingly general model that nonetheless 
contains only one independent field component not already 
present in (high-beta) RMHD. In other words we present a 
four-field model, generalizing the three-field model of 
RMHD. 

The derivation of the four-field model is the subject of 
Sec. II. It is based on the familiar large aspect ratio ordering, 
but begins with exact moments of the Boltzmann equation 
rather than MHD equations. The stress tensor (for each plas­
ma species) is truncated in a manner consistent with the 
three simplifications listed above; it is the sum of a scalar 
pressure and the gyroviscosity (or magnetoviscosity) tensor. 
One then finds the lowest-order perpendicular flow velocity 
to be given by the sum ofExB and diamagnetic drifts. It is 
well known that this flow, together with the gyroviscosity 
tensor, yields the correct w. terms in the linear limit; its 
nonlinear manifestation is rather more complicated. 

The four-field system of equations is summarized at the 
end of Sec. II. Significantly, all its nonlinearities are quadrat­
ic and expressible in terms of conventional Poisson brackets. 
As in RMHD, the ordering parameter does not appear in the 
final system, all terms of which are formally comparable. 
New (non-RMHD) physics appears in conjuction with two 
parameters, {3 and 8, which roughly measure compressibility 
and FLR effects, respectively. Thus RMHD is recovered in 
the limit {3 = 8 -'I- O. 

Finite compressibility couples pressure evolution to, in 
particular, the parallel plasma flow, thus requiring the 
fourth field. The compressibility terms also provide qualita­
tive agreement between the four-field model and nonre­
duced MHD theory; for example, the critical value of.J " in 
both its linear1s and nonlinearl6 contexts, is reproduced. 

Finite 8 is responsible for various diamagnetic effects, as 
well as the corrections to Ohm's law. The corrections pro­
vide, in particular, a description of the adiabatic (Maxwell­
Boltzmann) limit of the electron response. 

The dissipationless version of the four-field model is 
shown to conserve energy, although the form of the energy 
functional differs from that of conventional fluid theory. 

The four-field equilibrium, studied in Sec. III, is charac­
terized by the same Pfirsch-Schliiter return currents and 
approximate Grad-Shafranov equation found in RMHD. It 
also contains equilibrium return flows in the parallel mass 
flux, consistent with those emphasized in neoclassical trans­
port theory, but omitted by RMHD. 

Section III also considers some linear consequences of 
the model. As an example, we calculate the four-field version 
of the generalized conductivity, u.' which is shown to in­
clude crucial features of the corresponding kinetic result. 

A nonlinear application of the model is presented in Sec. 
IV. We consider, using the direct interaction approximation, 
the diffusion of particles in a stochastic magnetic field. The 
results for both the collisional and collisionless limits are in 
qualitative accord with those of previous theory. 

II. DERIVATION 
A. Normal/zed variables 

Aspect-ratio reduction assumes that 
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€ == alRo < 1, (11) 

where a is a characteristic scale length in the poloidal plane 
and Ro is the major radius of the magnetic axis. In other 
words, scale lengths in the toroidal direction, parallel to the 
dominant component of the confining magnetic field, are 
assumed to be much longer than those in the radial or poloi­
dal directions. Small € is exploited not only in the obvious 
geometrical sense-to simplify various differential opera­
tors-but also dynamically: the dependent field variables, as 
well as time, are scaled with E. After expressing the dynami­
cal equations in terms of the scaled fields and coordinates, 
one obtains the reduced system by neglecting terms of order 
~. Because this reduction scheme has been discussed in pre­
vious literature,3.7 the present treatment will be brief. 

It is convenient to use dimensionless variables. For spa­
tial coordinates, we choose 

x = (R - Ro)/a, Y == Z la, z = - ;, 
where (R,;,Z) are cylindrical coordinates, with; being the 
toroidal angle and Z being measured along the "vertical" 
symmetry axis. Note that the normalized coordinates (x,y,z) 
form a right-handed triplet. For any scalar S, we find, from 
the conventional cylindrical gradient, 

..,.s A as A as + A( E ) as a", =x-+y- z -. 
ax ay (1 + EX) az 

For an arbitrary vector A, we write 

A=AI +ZAz, Al =xAx +yAy 

and express the divergence and curl as 

(12) 

aVoA=VloA1 +( E )( aAz +Ax), (13) 
(1 + EX) az 

aVxA= -zXVIAz +z(zoVIXAI } 

(
E) [ A aAy A (aA x )] + -x--+y ---A 

(1 + EX) az az z· 

(14) 

Note that the dimensionless gradient V I is computed as if the 
unit vectors were Cartesian; the curvature terms arising 
from spatial variation of x and z have been made explicit. 
Thus 

aAx aAy 
VI oAI =--+--, 

ax ay 

aAy aA x 
zoV1XAI =-----

ax ay 

The magnetic field is decomposed into a vacuum contri­
bution, 

Bvacuum = zBTI(l + EX}, 

where BT is a constant measuring the toroidal field, and a 
contribution from plasma currents, Bplasma = VXAplasma. It 
is characteristic of large aspect ratio tokamak confinement 
that the vacuum toroidal field dominates all other compo­
nents of B; we therefore assume 

Aplasma = o (E) (15) 

and find, from Eq. (14), that the magnetic field can be ex­
pressed as 
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BIBT = z(1 + €X)-l + Ezb - EZXVItP + o (c). (16) 

Here 

tP=(EBTa)-IAz , Az =ZoAplasma (17) 

measures the poloidal flux while b, coming from 
z ° VXAplasma' allows for diamagnetic corrections to B. 
Equations (12) and (16) imply that, for any S, 

(aIBT)BoVS=EVIIS+O(c), (18) 

where 

VIIS= as -zxvItP 0VS 
az 

is the normalized, nonlinear parallel gradient. 

