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Amblpolarons: Solitary wave solutions for the radial electric field in a plasma 
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The ambipolar radial electric field in a nonaxisymmetric plasma can be described by a nonlinear 
diffusion equation. This equation is shown to possess solitary wave solutions. A model nonlinear 
diffusion equation with a cubic nonlinearity is studied. An explicit analytic step-like form for the 
solitary wave is found. It is shown that the solitary wave solutions are linearly stable against all but 
translational perturbations. Collisions of these solitary waves are studied and three possible final 
states are found: two diverging solitary waves, two stationary solitary waves, or two converging 
solitary waves leading to annihilation. 

I. INTRODUCTION 

In recent years there has been growing interest in soli
tary waves and solitons since they are exact nonlinear solu
tions to certain classes of partial differential equations. Soli
tary waves are defined to be nonlinear solutions that 
propagate with a constant velocity (e). The shape of the solu
tion may be step-like as in the nonlinear Klein-Gordon 
equation 1-4 or pulse-like as in the case of the regularized
long-wave equation.4,5 Sometimes solitary waves possess ad
ditional properties; for example, the velocity (e) can increase 
with the wave amplitude (A ) and the width (k -I) can de
crease with the wave amplitude. Thus traveling shock wave
type solutions are included in this definition. Solitons can be 
loosely defined to be solitary waves having the further prop
erty that, if a soliton interacts with another soliton, then after 
the interaction the original structures are preserved and the 
velocities unchanged. Solitons have all or part of the inverse 
scattering machinery available for integration.6 

In this paper we will demonstrate that the radial electric 
field equation in a nonaxisymmetric torus possesses solitary 
wave solutions that we call ambipolarons. We find the spe
cific analytic form for these ambipolarons for a well-known 
model of the diffusion coefficients. The linear stability of 
these solitary waves is examined and it is shown that they are 
stable except for translation. Finally, we examine their inter
actions numerically and show they are not solitons; they lead 
to new structures when collided. This behavior is expected in 
light of the diffusive character of the model. 

II. SOLITARY WAVES FROM THE RADIAL ELECTRIC 
FIELD EQUATION 

The radial electric field for a plasma confined in a non
axisymmetric geometry is described by the radial compo
nent of Ampere's law combined with the continuity equa
tions for density and temperature. In terms of the particle 
fluxes, this electric field equation is 
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(1) 

where E is the radial electric field, EI is the low-frequency 
perpendicularly dielectric function, Za is the charge number 
of species "a," and r a is the particle flux of a (which is a 
nonlinear function of E, the density n", and temperature 
Ta ). In the diffusion term, E t < 1 is the inverse aspect ratio; D 
is the electric field diffusion coefficient 7 arising from the fin
ite orbit deviation from the flux surface, and satisfies 
D = O(1:a Z"eralazE lar). 

The diffusion equation in (1) is a nonlinear equation 
that has the property that 1:" Za r" = 0 may possess several 
real solutions.8 Typically in magnetic fusion applications 
1:" Za r" is found to have one or three real zeros. It is of 
interest to study the types of solutions of ( 1 ) in order to gain 
insight into the difficult problem of solving ( 1) coupled with 
the (nonlinear) equations for the density and temperature. 

It is easy to see that (1) allows solitary wave solutions. 
The macroscopic relaxation time of the electric field in (1) is 
1'E = EI /(1:aZ aearalaE). For parameters typical of fu
sion experiments, it is found that 1'E<1'p' where 1'p is the 
relaxation time of the density and temperature. This means 
that if the electric field, density, and temperature equations 
are started with arbitrary initial conditions, the electric field 
will relax first, with the density and temperature in ( 1 ) being 
the initial conditions. The electric field will then change on 
the slow 1'p time scale as the density and temperature change. 
If EI and E3 are two real solutions to 1:aZara = 0 and the 
initial condition on (1) is near E 1 in part of the space and 
near E3 over the rest of the space, then there will be a region 
of space where the initial conditions will vary from E I to E3• 

If this region is thin, that is, small compared to the macro
scopic length scale of the density and temperature (typically 
the plasma radius), then we can define a stretched variable 

11 = r/(Et .jl5) across this region and keep only second de
rivatives in (1) to obtain 

(2) 

