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Local conservation laws for the Maxwell-Vlasov and collisionless kinetic guiding-center theories 
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With use of a recent variational formulation of the Maxwell-Vlasov and guiding-center theories 
[D. Pfirsch, Z. Naturforsch. A 39, 1 (1984)], the energy-momentum and angular momentum tensors 
for such theories are derived and the corresponding local conservation laws are proven. The 
energy-momentum tensor is shown to be symmetric in its spatial components while the angular 
momentum density is naturally antisymmetric. 

I. INTRODUCTION 

In this work we use a recent variational formulation for 
the Maxwell-Vlasov equations and related theories (Ref. t, 
henceforth called I) to obtain local conservation laws. 
This formulation differs from previous such theories. In 
particular it differs from the well-known Low-Lagrangian 
formulation2 in that it is not only an Eulerian description 
for the electromagnetic fields, but also treats the particles 
or guiding centers in an Eulerian manner. This facilitates 
application. The formulation of I differs from another 
Eulerian variational principle given in Ref. 3, which is 
based upon a noncanonical Hamiltonian description. In 
Ref. 3, the particles are treated in an Eulerian manner by 
decomposing the phase space density into "Clebsch-like" 
potentials, while in I the Eulerian description of the parti
cles is based upon a Hamilton-Jacobi theory, which plays 
the role of a tool; all final expressions are expressible in 
normal terms. 

The problem of obtaining conservation laws for 
guiding-center theories can be characterized as follows: 
given the solutions of the collisionless kinetic guiding
center equations-i.e., the guiding-center phase space den
sity /gv(X, v II ,J.L,t) for particles of species v-one can im
mediately write down expressions for the guiding-center 
charge and current densities 

Pg= l: f /g.,4v II BdJ.L , 
v 

jg = l: ev f (VD" +vll)/g.,4v IIB dJ.L , (1) 
v 

where the VD are the drift velocities for particles of 
species v. Th~ real charge and current densities differ, 
however, from these expressions by certain polarization 
and magnetization contributions 

(2) 

The problem is then to find the correct expressions for the 
electric polarization P and the magnetization M such that 
all the necessary conservation laws hold. These quantities 
were obtained in I where the new method generalized pre
vious results by also including the polarization drift. This 
difficult problem resisted solution until now. Also in I, 
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expressions for the energy and energy flux densities were 
determined. Here the full energy-momentum tensor and 
the angular momentum tensor are obtained via Noether's 
theorem. The appropriate symmetries of these tensors are 
shown and the local conservation laws are proven. These 
results are of importance for applications; e.g., knowledge 
of the total angular momentum combined with the energy 
can lead to an "energy" principle for linear stability 
analysis. 

The tensors are obtained in the usual way by first deter
mining the general expression for an arbitrary variation of 
the total· Lagrangian density in normal position space x. 
We note, however, that there is a slight complication be
cause the "particle" part of the Lagrangian is primarily 
defined on an extended space Y=(Y"Y2) where y, is iden
tical to x and Y2 is an additional coordinate that is needed 
in order to describe guiding centers. By means of transla
tional invariance in x space and time, and rotational in
variance in x space· the canonical tensors are obtained. 
These tensors are not gauge invariant, but each can be 
split into a divergence-free gauge-invariant part and a 
divergence-free non-gauge-invariant part. The gauge
invariant energy-momentum tensor turns out to be sym
metric in its spatial components. This is shown to follow 
from its relationship to the gauge-iI,lVariant part of the an
gular momentum tensor. All of these expressions are also 
applicable to relativistic theories. 

Two applications are considered: first we treat the 
Maxwell-Vlasov equations and show that the gauge
invariant parts of our tensors reduce to the usual well
known expressions. Following this we treat the Maxwell
kinetic guiding-center theory based on Littlejohn's 
guiding-center equations of motion.4 

II. VARIATION OF THE LAGRANGIAN DENSITY 

In this section we review the variational principle of I, 
establish some convenient notation, and obtain an expres
sion for l)'y that is used in Sec. III. 