(19) 

We use B T, together with a constant measure of the plas­
ma density, ne , to define the Alfven speed, 

vi = Bi-/(41Tm i ne ), 

and the Alfven time, 

TA = alvA· 

Since a represents a transverse dimension, it is clear that T A 

measures the compressional Alfven time; the time scale of 
interest corresponds to shear-Alfven motion, which is 
slower by a factor of roughly klilk = o (E). We therefore 
define the normalized time variable T by 

T= Et ITA. (20) 

Consider next the electric field, 

E = _ V¢ _ c- 1 aA . 
at 

(21) 

The normalized electrostatic potential is defined by 

({J = c¢ I(EVABTa), (22) 
whence 

El = - E(VA!c)BTV1({J + o (€2) (23) 

and 

(24) 

in view of Eqs. (17), (18), and (20). Notice that while E is 
dominated by the electrostatic field, the electrostatic and 
electromagnetic terms make comparable contributions to 

Ell· 
The fields ({J and tP are defined above in a manner equiva­

lent to RMHD. We depart from RMHD in our choices for 
the remaining two field variables,p and v. Let n be the plas­
ma density, ~I the plasma (ion) parallel flow velocity, and 

fie = 81TncT.fB}, (25) 

where Te is the constant electron temperature. Then we de­
fine 

p = !f3eIE)(nlne - 1), 

v = (EVA)-I~I. 

(26) 

(27) 

Equation (26) differs from the RMHD version essentially 
because of the constant term, the purpose of which will be­
come clear presently. The variable v does not appear in 
RMHD. 
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Finally we take note of certain dimensionless param­
eters that enter the four-field model. These are/3e' defined by 
Eq. (25), the normalized resistivity, 

'1/ = 'TAIE'Ts, 

and the gyroradius parameter, 

6 = (W'TA)-I. 

Here 'T s is the usual skin time, 

'Ts = 41ra2us lc2
, 

and IJ is a constant measure of the ion gyrofrequency, 

IJ=eBTlmic. 

(28) 

(29) 

While the parameter '1/ is standard, it may not be obvious 
that 6 measures FLR effects. Note in particular that the defi­
nitions of 'T A and IJ imply 

(30) 

where (J)pi is the ion plasma frequency; this quantity is hardly 
proportional to kpi' In fact the gyroradius is measured by the 
product of 6 and/3e. One finds that 

(J). 'T A -/3e6, 

ptla2-(TJTe)/3e62. 

B. Equations of motion 

(31) 

(32) 

The mvv moment of the Boltzmann equation can be 
written as 

mn av + mnV.VV + V· P -en(E+c-1VXB) = F, at 
(33) 

where P is the pressure tensor and F is the collisional friction 
force. A species SUbscript has been suppressed for simplicity. 
Our basic closure assumption is an ansatz for the form of P: 

P= IP +0, (34) 

where P = nTis the scalar pressure and 0 denotes the gyro­
viscosity tensor. The explicit form of 0 will not be needed 17; 
it is estimated by 

lls -(P';IJs)Vv" (35) 

where s = i,e is the species label. As noted in Sec. I, Eq. (34) 
omits various kinetic processes and cannot be justified in 
general. 

Regarding the friction force, it is consistent with iso­
thermality and Eq. (34) to write, for the electrons, 17 

F. = en'1/sJ, (36) 

where'1/s = US-I and 

J = (c/41T)VXB (37) 

is the plasma current density. For simplicity, no distinction 
is made between parallel and perpendicular resistivities. 
Collisional momentum conservation provides the ion fric­
tion force, 

Fi= -F •. (38) 

As a first application ofEq. (33), we solve its ion version 
for the perpendicular flow. Assuming that 

P-E, V-E, (39) 
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as in RMHD, we see that the inertial and gyroviscous terms 
are 0 (E2). Furthermore the resistive term, although not ex­
plicitly ordered in E, is very small. Hence, after computing 
the cross product ofEq. (33) with B, we find 

V = VII + V E + VD + Ole) + 0('1/), (40) 

with 

V E = cE X BIB 2, V Ds = (nmsIJsB)-IBXVPs· (41) 

In principle, the next step is to compute a more accurate 
equation of motion, including 0 (c) terms, by iteratively sub­
stituting Eq. (40) into both Eq. (33) and the exact version of 
Eq. (34). Fortunately, this rather complicated step has been 
accomplished previously by, among others, Stringerl8 and 
Hinton and Horton. 19 (Details of the calculation are present­
ed in Ref. 20.) The main point is that most of the gyroviscous 
terms cancel with terms from dV Dldt, leaving 

msn [ ( :t + Vs • V )v E + ( :t + V E • V)V IIS ] 

+ V{ Ps [1 - (WsB )-IB. VXVs]) 

- esn(E + c-1Vs XB) = Fs + 0 (~). (42) 

Note in particular that, as noted by Mikhailovskii,21 the par­
allel flow is advected only by V E' The FLR pressure correc­
tion, involving VXV, will not enter our final results, for two 
reasons: because it enters in order e, it cannot affect lowest­
order force balance; and because it occurs inside a gradient, 
it can't affect vorticity evolution. [We also point out that the 
coefficient of this correction is, strictly speaking, anisotrop­
ic;22 the form shown in Eq. (42) pertains for the perpendicu­
lar components of V P.] We have used quasineutrality to omit 
the species subscript on n. 

The species sum of Eq. (42) can be expressed as 

min [ ( :t + Vi • v)v E + ( :t + V E • V)Vlli ] 

+ VP [1- (2!.?i B)-lB· VXV;] = c-1JXB. (43) 

Here we omitted several 0 (m.lmi) terms, and used Eq. (38). 
Of course P denotes the total scalar pressure: 

P = nT.(1 + TJT.). (44) 

Our first application ofEq. (43) is familiar from RMHD. 
After writing the equation of motion in terms of our normal­
ized variables, we identify the 0 (E) terms, coming from V P 
and the lowest-order contribution to JXB. Equations (14) 
and (37) show that the latter involve only the field magnitude 
perturbation, b; thus we obtain 

(45) 

the familiar consequence of lowest-order equilibration. 
Our second application ofEq. (43) involves the parallel 

terms. After taking the dot product of the equation with B, 
inserting the normalized variables, and neglecting 0 (~), we 
find 

av 1( Ti) -+ [tp,v] +- 1 +- VlIp=O, 
a'T 2 T. 