Here we define t = t lEI' Since l1>r(Et < 1), we can extend 
the range of 11 from - 00 to + 00 and impose the boundary 
conditions on (2), E~E 1 as 11~ - 00, 'E~E3 as 11~ + 00. 
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In addition, since the density and temperature dependence 
in the flux varies on the long macroscopic length scale, this 
spatial variation can be neglected in (2) where we are 
concerned with the boundary layer for 1]-0(1) 
[hence r = O(Et )]. We look for solutions of the form 

u(z) = E(." - el), where z = 1] - et and e is an undeter
mined constant speed. On substitution of this form in (2), 
multiplication by dul dz, and integration from z = - 00 to 
z = + 00 with the condition that u' = duldz-o as 
z~ ± 00, we obtain 

e f:", (u,)2dz= L~3 dE~Zaera(E) 
= V(E3) - V(EI), (3) 

where we define the potential V(E) by 
V(E) = fE dE:Ia Zaera (E). This indicates that a real ve
locity e exists and hence a solitary wave solution to (1) is 
possible. Furthermore, we can see that one of the solutions 
EI or E3 is dominant in the sense that if V(E3) > V(EI) then 
the solitary wave will propagate in such a way as to create E I 
at the expense of E3• In this case EI is dominant. The oppo
site conclusion holds if V(E3 ) < V(EI). We propose to call 
these solitary wave solutions ambipolarons in view of their 
origin in the calculation of the ambipolar electric field in a 
plasma. We observe that V(E) was used in Ref. 9 to investi
gate stability of constant electric field solutions. 

We note that nonlinear diffusion equations like (2) have 
been studied both for their mathematical contentlO and as 
models for physical processes. These range from the spread 
of advantageous genetic traits in populations II (Fisher's 
equation) to signal propagation in bistable transmission 
lines 12 to pattern formation in diffusing and reacting me
dia. 13 

III. A MODEL EQUATION FOR THE RADIAL ELECTRIC 
FIELD 

In order to obtain an explicit analytic form for the ambi
polaron we study a simple model of (1). If we consider a 
single ion-electron plasma and take a constant electron tem
perature Te and constant ion temperature Tv then the flux 
for species a is ra = - DII.n(n'ln - ZaE ITa)' where the 
density is n = ne = n1and n' = anlar. We choose a model 
for Dn. and Dn, valid for a bumpy torus14

: 

where Ro is the major radius, Bo is the magnetic field on axis, 
and Va is the collision frequency of species a. Equation (1) 

then becomes 

a11 a 211 (11 3 +a11 + /3) 1 
aT - a1]2 = - [1 + 112(deln)2] [1 + 112(dJn)2] . 

(5) 

In (5), aa = n(TJTa )2Ta/(aprBova), where ap is t~e plasma 
radius. Here 11 is defined by 11 = apE ITi - An 3, with 
An = -(n'ln)ap(deaf -dia~)I[dea~(TJTe)+dia;] and 
da = (n/12)[Ta / (BoRo)]2/(vaa;). The dimensionless 
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time l' is defined by l' = t If[ El TII(nea;l]n3 I 
[a~de(TJTe)+d;dd}, while 1]=rIE,!{DTJ(na;e)n31 
[a;de(TJTe) + a;di ]} 112. The parameters a and /3 in (5) 
are given by a = R -A !/3 and /3 =AIIQ [R 1(3Q) - 1] 
- 2A !/27, where R = n2[ de(TJTe) + di ]/[ a;de(TJ 
Te)] + a;di and Q = (de - di)n2/(ded; - did;). The pa
rameters a and /3 are functions of radius through their de
pendency on n(r), but on the scale on which 1] = 0 (1) this 
spatial variation can be neglected. A good approximation to 
(5) is 

a11 a 211 
---- -(113+a11 +/3) (6) 
aT ~2-

since it is clear that the positive definite denominators on the 
right-hand side of (5) will only cause l' and 1] to be rescaled by 
some 11-dependent factor. Hence they will cause some dis
tortion of the solitary wave associated with (6) without intro
ducing any different physical content. We comment that the 
dissipative structure of (5) (aelaT) rather than a dispersive 
structure (a 2elar) would lead us to expect shock-like solu
tions. 