Consider variation of the following action: 

(3) 

where 
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(4) 

(5) 

(6) 

A [aSy ey as ] ] 
+Hy --ax--~A, aY2' E,B 

The Hamiltonian for the "particles" of species v is given 
by 

(8) 

where in general H y could also depend upon derivatives 
of E and B, but this is unnecessary for our present appli
cations. Here p == PI is canonically conjugate to x == Y 1 

and P2 is canonically conjugate to the variable Y2 that is 
needed for guiding-center theory. In the formulation 
presented in I and also here H y does not depend upon Y2 
but does depend upon P2. However, if desired, the mean
ing of Y2 and P2 can be interchanged. The quantity Sy is 
the Hamilton-Jacobi function and <fJy is a density function. 
Both are functions of Y=(Yl>Y2), t, and a set of constants 
of integration a=(al>a2) that are needed for complete 
solutions Sy of the Hamiltonian-Jacobi equations 
aSy/at+Hy=O. The label (3 is used as a shorthand for v 
and a. Also l:,p is used to mean l:,y f d n1 +R2a , where 
n 1 is the dimension of the vector space Yl =X (i.e., n 1 = 3) 
and n2 is the dimension of the vector space Y2' 

The quantities to be varied in Eq. (3) are <1>, A, <fJ", and 
SY' Their variations must vanish at certain times t1>t2 
and on certain surfaces in Y space so that surface terms 
can be neglecttXt upon partial integration. 

In order to simplify subsequent calculations we intro-

duce the following notation: 

tP1=<fJ",' 1/J~=Sy, (<I>y) =( - <1>, A) , 

(z!:)=(ct,x), (zl')=(ct,y) , 

where ct=zo=z~= -ZaO and 

(9) 

(10) 

where gp(Y2) is an artifice that is used to align the parti
cle and field regions of integration. It is arbitrary except 
for the requirement that 

l:, f d R2Y2gp(Y2)=1 . 
p 

For any quantity Q 

aQ 
azl' =Q,I' . 

If Q is independent of Y2 then also 

aQ 
azl' =Q,I' . 

a 

(11) 

(12) 

(13) 

In addition, we use the summation convention. (Some
times indices occur twice when summation is not intend
ed, but this will be obvious from the context.) Finally, the 
fields E and B are given by the electromagnetic field ten
sor 

(14) 

Thus 

E j =Foi> i = 1,2,3 

(15) 

where Eik/=ej'(ekxe/) for i,k,1=1,2,3 and the ej are 
constant orthonormal unit vectors in x space. 

Given the above notation we can write the Lagrangian 
density as 

(16) 

using Eqs. (10) and (4). Its variation is given by 

f n2 [ j [a.2' p a a.2' p ] [ a.2' p a a.2' p] a [ j a.2' p ] B.Y= d B ------ B<I> ------ -- B --l:, Y2 tPP a.li azl' a.li + A a<l> azl' a<l> + azl' tPP a.li p 'I'p 'I'p,1' A a A,I' 'I'p,1' 

(17) 
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Here the last term arises due to explicit dependence of 
il' p upon z,... From Eq. (17) we see that variation of the 
action given by Eq. (3) yields the following Euler
Lagrange equations: 

ail' p a ail' p 
-------0 a·li az'" a·li - , 'f'P 'f'P.,.. 

(18) 
ail' p a ail' p 
------=0. 

a<l>}.. az!i a<l>}...,.. 

Equations (18) are equivalent to the Maxwell-Vlasov or 
related kinetic equations, depending upon the choice for 
Hv' These equations contain the expressions for the elec
tric polarization P and the magnetization M. This is 
shown explicitly in 1. Now using Eqs. (18), we obtain 
from Eq. (17) the nontrivial relation 

f n2 [ a [ i ail' p ] &1' = l: d Y2 - &t/JP-j-
p az'" at/Jp.,.. 

(19) 

In Eq. (19) we have neglected the explicit part since it is 
zero for the applications we present here. The first term 
of Eq~ (19) is easily integrated over Y2' Thus if we neglect 
yz-space boundary terms a/az'" can be replaced by a/az!i. 
(In the guiding-center case Y2 has only one component, 
vII' As IVII!~oo or IY21~oo there is no surface con
tribution because any physical fg must vanish in this lim
it.) Our final expression is 

a f n2 [ i a1' p ail' p ] &1'=~ l: d Y2 Bt/Jp-;-+B<I>}..-a.m. . (20) 
aZa p at/Jp.,.. 'V}...,.. 