(46) 

an unsurprising result for the evolution of the parallel flow. 
Equation (46) uses the conventional Poisson bracket no­

tation, 
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(47) 

for any functions/ andg. Thus [9'/] is the reduced expression 
for V EO VI Similarly, it can be seen from Eq. (19) that 

VII/= Z - [¢tl]· (48) 

Our final application of Eq. (43) is the derivation, from 
the parallel component of its curl, of the shear-Alfven law. 
Considering first the right-hand side, we find thae 

c-1B 0 VX(JXB) = - ~(B ~/41ra)(2[b,x] + VII Vi¢t) 

+O(c). (49) 

Here the term involving ¢t is the line-bending term, coming 
from VIIJII ; we emphasize this by means of the abbreviation 

J=~~ (~ 
(More strictly, J is proportional to the negative of the parallel 
current.) The term involving b can be rewritten as 

2[b,x] = (1 + T;lTe)[x,p], 

in view of Eq. (45). It is thus recognized as an interchange 
term, resulting from the interaction of pressure gradients 
with toroidal field curvature. 

Consider next the left-hand side of Eq. (43). We write 
VE =EVAUE, V Ds =EVAUDs ' and u=uE +uDs ' noticing 
from Eqs. (23), (26), and (41) that 

UE =ZXVl 9'+O(E"), (51) 

UD; = I5(T;lTe)( PeNJZXV 1 In( 1 + Epl Pe) + 0 (E). (52) 

The transcendental nonlinearity in Eq. (52) compels us at 
this point to depart, in a conventional manner,1·23 from our 
strict E ordering: we assume 

Epl Pe < 1 

and retain only the linear term in Eq. (52). Thus 

UD; = I5(T;lTeJZXVl P + o (E) 
and 

(53) 

(54) 

An approximation equivalent to Eq. (53) is also made in 
RMHD, with the motivation of retaining only quadratic 
nonlinearities. It can be justified by the assumption that den­
sity gradients are rather small, i.e., that n -;:::,ne in Eq. (26). 

The reduced shear-Alfven law is obtained by substitut­
ing Eqs. (45), (49), and (54) into Eq. (43): 

ZOV1X[:e (~: +UOVUE )] 

= -VIIJ-(I+ ~ )[X,P]' (55) 

Here the left-hand side can be written more explicitly by 
noting that 

zoV1XUE =Vi9'= U, 

and using the identity 

zoVX[uoV1UE] =15(T;l2Te){[P'U] 

+ [9',Vi p] + Vi[ P,9']j + [9',U], 

(56) 

which can be straightforwardly verified from Eq. (54) and 
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the Cartesian nature ofV. We also use Eq. (53) to replace the 
nine factor by unity, as in RMHD. Then Eq. (55) becomes 

au aT' + [9',U] + VIIJ + (1 + T;lTe)[x,p] 

= -15(T;l2Te){ [p,U] + [9',Vip] + Vnp,9']j· 

(57a) 

An alternative version is 

au [ ( T;)] (T; ) aT + 9' + 15 "T: p,U + VIIJ + 1 + "T: [x,p] 

= I5(T;lTe [Vl 9';V1 p], (57b) 

where the vector bracket is defined by 

[A;B] = ~JAj,Bj]' 
j 

It is not hard to verify that 

(58a) 

2[Vl9';V1P] = [p,U] - [9',V~p] - Vnp,9']. (58b) 

Hence Eqs. (57a) and (57b) are equivalent. 
Equation (57b) is easily understood: the second term on 

the left-hand side shows that Uis advected by the total drift U 
as in Eq. (43) [recall also Eq. (54)]; the term on the right-hand 
side reflects spatial variation of the diamagnetic drift, which 
obviously enters the curl. 

Equations (46) and (57) describe evolution of the ion 
flow. Only the parallel dynamics of the electrons is needed. 
Thus we return to Eq. (42), set s = e, and take the dot pro­
duct with B. For the parallel electron speed we deduce from 
Eq. (27) and J = en (V; - Vel that 

Vile = EVA (V + 215J) + O(~), (59) 

and for the parallel electric field we use Eq. (24). Then, after 
straightforward normalization and use ofEq. (53), we find 

(:~e )(~ +UEOV1}V+~J) 
= VII 9' + a¢t -I5VII p -1]J. 

aT 
Of course the left· hand side of this relation, describing elec­
tron inertia, is very small, and it is consistent with our ap­
proximations elsewhere to neglect it. This yields the general­
ized, reduced Ohm's law, 

(60a) 

which is most pertinent to tokamak experimental condi­
tions. However, for the sake of a pedagogical application in 
Sec. III, we also take note of the form that retains electron 
inertia: 

a¢' + VII 9' = 1]J + I5VII P aT' 

+ ~2( :: )( :: + [9',J]). (60b) 

Here the terms involving v have been computed from Eq. (46) 
and, because they merely add a O(mJm;) correction to the 
pressure, neglected. 
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c. Pressure evolution 

In an isothermal plasma, pressure evolution is deter­
mined by density evolution, i.e., by the particle conservation 
law, 

an 
-+veoVn= -nV·Ve· at (61) 

Our reason for using the electron velocity here will become 
clear presently. The electron version ofEq. (54) is 

Ve=€VAue, ue =zXV(ep-8p)+O(E), (62) 

so that straightforward normalization ofEq. (61) yields 

ap + [ep,p] = _(fle)av.ue. (63) 
aT E 

It is clear from Eqs. (13) and (62) that the right-hand side 
of Eq. (63) is 0 (fle) = 0 (E) and therefore consistently ne­
glected. In other words the strictly consistent four-field 
model would be, like RMHD, incompressible. Therefore, 
recognizing the special qualitative importance of compress­
ibility, we depart at this point from the formalfle -E order­
ing: the O(fle) terms on the right-hand side ofEq. (63) are 
retained, while terms of explicitly higher order in E are ne­
glected as usual. 