In (6) the cubic on the right-hand side can have one or 
three real roots. The condition for three real roots is a3 I 
27 + /3 2/4<0, which implies a necessary condition of a < O. 
From the definition of a and /3, this can be satisfied at the 
edge of the plasma where the density gradient is the steepest. 
On the range 1]£( - 00,00) three steady-state solutions of (6) 
are obvious. If the three roots of the cubic are 11v 11 2' 11 3 

ordered such that 111 < 112 < 113, then 11 = 11 iJ; = 1,2,3 is a 
steady-state solution ofEq. (6). Furthermore, ifwe write the 
rhsof(6) as - V'lE), then the solutions 111,; = 1,2,3 are the 
stationary points of V (E). From (6) we can easily see by usual 
linear stability analysis that minima of V (E) are stable while 
maxima are unstable. By integration of the rhs we see that 
111 and 113 are minima and hence stable, while 11 2 is neces
sarily a maxima of V (E) and hence unstable to small pertur
bations. 

We also know from the analysis leading to (3) that (6) has 
a solitary wave solution. For (6) an explicit analytic form for 
the ambipolaron is 

11(1',1]) = u(1] - eT) = u(z) = (A 12)(tanh kz - d), (7) 

where d = D I A and the offset D satisfies the cubic 

D3 +aD +/3= O. (8) 

The amplitude A satisfies 

A 2 = _ 3D 2 - 4a (9) 

(note that a < 0 for three real roots and hence A is real), the 
wave vector k satisfies 

k = IA 1/2v'2 , (10) 

and the wave velocity e is determined in terms of the offset by 

e = (3d 14)(A 2Ik). (11) 

With A given by (9), the three roots of the cubic are 
D, - A (1 + d )/2, and A (1 - d )/2. Hence we can see that if 
we choose one of the roots of the cubic to be D then the 
ambipolaron expressed by (7) will have asymptotic limits on 
the other two roots. This means that there are six solitary 
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FIG. 1. The three ambipolarons for A > 0 and if 2 ~ O. 

waves represented by (7). Three arise because we can choose 
anyone of the roots of the cubic to be D while for each D, A 
can take positive or negative values, as is clear from (9). We 
can also see that if one asymptotic limit of the ambipolaron is 
a stable root 'B 1 or 'B 3 and the other is 'B 2' then we necessar
ily have V( 'B 2) - V( 'B 1,3 ) > 0, and so the stable root will be 
the dominant root. That is, the solitary wave will always 
propagate in such a way that it annihilates the unstable root 
and increases the stable root. Note, however, that this anni
hilation will only be linear in time, whereas if 'B = 'B 2 for 
1/E( - 00,(0), then the plasma will decay exponentially fast 
away from 'B 2' 

In Fig. 1 we show three of the ambipolarons for 'B 2 < ° 
and 'B 2> 0. For 'B 2 <0 we have V('B 3) < V('B II; hence the 
ambipolaron with asymptotic limits 'B 3 and 'B 1 will propa
gate in such a way that it enhances 'B 3 and annihilates 'B l' 
For 'B 2 = 0, V ('B 3) = V ('B 1) and the ambipolaron will be sta
tionary. For 'B 2> 0, V('B 3) > V('B 1) and theambipolaron will 
be stationary. For 'B 2> 0, V('B 3) > V('B 1) and the ambipo
laron will propagate in such a way as to annihilate 'B 3' In 
Fig. 2 we draw the ( fJ,a) space where three real roots occur 
and indicate the regions where C2 ~ 0. The velocity Cj is the 
velocity ofthe wave with D = Dj(i = 1,2,3). 

We observe the similarity between this analytic form for 
ambipolarons and kinks that occur in tfJ4 field theory.l-4 
Kinks have the form 

--------~-4~~-------~ 

FIG. 2. Plot of the (p,a) space showing the regions wherec2«) (>)0. 
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for any constant 1/0 and satisfy the steady-state nonlinear 
K.lein-Gordon equation, which is 

This corresponds to choosing fJ = 0, a = - 1 in (8), and 
then taking the root D = 0, which gives C = 0. Unlike the 
theory of kinks, the nonlinear diffusion equation is not invar
iant under a change in the direction of time. This will lead to 
significant differences between the interll¢tions of two ambi
polarons and the interactions of two kinks. However, (6) is 
invariant under the change 1/-1/ - 1/0 fOr any 1/0; hence in 
(7), if u(z) is a solution of (6), then u(z + aJ for any constant a 
is also a solution. This is just the statement of translation 
invariance. 