III. THE ENERGY-MOMENTUM TENSOR 

We first construct the canonical energy-momentum ten
sor. This is obtained from Eq. (20) by considering a varia
tion of the entire physical system through an infinitesimal 
distance ~ in the space Za' A scalar function F( za) is 
thus transformed according to 

(21) 

and the function F' differs infinitesimally from F by the 
following: 

(22) 

Applying this formula to the quantities 1', t/J~, and <I>}.. 
for arbitrary ~ yields the local conservation equations 

a~ 
--P=o a ,.. , 

Za 
(23) 

where 

~= l: f d n2 [at/J~ a~p 
p p Y2 az~ at/J'p.,.. 

. ail' p ] 
+ <I>}...P~ -1'fI/, 

}.../L 

(24) 

is the canonic~l tensor. This result was obtained by other 
means in 1. We note that e~ has no clear physical signifi
cance since it is not gauge invariant. However, we show 
how this tensor can be split into the sum of a gauge
invariant part and a non-gauge-invariant part, each of 
which is independently conserved. In I this was done only 
for the e{j components. 

Observe that il' p does not depend upon t/J1.I'" thus we 
only have the i =2 component t/JP.p=Sv.p. Furthermore, 

(25) 

where (v~) = (c, Vv)' The quantity Vv is defined by 
Vv;=aHv/a(aSv/aYII) and it corresponds to the velocity 
of particles of species v in x space. Observe that 
ail' p/asv•p is gauge invariant. Similarly, 

ail' _ ~ ail' p aF up _ ail' p 
a<l>}... 'I' - 2 aF up a<l>}...,.. - aF}..,.. 

(26) 

is also gauge invariant. With this insight we let e::= T~ +N~, where 

(27) 

and 

,.. f n2 [ev a1'p ail'p] Np= l: d Y2 -<I>P--2-+<I>p'}..-a.m. . 
. p c at/Jp.,.. 'V}...,.. 

(28) 

Taking the divergence of Eq. (28) with respect to z!i yields 

Using Eqs. (18), (10), and (7) we have 

a ail' fJ ail' fJ ev ail' fJ 

az!i a<l>}.../L = a<l>}.. = - ~ asv.}.. • 
(30) 

Thus the first and last terms of Eq. (29) cancel. Again 
from Eq. (18) for the case i=2, and the recognition that 
il' fJ does not depend upon Sv, we find that the second 
term vanishes since 
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=0. (31) 

The index j in Eq. (31) is summed up to n2' The third 
term of Eq. (9) vanishes by virt'pe of the fact that <l>p,A,. is 
symmetric in A and J.£ while a2' pia <l>A,,. is antisymmetric 
[cf. Eq. (26)]. Thus the physical energy-momentum ten
sor is given by T~, which can be rewritten as 

'f n2 [[ ev ] a2' p T~= ~ d Y2 Sv,p---;-<I>p asv,,. 

a2'p] + F Ap -a-- -2'~. 
FA,. 

(32) 

In Sec. IV we will ascertain the symmetry of T~ by means 
of the angular momentum tensor. 

IV. THE ANGULAR MOMENTUM TENSOR 

As usual the angular momentum tensor is obtained 
from infinitesimal rotational invariance. If we rotate our 
system in x space according to 

(33) 

then the variation of scalars is still given by Eq. (22) but a' 
three vector such as <1>/ will change according to 

B<I>/ = -Eikxk<l>/,j + E/k <l>k , 1 = 1,2,3 . (34) 

Using Eq. (34) and the variations 

a2' a2' a 
B2'=-Bxi-a-=-EikXk-a-=-Eik-a (Xk2') , 

Xi Xi Xi 

B1/J~= -ElkXk1/Jll , (35) 

B<I>o= -Eikxk<l>o,i , 

together with Eq. (20) yields 

a kcp Eik-a (X..L) 
Xj 

a f 2 [ 2 a2' p a2' p ] - --~ dny E X .1. --+<1> --- a ,. ~ 2 ik k orp,1 a' .1,2 A,I a<l> 
Za p or p,,. A,,. 