In order to compute the 0 (E) contribution to V • Ue we 
need the unnormalized electron velocity Ve through 0 (~). 
Because electron inertia is small, this quantity is easily deter­
mined: 

Ve = Vile + V E + V De + V T} + 0 (~) + 0 (me1md, 

where the first term is given by Eq. (59), the second and third 
terms are given by Eqs. (41), and the last term, 

VT} =(cleB2)BXFe = EVA 1/B -2[BX(VXB)], 

corresponds to resistive diffusion. It is worth noting that an 
analysis based on the compressibility of the ion flow, al­
though equivalent, is more complicated because ion inertia is 
not negligible in the order of interest. 

Faraday's law provides a well-known expression for the 
divergence of the EXB drift, 

V.V
E

=cEXB.VB-2-B- 1 aB -41TB-2J.E, 
at 

which reduces to 

(~VA)( ab ) V· V E = -a- 2(ep,x] - (ep,b] - aT + O(~). 
(64) 

Similarly, one finds 

V· V De = (e2vAlaJ( - 28( p,x]) + O(~), 
and, after computing the perpendicular current from Eqs. 
(14) and (16), 

V· VT} = (~vAla)(1/Vib). 

We next use Eq. (45) to eliminate b. Notice that the sum of 
the two terms involving b in Eq. (64) then becomes propor­
tional to the left-hand side of Eq. (63). It follows that, after 
introducing an alternative measure of beta, 

fl= [1 +1(1 + T;lT.)fle]-lfle, 

we can express the conservation law as 
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(65) 

ap + [ep,p] =fl{2[x,ep-8p] 
aT 

(66) 

The interpretation of this result should be clear. Considering 
the terms on the right-hand side, we note that those involv­
ing x describe perpendicular compressibility, resulting from 
the variation of B on a magnetic surface. (Only the vacuum 
variation, corresponding to B a: R - 1, enters explicitly; the 
diamagnetic contribution simply changes fl. to fl.) The terms 
involving v and J reflect parallel compressibility and the final 
term corresponds to resistive diffusion. 

Equations (46), (57), (60), and (66) yield a closed system 
for the four fields ep, t/J, p, and v. This system accomplishes 
the goals outlined in the introduction, including drift effects, 
a physical description of the long mean-free-path electron 
response, and so on (see Sec. III). It is also reasonably simple. 
However, there is a deficiency-failure to conserve energy in 
the limit 1/ -- O--which we now proceed to remedy. 

Energy conservation is considered explicitly in the fol­
lowing subsection. Here we note that any conservation law 
can be lost when terms of a certain order are retained in one 
context and neglected in others. Thus the problem is that 
Eqs. (46), (57), and (60) omit 0 (fl) terms while Eq. (66) does 
not. The omitted terms can be evaluated22

; most of them are 
proportional, effectively, to (pJa)2 and therefore represent 
effects beyond the scope of the present formalism. But there 
also occur 0 (fl) terms, in the parallel acceleration law, that 
are exceptional in involving relatively few spatial deriva­
tives. These terms have been calculated from the gyroviscous 
tensor by C. T. Hsu22

; an equivalent and somewhat simpler 
derivation uses the parallel-velocity moment of the ion drift­
kinetic equation. One finds that the terms in question simply 
represent advection of the parallel flow by the curvature and 
grad-B drift velocities: 

fdVVIIVdoV/ 

( ~vi ) ( T; ) -.3 = nc -a- 8fle r: [v,b - 4x] + Ole ), (67) 

where VII is the parallel particle velocity,Jis the ion distribu­
tion function, and v d is the guiding-center drift caused by 
curvature and VB. After inserting the right-hand side of Eq. 
(67) into Eq. (46), eliminating b in the usual way, and using 

fle=fl+O(fl 2
), (68) 

we obtain the modified parallel acceleration law, 

~ + [ep,v] + 1. (1 + ~)VII P 
aT 2 Te 

= 8fl(T;lTe)H (1 + T;lTe)[P'v] +4[x,vl). (69) 

We show in the next subsection that the system consisting of 
Eqs. (57), (60), (66), and (69) possesses an exact energy invar­
iant when resistivity is neglected. 

D. Summary and discussion 

Before summarizing the four-field model we make one 
minor change in notation, renaming the quantity x by 
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h ==(R - Ro)la. (70) 

The point is that (x,y,z) coordinates, while helpful in the deri­
vation, are rarely useful in applications. Then we have the 
vorticity equation, 

au [ Tj
] (T/ ) -+ tp+8-p,U +VIIJ+ 1 +- [h,p] 

aT Te Te 

= 8(Tj ITe) [V1tp;V1 p]; (71) 

the generalized Ohm's law, 

aJ/l + VII tp = 1fJ + 8VII p; (72) 
aT 

the parallel acceleration law, 

au 1( T/) -+ [tp,v] +- 1 +- VII P 
aT 2 Te 

=ap(TJTe ){HI + TJTe Hp,v] +4[h,v]j; (73) 

amd the particle (or internal energy) conservation law, 

~ + [tp,p] =P {2[h,tp - 8p] 

- VII (v + 28J) +!(1 + T;ITe)1fV~ pl· 

The current and vorticity are defined by 

J = vfJ/l, U = V~tp, 

(74) 

where V 1 is a normalized gradient in the poloidal plane; the 
bracket is given by 

[f,g] = z· V JXV1 g; 

[the vector bracket in Eq. (71) is defined in Eq. (58)] and the 
nonlinear parallel gradient is defined by 

Vllf= Z - [J/lJ]. 