IV. LINEAR STABILITY OF AMBIPOLARONS 

We can investigate the linear stability properties of 
those ambipolaron solutions in the following manner. We 
define tP(z,r) by 'B(1/,r) = u(z,r) = tP(z,r)e - cz/2 • Then (6) be
comes 

atP 8F [tP] a; = - ---a;p , (12) 

where the Liapunov functional F[tPl is defined by 

F [tP] = foo dZ[ W)2 + t/? (c2 
+ a) 

-00 2 2 4 

+ ~4 e - cz + fJt/leCZ/2] , (13) 

with 818tP being the functional derivative. If we denote the 
ambipolaron by tPA [tPA = ecz/2(A 12)(tanh kz - d)], then 
it satisfies8F [tPA ]/8tP = 0. Furthermore, it is stable if 82F 1 
8t/? > 0, and a necessary condition for asymptotic stability is 
dF 1 dr<.O, where equality is achieved when tP = tP A . The lat
ter condition is automatic for equations of the form of ( 12), 
for dF Idr = f~ 00 (8F 18t/1)atPlar dz = - f~ 00 (8F 18tP) 2 

Xdz. In order to verify the former we expand F[tP] about 
F [ tP A ] by writing tP = tP A + 1/ and obtain 

1 foo [a 2 (C2 ) 
F[tPA +1/] =F[tPA] +2 -00 dZ1/ ~z2 + "4+ a 

+ 3~ 2 (tanh kz _ d)2] 1/. (14) 

From (14), we see that if we solve the eigenvalue problem 

[ a 2 (C2 ) 3A 2 ] ~r + "4+ a +-4-(tanhkz-d)2 7Jm 

(15) 

where the eigenvalues are Wm ,m >0 and Wm >0 for all m, then 
we will have 82F 18t/?> ° and hence the ambipolaron in (7) 
will be linearly stable. Conversely, if for any m, Wm < 0, then 
the ambipolaron is linearly unstable. 

From the definition of C [(8H 11)], we can see that for 
d>m1/2 and d < - (~)I/2,C2/4 +a>O, which implies from 
the theory of Sturm-Liouville equations1S that all the eigen
values Wm are positive. In fact, this is true for all d. To see this 
we write (15) as the Schrodinger equation, 

Hastings, Hazeltine, and Morrison 71 



Downloaded 06 Jul 2008 to 128.83.63.21. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp

d
2TJ

2m + [Em - 2U(Y)]TJm(Y) = 0, (16) 
dy 

where y = Az/2.j2, Em = 2[ 4wm/A 2 - 2 - (~)d2], and 

the potential 2U( y) is given by 2U( y) = - 6 sech2 Y 
- 12 dtanhy. We note from the definition of U( y) that 
(16) is invariant under the transformation d - - d, 
y _ - Yi hence we need only consider (16) for - 1 < d<O. 
For d = 0, U( y) is a symmetric well in which the quasiparti
cle described by (16) moves. It is well known that for a 
symmetric well we can expect to find bound states (discrete 
eigenvalues) as well as continuum eigenvalUes. As d - - 1 
the well becomes more and more asymmetric and we can 
expect to find that bound states can fit in the well and only 
continuum states will exist. This SchrOdinger equation ( 16 ) 
can be solved exactly.16 It is found that for - i < d <0, there 
are two discrete eigenvalues as well as continuum states. The 
two discrete eigenvalues are, for m = 0, 

(()o = 0, rio! y) = e
3 

dy sech2 y (17) 

andform = 1, 

(() =~(~_E..d2), 
1 4 2 2 

7]1(y) = e6dy sechy (1 __ 1_ tanh Y). 
1-3dl-3d 

(18) 

The continuum eigenvalues satisfy (() k > (() I' We can see from 
(17) and (18) that therefore (()m>O for all m. For 
- ~ < d< - i, only the m = ° discrete eigenvalue exists. For 
- l<d< -~, only the continuum eigenvalues exist. The ei-

genfunctions for d > 0 can be obtained by replacingy by - Y 
in (17) and (18). The m = 0 eigenfrequency is the translation 
mode. This also exists for the kink in tfJ4 theory. Such a mode 
must exist since, as pointed out previously, Z_Z + 0 in u(z) 
will still give a solution to (6). The form of the eigenfunction 
in (17) follows since 7] (X rPA (z + ~z) - rPA (z) = ~z arPA/aZ. 
The m = 1 eigenfunction corresponds to the shape mode 
found in tfJ4 theory. This is a perturbation on the shape of the 
ambipolaron around z = 0 that vanishes for z_ ± 00. 