a f n2 a2'p - -,. l: d Y2 Ejk<l>k am., . 
aZa p 'V"" 

(36) 

Since Ejk is antisymmetric but otherwise arbitrary, upon 
making use of Eq. (24), Eq. (36) leads to 

~ [xkef-xieVk a ,. , 
Za 

(37) 

Inserting er=Tr+Nr into Eq. (37) and using 

aNr/az!:=O yields 

a k ' a -(x T,I'-x'TJ:)+-QI:i=O 
az!:' az!: ' 

where 

aQI:i ~f n2 rev a2'p ev a2'p --= ~ d Y2 -<I>j--2---<I>k--2-
az!: p c a1/Jp,k c a1/Jp,j 

a2'p a2'p] 
- <l>k a<l>j + <l>i a<l>k . 

(38) 

(39) 

In E<I,;. (38) terms have canceled due to the antisymmetry 
of a2' p/a<l>j,,.; also the last two terms were obtained 
using Eq. (18). Finally, from Eq. (29) we see that the 
right-hand side of Eq. (38) vanishes. Thus 

~(XkTr-XITJ:)=Tjk_Tk=O 
az!: 

(40) 

and we have established that the energy-momentum ten
sor is symmetric in its spatial components. The form of 
the angular momentum tensor is simply given by 

MI:i=xkTr-xiTJ:. (41) 

V. EXPLICIT FORM OF THE ENERGY-MOMENTUM 
TENSOR 

Consider now the first term of Eq. (32). 
and 

Using Eq. (25) 

A [ asv asv ] 
if>v=wvfv a"a2' aal 'aa2 ' 

(42) 

where wv is the Van Vleck determinant and Jv is a gen
eral constant of motion closely related to the distribution 
function (see I for details), we obtain 

f n2 ev a2'p l: d Y2(Sv,p--<I>p)-as 
p C~,. 

~ f d n , +n2 d n2 [ ev m.] ,. fA = - ~ a Y2 Sv,p - -;;'Vp ~vw" V • 

(43) 

The quantities Sv,p -(evle )<I>p are given by 

ev 1 [asv ] 1 A Svo--<I>o=- -a-+ev<l> =--Hv, p=O , c etc 
(44) 

The second term of Eq. (32), with the aid of Eq. (16), can 
be rewritten as 
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J n2 a2'p a1 a1 a1 
~ d Y2FAp~=FAp~=Fopap-+FlpaF 
p AI' AI' 01' II' 

a1 a1 
=Ep aE +Flp aF (45) 

I' II' 

The last term of Eq. (45) can be evaluated using 

Flp=EipIBi=(BXep)'ef, p,l= 1,2,3 . (46) 

Thus for I ,f.1,= 1,2,3 

a1 = [a1 xeJ.L j.el 
aFIJ.L aB (47) 

and the following relations for Flpa1/aFlJ.L hold: 

a1 a1 a1 
Flp aF =B' aB 8pJ.L-BJ.L aB ' p,f.1,=1,2,3 

II' p 

(48) 

FlO ~: = [aa'i XE j , p=O, f.1,=1,2,3 
II' I' 

(49) 

FIP~: = [BX aai' j, p=1,2,3, f.1,=0 
10 P 

(50) 

a1 a1 
FlO aFIO =E' aE ' P=f.1,=O. (51) 

Evaluating Eqs. (48)-(51) for the electromagnetic field 
portion of $, 1M =(1/81T)(E2-B2), yields . 