The four independent field quantities J/I,tp,v, and p measure, 
respectively, the poloidal magnetic flux [Eq. (17)], the elec­
trostatic potential [Eq. (22)], the parallel flow velocity [Eq. 
(26)], and the electron pressure [Eq. (27)]; Eqs. (25), (28)-(30), 
and (65) define the constant parameters p, 8, and 1f. The 
quantity h, whose gradient measures the vacuum field curva­
ture, is given by Eq. (70). Notice that h is constant in time, 
and that 

(75) 

Two limiting versions of the four-field model are of in­
terest. First, when P and 8 are both neglected, one obtains 
the high-beta RMHO equations of Strauss.3 Notice that v 
evolves autonomously in this limit, so that RMHO involves 
only three coupled fields. A more interesting limit has 8 = 0 
and T; = Te , but nonzero P; it describes compressible, re­
duced MHO (CRMHO).23 The CRMHO equations are giv­
en by 

2472 

au 
aT + [tp,U] + VIIJ + 2[h,p] = 0, 

aJ/l + VII tp = 1]J, 
aT 
av 
-+ [tp,v] +VlIp=O, 
aT 
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(76) 

(77) 

(78) 

ap + [tp,p] =p{2[h,tp] - VII v + 1fV~ p}. (79) 
aT 
Turning now to energy conservation, we take note of the 

well-known identities 

J dxK [L,M] = J dxL [M,K] = J dxM [K,L] (80) 

for any functions K (x), L (x), and M (x). Of course these rela­
tions depend upon the neglect of surface contributions (ho­
mogeneous boundary conditions). In the present case one 
also needs the identity 

JdXh [K,VfK] =0, (81) 

whereK is arbitrary and h is given by Eq. (70). This result can 
be seen to follow from Eqs. (58), (75), and (80), since Vh is 
constant in lowest order. It is then straightforward to verify 
that the four-field energy, 

H = ~ J dX[ /V1tp/2+ /V1J/l/
2

+ ~ 

- 2 !i hp - i!!!... 
Te 28 

+ ( 1 + T; P)v2
] 

2(1 + TJTe) 4Te ' 
(82) 

is exactly conserved by the dissipationless (1f = 0) version of 
Eqs. (71)-(74): 

dH 
dT = 0 (1f). (83) 

The first two terms in H coincide with terms in the 
RMHO energy and the fourth term, involving hp, also has 
an RMHO counterpart.3 The term proportional to p2 is fa­
miliar from electrostatic theory,7.24 and the occurrence of a 
v2 term is unsurprising, although we have not interpreted its 
coefficient. The remaining term in H, involving f/Iv, is new. It 
resembles the Lagrangian interaction (elc)V • A, and in fact 
can be combined with part of the v2 term to produce 

!(v - J/l128)2 ex: (m; Vi, - eA Il Ic)2, 

the square of the canonical parallel momentum. [Here we 
use the fact that the spatial integral of any function of J/I alone 
is conserved, as easily follows from Eq. (72).] Thus Eq. (82) 
combines features of the fluid and particle energies. 

It is noteworthy that the (f3 --+- 0,8 --+- 0) limit of the four­
field energy is singular. Nonetheless, the relation between H 
and the conserved RMHO energy HRMHD is quite simple: 

HRMHD=~ JdX[/V1J/l/
2

+ /V1tp/2-2(1+ ;: )hP] 

= H(v = 0) - (4,8)-J dx( p + 2,Bhf (84) 

Finally we note that the conserved energy for CRMHO, 
Eqs. (76)-(79), is given by 

HCRMHD = ~ JdX(/V1J/l/
2

+ /Vltp/2+~ +V2} 

(85) 

Hazeltine, Kotschenreuther, and Morrison 2472 



Downloaded 21 Jan 2008 to 128.83.63.21. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp

III. EQUILIBRIUM AND LINEAR CONSEQUENCES 
A. Four-field equilibrium 

In this section we consider some relatively simple pre­
dictions of the four-field model, beginning with its descrip­
tion of the tokamak equilibrium. Thus, in Eqs. (71)-(74), we 
neglect time derivatives, neglect z derivatives (because of to­
kamak axisymmetry), and suppose for simplicity that Tj 

= T.,rp = 0. Equation (73) then implies that[t/I,p] = 0(813), 
or 

p =p(t/I) + o (8f3) 

and Eq. (71), 

[t/I,J] + 2[h,p] = 0, 

is solved by the equilibrium current25 

J = vit/l = I(t/I) - 2( :~ ) h + o (8f3), 

(86) 

(87) 

where I(t/I) is an integration constant. Equation (87) is the 
reduced Grad-Shafranov equation, which is also obtained in 
RMHD. 

A more interesting result follows from equilibrium par­
ticle conservation. Equation (74) implies that 

[t/I,v] + 28([t/I,J] - [h,p]) = 0, 

or, after use of Eq. (86), 

[t/I,v] - 2 dp [t/I,h] = o. 
dt/l 

Hence 

v = v(t/I) + 28h dp . 
dt/l 

(88) 

(89) 

Thus toroidal curvature produces an equilibrium parallel 
flow. The second term on the right-hand side ofEq. (89), like 
that in Eq. (87), is a return flow, balancing the divergence of 
the diamagnetic drift. Its existence is well known from neo­
classical theory,26 and in fact Eq. (89) is simply the normal­
ized, large aspect ratio version of the neoclassical result. It is 
missing from RMHD because it depends upon finite gyrora­
dius, as indicated by the factor 8. The first term on the right­
hand side of Eq. (89) is an integration constant, determined 
by processes outside the four-field model (such as external 
momentum inputs). 