We have shown that for all values of d,(()m >0. Hence we 
arrive at the conclusion that except for the neutrally stable 
translational mode, the ambipolaron solution (7) to (6) is lin
early stable. This is true even if one of the asymptotic limits 
of the ambipolaron is the unstable solution ~ 2' We speculate 
that this surprising conclusion is related to the result from 
quantum field theory8 that the kink solution is completely 
stable since the potential barrier in function space separating 
'll = u(z) from'll = ~ 1,2,3 is in some sense infinite. 

v. GENERALIZED AMBIPOLARONS 

We have shown that (2) possesses solitary wave solu
tions. More generally it can be shown that nonlinear diffu
sion equations of the form 

aE = a
2
E + fIE) (19) 

at ~2 

possess unique bounded solitary wave solutions10 under 
some relatively weak conditions of f(E). The theorem in 
Ref. 10statesthatiff(E) = o for E = E 1,E3 andf'(E1 ) <0, 
f' (E3 ) < 0 with fee) < 0 for E near E l' and fee) > 0 for E 
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near E 3, then there exists a unique bounded solitary wave 
solution of (19) u(7] - et) with u( - (0) = E1, 
u(oo) =E3,andE1<u<E3• 

We note that the ambipolaron with D = D2 [the inter
mediate root of ( 8 )] satisfies the requirements of the 
theorem in Ref. 10 and hence is unique. However, if D = Dl 
or D3, then one of the limits of the ambipolaron is D2, which 
hasf' (D2 ) >0. Hence the requirements of the theorem are 
not satisfied for this ambipolaron. This raises the question of 
whether it is unique. As a partial answer to this question we 
have studied (6) for the special case f3 = 0 to see whether 
other solutions are possible. 

If we substitute u(z) = u(7] - et) in (6), we obtain the 
ordinary differential equation (ODE) 

u" + cu' - (u 3 + au + f3) = 0, (20) 

where u' = du/ dz. We shall look for solutions of (20) of the 
form 

u(z) = f(z)/g(z), 

where 

/= ao + o+ekz + o_e- kz
, 

g = bo + b +ekz + b _e - kz. 

(21) 

(22) 

(23) 

The ambipolaron solution in (7) is obtained by taking 
0 0 = bo = 0, a+ =A /2(1-D/A), 0_ = -A /2(1 
+ D /A), and b+ = b_ = 1. Clearly the form for u(z) in 
(21) is a generalization of the solitary wave form in (7). We 
define (T = ± 1 and 

DO' = au/bu , a = oo/bo, 

B=b+b_. 

(24) 

(25) 

Then a solution like (21) exists if and only if the following 
seven relations are satisfied: 

b~(D! +aDu +/3) =0, (26) 

B~bo[ - k(k - (Te)(o -Dr) + 3(aD~ +f3) 

+ a(Wu + 0)] = 0, (27) 

but k2[b~(a-Du)+4aB(D+ -D_)] 

+ (Tck [b~(o - Du) - 2(TB(D+ - D_)] 

+ 3B(DuD+D_ +/3) + 3b~(02Du +f3) 

+ 2B(D -u + W u) + ab~(D<T + 2o)} = 0, (28) 

bo[ - 3k2B(D+ +D_ - 20) - 3ekB(D+ -D_) + 6Bf3 

+ 6BaD+D_ +b~a3 +b~ f3+ 2aB(D+ +D_ +0) 

+ aab~] = O. (29) 

We note that b + and b _ occur only in the combination 
B = b +b _. This is because (20) is invariant under translation 
inz, hence the solution (21) must remain a solution on trans
lation. The ambipolaron solution can be obtained from the 
set (26)-(29) when bo and 0 vanish. 

We now consider (26)-(29) for the special casef3 = 0 and 
show that there are other nonlinear solutions to (20). For 
bounded solutions at z - ± 00 we want b CT =I- 0; hence 
from (26), 

D! +aDu =0. (30) 
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We take a <0 (for three real roots); then DO' = 0, ±" -a. 
IfwechooseDO' = 0, then from (27) we obtain a = k(k - uc) 
and, therefore,c = O,a = k 2. From (2S) we find b ~(k2 + 2a) 
= 0 whence bo = 0 and only the ao = abo terms in (IS) sur-

vive. These yield SBk 2 + a~ = 0, which implies B > 0 and 

ao=2~2B ~-a. 