Two other applications of the four-field equilibrium sys­
tem are worth mentioning. First, one can use the equilibrium 
versions ofEqs. (73) and (74), including 0 (8f3) terms, to itera­
tively evaluate p for small 8f3. The resulting FLR corrections 
to the equilibrium pressure are not constant on flux surfaces. 
Second, by including equilibrium diffusion terms, as well as 
the electrostatic potential, one can compute the Pfirsch­
Schluter modification to equilibrium radial diffusion.25 The 
result is standard, although of course it omits the correction 
due to temperature gradients.26 

B. Linear electron response 

The linear predictions of the four-field model are in 
good accord with those obtained from more elaborate theor­
ies, including kinetic treatments. For example, Eq. (71) re­
produces the same (w-w. j ) factors, in the ion equation of 
motion, that are conventionally found from the ion kinetic 
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equation-a circumstance that depends upon the inclusion 
of gyroviscosity. Similarly, the special case of CRMHD 
(8 = 0) is easily applied to linear tearing mode theory in to­
roidal geometry. One finds the resistive interchange and 
modified tearing-mode stability criteria of Glasser, Greene, 
and Johnson,15 with "..1 critical." Of course these results in­
volve large aspect ratio and high-beta ({3 - E) approxima­
tions; the low-beta, near-axis Mercier criterion is inaccurate­
ly reproduced. The four-field dispersion relations for 
ballooning instability also agree well with known results, 
even when the latter include "kinetic" effects. 20 

Here we consider the four-field linearized electron re­
sponse as an example with broad relevance in linear theory. 
We restrict attention to cylindrical geometry by setting 
h = 0 and using cylindrical coordinate (r,e,z), with 
x = r cos 19, x = r sin e. Notice that Eq. (47) implies 

[f,g] = r- I (al ag _ ag al ) (90) 
ar ae ar ae 

in this case. 
Our notation distinguishes equilibrium quantities with a 

o subscript, while omitting the subscript on the linear pertur­
bation: p --+ Po + p, etc .. Because h is absent, all equilibrium 
fields depend on position only through r; radial derivatives 
are indicated by primes. Since perturbed quantities depend 
on rp only through the conventional exp(ime ) factor, Eq. (90) 
implies, in particular, 

[/o,g] = ik/~ g, 

where k = m/ r, with m the poloidal mode number and g the 
r-dependent amplitude of a linear perturbation. 

It is easily seen that the reduced tokamak safety factor, 
q, is given by 

1 -I at/lo -= -r -. q ar 
Thus, from Eq. (19), the parallel gradient linearizes to yield 

VIII --+ ik ll I + ik/~ t/I. 
Here kll =n - m/q, where n is the toroidal mode number. 
Finally, we write al/ar = - iwj, defining the normalized 
mode frequency, and introduce the normalized drift fre­
quencies, 

W •• = - 8kp~, w., = - (Tj/Te)w ••. 

These quantities are related to the conventional, unnorma­
lized drift frequencies by the expected factor of r A/E. 

We now consider the linearized versions of Eqs. (72)­
(74). For simplicity we let T j = Te , omit equilibrium current 
gradients, and neglect the resistive diffusion term in Eq. (74). 
Then we have 

E= - iwt/I + ikllrp = 1]J + i(kll8p - w •• t/I), (91) 

8(w + f3w.,lv = kll 8p - w •• t/I, (92) 

w8p - w •• rp = 8f3kll (v + 2tJJ). (93) 

Note that E, in Eq. (91), is the normalized parallel electric 
field. The desired response function is the four-field conduc­
tivity 0'4 defined by 

(94) 
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The existence of such a conductivity cannot be guaranteed a 
priori; in general, it might be necessary to allow for addi­
tional terms on the right-hand side of Eq. (94). [In fact, the 
inclusion of equilibrium current gradient terms in Eq. (93) 
would contradict Eq. (94).] Yet kinetic treatments-at least 
those that neglect non-Maxwellian contributions to the equi­
librium distribution function-invariably yield such a gen­
eralized Ohm's law, even when temperature gradients are 
included. 10 

Equation (94) results in the four-field case because the 
parallel speed can be expressed as a linear combination of E 
and J. From Eqs. (92) and (93), 

c5(w + /3w.,lv = w-1(1 + ~i)( - iw •• E + 2c52/3kITJ), 
(95) 

where we have introduced the abbreviation 

(96) 

The physical interpretation of ~ i will be considered present­
ly. We next combine Eqs. (91) and (92) to write 

E = 77J + ic5(w + /3w.,lv, 

and use Eq. (95) to eliminate v from the right-hand side. The 
result is Eq. (94) with 

0'4= [w-w • .!1 +~i)]I[77W+2ic52/3q(1 +~i)]' 
(97) 

The four-field conductivity is pertinent under prevailing 
tokamak experimental conditions. A mild generalization of 
Eq. (97), which has pedagogical interest, is obtained by keep­
ing electron inertia, i.e., by using Eq. (60b) instead of (60a). 
Since Jo is presumed constant, this modification simply re­
places 77 by 77., where 

77. = 77 - 4ic52(mJmi)w. (98) 

After making this replacement, it is convenient to undo 
our various normalizations, rewriting 0'4 in more conven­
tional notation. The unnormalized conductivity is denoted 
by 0'. ' and related to 0'4 by 

0'. (w,kll ,vel = c2rA 0'4/(41Ta2), 

as can be seen from Eq. (28). We also introduce the electron 
and ion thermal speeds, Vs = (2TJms)I/2(S = i,e), and the 
electron collision frequency Ve which satisfies 

O's = 2e2n/me ve' 

Here O's is the Spitzer conductivity ofEq. (8); from Eq. (30) 
we notice that 

41Ta2/(c20's) = 2(mJmiWV e' 

Thus one finds that Eq. (97) can be expressed as 

0'. =O's[1- (w./w)(1 +~i)] [1-2i(w/ve) 

+ i(kll Ve)2(l + ~;)I(wvel] - 1, 

with 

Here we used Eq. (68) to neglect 0 liP) terms. 

(99) 

(100) 

Because of the radial dependence of k ll , which vanishes 
at the mode-rational surface, 0'. (w,kll ,ve ) is a strong func­
tion of radial position. Very close to the rational surface, 
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0'. ::::0'. (w,O,ve ) = O's [1- (w./w)]/[ 1- 2i(w/ve)] , 
(101) 

which reduces to 0' s when Ve > w > w.' as it should. This is 
the limit described by RMHD. As noted in Sec. I, few distur­
bances are so localized as to have w (or Ve »kll Ve throughout 
their radial extent. Equation (10 I) is difficult to justifiy under 
typical experimental conditions. 