This completes the solution for DO' = 0, which can be writ
ten 

u = ,J2 ~ - a sec [ ~ - a(z + zo)] (31) 

for any constant Zoo We note that it has spontaneous singu

larities in it [at (z + zo)~ - a = (2n + 1)1T/2,n = 0,1,2, ... ] 
and therefore is not the ambipolaron solitary wave. 

We next show that when bo = 0, the only possible solu
tion either has ao = 0 and hence corresponds to the ambipo
larons, or has DO' = 0 and is the solution in (31). To prove this 
we note that when /3 = bo = 0, (26H29) reduces to (30) to
gether with 

- k (k - uc)ao + 200 D ~ = 0, (32) 

4uk2B(D+ -D_) - 2ckB(D+ -D_) + 3BDO' D+D_ 

+ 3a~ DO' -D! B(D_ O' + 2DO') = 0, (33) 

6Bk 2ao + 6BaoD +D _ + a~ - 2D! Bao = 0, (34) 

where we have used DO' #0 to infer a = - D ~ from (30). It 
is clear that (32) has two classes of solution depending on 
whether ao vanishes. If ao = 0 one obtains from (33) that 
D + - D _ = A = Sk 2, which is the/3 = 0 limit of(7). Hence 
we take ao#O. Then (34) gives 

a~ = 2B (D! - 3k 2 - 3D + + D _). 

From (32) we obtain c = 0 and k 2 = - 2D~, which give in 
(34) 

(35) 

However, k 2 = - 2D! implies that D _ = ± D +' which 
on substitution in (35) indicates that there is no solution for 
DO' #0. Hence we see that for /3 = 0 = bo the only regular, 
bounded solutions of the form (21 H23) are the ambipolaron 
solutions. 

In a similar manner we can obtain the solutions of the 
form (21) when bo#O. The solutions require a = - m2 < 0 
and are specified by 

c=O, k 2=2m2, 

D+ = -D_ =mT, T= ± 1, 

b~/B = 4m2/(m2 _ a2), 

s = sgn(m2 - a2
). 

The parameter a is free. The solution is then 

(36) 

(37) 

(3S) 

(39) 

u(z)=m [2a+JLT~lm2-a21(t-slt)] , (40) 

[2m + JL~lm2 - a21 (t +slt)] 
wheret=exp[k(z+zo)],JL= ± I,T= ± l,ands= ± 1. 
The parameter JL arises from the solution to (2S). All three 
signs can be chosen independently, although a and s must be 
chosen consistently with (39). Thus (40) has eight distinct 
families of solutions. If a = 0 then one finds two solutions: 

u = m tanh(kz/2) (41) 
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and 

u = m coth(kz/2). (42) 

The solution in (41) is the D = 0 limit of (7). The solution 
given by (32) is new but has spontaneous singularities in it (at 
Z = 0). For a#O there are obviously bounded solutions in 
(40) (s = + 1, JL = + 1). However, they are all translations 
of (41). We show this in the following manner. Supposing 
first that m > a, we introduce 8 such that 

al[ ~m2 - a2] = sinh 8, 

m/[ ~m2 - a2 ] = cosh 8. 

We also let¢ = k (z + zo). Then, sinces = 1 form >a, we can 
write 

u = m (sinh 8 + T sinh ¢)/(cosh 8 + cosh ¢). 

Using elementary identities one finds that 

u=mtanh[(8+T¢)/2], for m>a. 

Thus (40) is simply a displacement of(41). 
For m < a the definitions of sinh 8 and cosh 8 are inter

changed (since we must have cosh2 - sinh2 = 1), and 
s = - 1. The result is to yield the above tanh(8 - ¢)/2 solu
tion when T = - 1 and 

u = m coth[ (8 + ¢)/2], for m <a, 

when T = 1. Of course this generalizes (42). Hence we con
jecture that for /3 = 0 the ambipolaron solution is the only 
bounded nonlinear solution to (20). We speculate that for 
/3 # 0 the same conclusion holds even when the conditions 
on feE) after (19) are not satisfied. 