Proceeding to larger values of k II ' we next suppose that 
w>kllvi , without constraining the size of (w/kllve). In this 
regime,O'. is given by the~i = o limit ofEq. (99), a formula 
first derived by Rutherford and Furth.13 Its most striking 
feature is that 0'. becomes small, 

(102) 

for kll ve>w>kll Vi' It is not hard to trace this behavior to the 
c5p and c5J terms in Eqs. (72) and (74); Eq. (102) is essentially 
an artifact of electron adiabaticity at large kll Ve (Ref. 7). 

Finally we suppose that w<kll Vi; when w -w., this or­
dering pertains at quite moderate distances from the rational 
surface. There 0'. achieves its asymptotic limit, 

0'. ----..ie2n/(mi w), for kll ----.. 00. (103) 

Equations (99)-(103) may be compared to the corre­
sponding results of small-gyroradius kinetic theory. The ki­
netic conductivity, O'k, emphatically differs from the right­
hand side of Eq. (97): usually expressed in terms of Z 
functions, 0' k is a transcendental function of w, V e , and k II ' 
with imaginary contributions corresponding to Landau 
damping.1O Since a fluid description, involving truncated 
moments of the distribution function, necessarily misses mi­
croscopic resonance effects, this disagreement is not surpris­
ing. One would expect agreement only in the "cold" limit, 
k II Vs ----.. 0, where truncation is essentially exact. In fact O'k 
does agree with 0'., i.e., with Eq. (101), in this limit. 

What is noteworthy is that the similarity between 0' k 

and 0'. extends beyond Eq. (101); the asymptotic limits of 
Eq. (102) and (103), in which k II Vs is large, are also in agree­
ment. Thus 0'. reproduces the gross spatial features of its 
more accurate kinetic counterpart, missing only the Lan­
dau-resonance structure near w = k II Vs' The verification of 
this statement is straightforward for the case of Eq. (102); 
one computes O'k for stationary ions, and then considers the 
appropriate limit of the resulting Z function. The case ofEq. 
(103) is more complicated (and less frequently important), 
because the kinetic treatment must include not only ion par­
allel streaming but also perpendicular inertia, which enters 
kinetic theory through the polarization drift. [This fact is 
easily appreciated from Eq. (71), which shows that au /ar is 
comparable to VII J.] Here we refer to the kinetic analysis of 
Coppi et aI., II which includes the full ion dynamics and 
agrees with Eq. (103) when particle conservation is taken 
into account. 

The omission of Landau damping in 0'. is rarely impor­
tant in applications. Instabilities of practical interest are of­
ten sensitive to the asymptotic structure of 0'. -its decay for 
increasing k II-but rarely sensitive to the details of wave­
particle resonance. For example, when Eq. (99) is applied to 
the collisionless tearing mode,27 the resulting dispersion re­
lation agrees with that obtained from O'k except for a minor 
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difference in numerical coefficients. Similarly, u. gives a 
physical description of the semicollisional regime in the iso­
thermal case. 

Finally we point out that the four-field conductivity is 
not u., since the four-field model, neglecting electron iner­
tia, contains 1'/ rather than 1'/ •• The difference is important 
only for small Kll' and only when w;>ve • It obviously rules 
out application of the strict four-field model to linear colli­
sionless tearing modes. Fortunately the majority of observed 
tokamak disturbances have W -w. < Ve. 

IV. STOCHASTIC DIFFUSION 

We show here that the four-field model contains suffi­
cient physics to describe the diffusion of plasma in a stochas­
tic magnetic field. Rechester and Rosenbluth28 have com­
puted the plasma diffusion in a given, static magnetic field 
when self-consistency and curvature are neglected. We show 
that similar results apply in the present model with similar 
simplifications. We do not attempt to provide a self-consis­
tent description of the perturbed fields rp and ",. 

We will see that the crucial terms to keep in this analysis 
are the parallel pressure gradient in Ohm's law and the par­
allel compressibility term, proportional to ~, in the pressure 
evolution law. It is also instructive initially to keep the elec­
tron inertia in Ohm's law. Neglecting the self-consistent 
fields rp and atft/ at, and curvature effects, Eqs. (60b), (73), and 
(74) become 

ap 1 (1 T j )"2 --- +- 1'/ v IP aT 2 Te 

(104) 

a 1 mj '1'1 mj 
-UJ= ---VIIP-_·'---J, 
aT 2 me U me 

(105) 

.!!!... = - -.!.. (1 + ~) VIIP. aT 2 Te 
(106) 

Since m;/me:> 1, we neglect v relative to 28Jin Eq. (104). 
Then the system above is mathematically equivalent to a 
conceptually more transparent system: two beams of elec­
trons traveling along field lines in opposite directions at the 
electron thermal velocity. Ifwe define the density in each of 
these beams as n + and n _, where 

n+ +n_ =p~2me/mj> n+ -n_ = 48J..[jJ, 

then, in terms of unnormalized space and time variables, n ± 

satisfy 

an± 2 
---a;-±VeVlln± +v(n± -n± )=DcVl(n+ +n_). 

(107) 

Here Ve = ~T.lme; v(n+ - n_) gives the Coulomb colli­
sional equilibration rate (i.e., friction) and Dc gives the classi­
cal electron diffusion across field lines. Equation (107) is 
therefore equivalent to the situation examined by Rechester 
and Rosenbluth. 28 Thus n + and n _ diffuse at the rates corre­
sponding to whichever collisionality regime is appropriate 
for the given stochastic magnetic field and the size of v. 
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In a stochastic magnetic field, the average nonlinear 
terms VIIJ and Vilp produce diffusion operators. We now 
verify that these operators have the correct scaling in the two 
collisionality regimes by applying the direct interaction ap­
proximation to Eqs. (104)-( 106) (neglecting classical particle 
diffusion). 

We use the notation of Dupree, 29 and consider the evo­
lution of perturbations ill and Jill about the equilibrium 
tfJ°l. When multiple-helicity perturbations tfJII are present, 
we have 

a;; I + 2{J8(! JIII- [",IOI,JI II ]) + Cllplll + ClzJ lll = 0, 

(108) 

(109) 
+ C2IJ(l) + C22P(1) = 0, 

where 1'/1=1'/m;lr82me' and the cij are the diffusion opera­
tors, which are defined recursively by 

cllp(l) + clzJ(l) = - Up ([",II),J I2)]), 

C2IJ(l) + Cz2P(1) = - (l/48)(m;lmel< [",(l),i2)]). 

(110) 

(111) 

The quantities i 2) and J(2) are driven by p(1) and JII); i.e., 

--+ 2{J8 -- - [tft°,J (2
)] + c lli 2

) + cl zJ (2
) 

a'P(2
) (aJ (2) ) 

at az 
(112) 

= 2{J8[",(l),J(l)], 

(113) 
+ C2 tP(2

) + C2zJ (2
) = (m;l48me)[ ",(l),il)]· 

The operators Cll and C21 are the parts of J(2) and i 2) 

driven by p(l), and C12 and C22 are the parts driven by JII). This 
decomposition of J(2) and i 2

) is justified in the DIA, since 
Eqs. (112) and (113) are linear in J(2) andp(2). 

The presence of the cij in Eqs. (112) and (113) distin­
guishes the present analysis from quasilinear theory. With­
out these operators, agreement with previous results is not 
obtained in either collisionality regime. 

To simplify the analysis we take ",(1) to be constant 
around each rational surface (as is appropriate for tearing 
mode turbulence). We also take the shear to be constant so 
VilA = m[(r - rs)/LslA ==.ikIlA, wherers is theminorradi­
us of the rational surface and m is the poloidal mode number. 
Then CI2 and C21 vanish by parity considerations. Further­
more, for nearly constant ",(1), 

[",II),A] = _ ~B~II ~~, 

where 8Br = i(m/rs)",(l). 
We then obtain coupled nonlinear equations for Cll and 
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(a I ) - I mjik ll ] - I (I») a 
- 2{38ikll - + 1] + C22 -- 8B -. at 4<5mc ar 

These are diffusion-like operators. We will Markovian­
ize in both space and time for simplicity; that is, we assume 
that the nonlinear decorrelation time is short compared to 
the evolution time ofil) andJ(I), and that the decorrelation 
scale length is short. 

We then have CII = DII iflar and Cn = D22 a2/ar, 
where 

( 
I D if mj k -1'1QlO:k )_1 

X 1] + 22 ar + 4<5m
e 

"CII ~u " 

and similarly for C22. 
For the present purposes it is adequate to compute only 

the scalings oftheD 's. For this we need the nonlinear decor­
relation width.:1x, which is the scale of the broadened propa­
gator. Given this width, the number of Fourier harmonics 
contributing at any point in space is -.:1xIA, where A is the 
typical spacing between rational surfaces. To find .:1x, we 
replace a lax -+1/.:1x and k II -+ ky.:1xlLs and balance the 
terms in the propagator obtaining 

I D22 f3mj k; .:1x4 

1] +-----
.:1x2 me L; DII 

and 

D tBm;lme)18B~)21.:1x 
II - 1]1 + D22/.:1x2 T' 

f3mj 18B ~)21 .:1x 
D22--- --

me (DII/.:1x2) A . 

We thus have three equations for DIIJ D22, and .:1x. 
We begin with the case of low collisionality, 1] I <D221 

.:1x2. Surprisingly, we find that the above expressions are 
degenerate for 1] -+ 0, and only the product DIID22 can be 
determined. However, for 1] -+ 0, this difficulty can be 
avoided by decoupling the equations first as in Eq. (107), and 
then applying the DIA. We then can determine the diffusion 
coefficients of Eqs. (107) similarly to the above, but without 
degeneracy. The uncoupled analysis shows that DII = D22, 
so thatDII-D22-tBm;!me)1/2Dm, where ~f3m;lme is the 
electron thermal velocity in Alfvenic units, and 

Dm = Lsl8Dk121kyA 

is the magnetic field line diffusion coefficient in the quasilin­
ear limit. 

The boundary between the collisional and collisionless 
regime, D22/.:1x2 _1]1, can be restated using the.:1x above as 

L
n

==( .:1~> ) -I (f3mj~7e) 1/2 

Note that (.:1xky I Ls ) -I can be interpreted as the parallel 
nonlinear correlation length of the magnetic field. The right-
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hand side is the normalized collisional mean free path. 
Krommes30 has shown that, with .:1x expressed in terms of 
8B 2, .:1xkylLs scales like the Lyapanov exponentiation 
length; thus this criterion is similar to that found previous­
ly.28 

For 1] I ~ D22/.:1x2, the above expressions give 

DII -(DmIL n )tBm;lme1]I), 

wheref3m;!(me 1]1) is the normalized collisional parallel heat 
conductivity. This is the collisional result of Rechester and 
Rosenbluth, but missing a logarithmic factor (which is rarely 
much different from unity). A similar discrepancy has been 
found by authors30 with different formulations of the colli­
sional diffusion coefficient, and is attributed to the fact that 
the DIA by its nature often underestimates correlations in a 
system. 
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Erratum: "A four-field model for tokamak plasma dynamics" 
[Phys. Fluids 28, 2466 (1985)] 

R. D. Hazeltine, M. Kotschenreuther, and P. J. Morrison 
Institute/or Fusion Studies, The University o/Texas at Austin, Austin, Texas 78712 

(Received 18 September 1985; accepted 10 October 1985) 

Equation (83) is not in general correct: the energy de­
fined in Eq. (82) is not generally conserved by the four-field 
equations of motion in the dissipationless limit. Instead H is 
invariant only in two-dimensional (axisymmetric or helical­
ly symmetric) theory. The discussion following Eq. (83) is 
correct; in particular, the compressible, reduced magnetohy­
drodynamic (CRMHD) energy ofEq. (85) is indeed con-

served. Also, the "cold-ion" CRMHD energy H 
= ! < IV1 1/112 + IVl 97 12 + v2 + p2/2,8) is conserved for the 

three-dimensional four-field model in the limit Tj = o. Dis­
cussion of energy conservation together with additional con­
stants of motion for the complete four-field model will be the 
subject of a future publication. 
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