VI. COLLIS'ONS OF AMBIPOLARONS 

An important difference between a solitary wave and a 
soliton is that solitons are solitary waves interacting with 
each other in such a way that the original structure of each 
soliton is unchanged after the interaction. In this section we 
have numerically examined the interaction of two ambipo
larons in order to elucidate the nature of these solitary 
waves. 

The nonlinear diffusion equation (6) was solved by a 
split-step fast Fourier transform method. 17 The linear dis
persion was solved exactly in the Fourier space, and the non
linear terms advanced in time by using the partially correct
ed second-order Adams-Bashforth scheme. IS Typically 
computations used 27 grid points and a time step ofO.D02. 

The initial condition for (6) was chosen to be 

E (17,t = 0) = (~ tanh k (17 + 170) - ~) 

+ ( - ~ tanh k (17 -170) - ~) - (~ - ~) • 
(43) 

This is the sum of an ambipolaron and an anti-ambipolaron 
(A-+ - A ) situated at 17 = - 170 and 17 = 170' respectively, 
with an offset added so that they do not interfere with each 
other if they are widely separated. We can see this by noting 
that for 17< - 170' E (17,t = 0) -+ - (A + D )/2; for - 170<17 
<170' E (17,t = 0) -+ (A - D )/2; and for 17>170, E (17,t = 0) 
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RE(F) 

FIG. 3. Two diverging ambipolarons (a = - I, P = 0, Xo = 10, D = D J 

= -1). 

-+ - (A + D )/2. Hence each solitary wave has the right 
asymptotic limits and each will be an (approximate) solution 
to (6) if 110> 1. 

Three types of time dependent solutions have been 
found. These are shown in Figs. 3-5. If D = D I , then from 
Fig. 1 we see that the two ambipolarons will diverge. This is 
shown in Fig. 3 where the wave fronts diverge with velocity 
given by (11) until they hit the boundary of the space and 
annihilate. As previously mentioned, the ambipolarons 
move in such a way as to enhance the stable root 'If 3 at the 
expense of the unstable root 'If 2. If D = D2 = 0, then each 
ambipolaron will remain stationary. This is observed in Fig. 
4 where the pulse-like structure composed of the two waves 
persists. This indicates that for D2 = 0 this soliton-like struc
ture is a steady-state solution of (6). If D = D3, then (Fig. 1) 
the two ambipolarons will converge. This is seen in Fig. 5 
where the two waves converge at the speed given by (11) until 
they mutually annihilate each other, leaving the system on 
the stable root 'If I. 

Thus, unlike solitons, the interaction of these solitary 
waves can cause their destruction. However, a pulse-like so
lution can arise when two ambipolarons exist. Thus we see 
that these solitary waves behave like shock waves. This is 
evidenced by the characteristic shock-like interaction in 
Fig. 5. 

RE (F) 

T 

x 

FIG. 4. Two stationary ambipolarons (a = - I, P = 0, Xo = 10, D = D2 
=0). 
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RE(F) 

T 

FIG. 5. Two converging ambipolarons (a = - I, P = 0, Xo = 10, D = D3 
= 1). 

VII. CONCLUSIONS 

Finally, if we return to dimensional variables we can 
obtain the size and speed ofthe ambipolarons in (7) for typi
cal parameters. We take ap = 20 cm with Te = T j = 300 e V. 
The diffusion time 1"p::::: 10 msec while 1"E~~d/50 msec. 
Therefore, the approximation used to decouple (1) from the 
density and temperature equation (1"E<1"P) is clearly satis
fied. We choose a cubic density profile with 
n(r=0)=5XI013 and n(r=ap )= IX 1013 cm-3

• The 
three real roots for the rhs of (6) exist for the last 2 cm of the 
plasma. The electric fields in this region are in the range 15-
150 V /cm. The length scale over which the ambipolaron 
changes is of the order of 0.2 cm, which is a few ion gyroradii. 
The velocity of the ambipolaron is in the range 1-3 X 106 

cm/sec; this is much smaller than the ion thermal velocity, 
which is 16X 106 cm/sec. 

We conclude that these ambipolaron solitary waves 
could exist in an experiment. Unfortunately, no experiment 
to date has observed them. Future work will address the 
question of how these solitary waves are modified when a 
and P are allowed to be slow functions of space. 
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