1 B2 
41T (EpEJ.L + BpBJ.L ) - 41T 8pJ.L' p,f.1, = 1,2,3 (52) 

1 
41T (EXB)w p=O, f.1,=1,2,3 (53) 

1 
- 41T (EXB)p, p= 1,2,3, f.1,=0 . (54) 

_1_E2 P=Il=O. 
41T' r-

(55) 

Evaluating Eqs. (48)-(51) for the particle portion of 1, 
~p J d n2Y2 1 p, yields the following for Eq. (45): 

p,f.1,=1,2,3 (56) 

~J nl+n2 n2 A. [ aitv j ..0; d ad Y2 W v/v EX aB 1" 

p=O, f.1,= 1,2,3 (57) 

~ J n]+n2 n2 A. [ aitv j -..0; d ad Y2 wvfv BX aE p' 

p= 1,2,3, f.1,=0 (58) 

~J nl+n2 n2 A. aitv 
- ~.. d ad Y2 wvfvE ' aE ' 

v 

P=f.1,=O. (59) 

Here we have used <Pv=wvJv' 
It remains to determine the last term of Eq. (32), 

1~= [_. 1_(E2_B2) 
81T 

(60) 

As a consequence of the Euler-Lagrange equations, Eq. 
(18) with i = 1, the last term of Eq. (60) vanishes and we 
are left with 

1fJ!:.=_I_(E2 _B 2 )fJ!:. . 
P 81T p 

(61) 

In I it was shown that one can replace 

by 

(62) 

where d 3p is a p-space volume element and /v(x,p,t;a 2) 

is the distribution function for "particles" of species v de
fined on normal phase, x,p. The quantity a2=P2 is the 
constant value of P 2 corresponding to the independence of 
Hv of Y2' This constant is to be chosen so that the 
correct equations of motion for the particles is obtained. 
This means that Iv is proportional to a 8 function in U2' 

In the p representation, Sv,p is given by Eq. (44). We can 
now write down the explicit form of the energy
momentum tensor T~: 

(63) 

(64) 
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Equations (63) and (64) agree with the expressions for the 
energy and energy flux densities of I, while Eqs. (65) and 
(66) are new. 

VI. THE MAXWELL-VLASOV THEORY 

For the Maxwell-Vlasov equations we restrict our gen
eral results by setting y=x, a=al> J dna2'" -+1'" , 
and aHy/aE=aHy/aB=O. In this way Eqs. (63)-(66) 
yield the well-known expressions 

o ~J 3 A 1 2 2 To= ~ d pJyHy+ 81T (E +B ) , 
y 

- 811T (E 2 +B 2 )"Up , 1 2 3 Un P,f-£=" . 

VII. KINETIC GUIDING CENTER-MAXWELL 
THEORY 

(67) 

Using Wimmel's variational formulationS for Little
john's4 guiding-center equations of motion that include 
polarization drifts, one has as shown in I 

aHy myc 
-aE=--:B2(vD v -vE)XB , 

aHy myvil myc 
--=---(VD -VE)---(VD -vE)XE aB B v B2 v 

ey 

p--A=my(vllb+vE) , 
C 

Vv=vllb + v Dv ' 

(65) 

(66) 

(68) 

In these expressions the quantity a2 has already been as
signed its appropriate value. Also, one can replace 

by 

(69) 

where 

(70) 

and Jgy(x,vll,f-£,t) is a solution of the kinetic guiding
center equation 

(71) 

Expressions for vII and VDv can, for instance, be found in 
I. The normalization of Jgy is such that 

(72) 

where ngy is the guiding-center density of particles of 
species v. We can now write the energy-momen
tum tensor: 
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(73) 

1L=1,2,3 (74) 

(75) 

T~=-'; f BvlldlLdvllig,/1lv [(Vllb+VD)P(Vllb+VD),u-VDy/DY/l +VE/DY/l 

c C 2 2 
+ BT[Ep(vDyXB),u+B,u(vDyXE)p] + B2 (EpE,u -E bpb,u) 

+ [2VE.(VDy -VE)+ ~v ILB ](~-bpb,u)-VE.(VDY -VE)l)~] 
1 1 2 2 "u 

+ 41T(EpE,u+BpB,u)- 81T(E +B )O'p, lL,p=1,2,3. 

It was shown in Sec. IV that the expression given by Eq. 
(76) is symmetric in P and IL. This property is not ap
parent because it is hidden in the special forms for the 
drift velocities. For the case where VDy =VE, the symme
try can easily be shown directly. Also for E=O the sym
metry is obvious. 

VIII. SUMMARY 

By means of a variational formulation for the 
Maxwell-Vlasov and related theories, which describes 
both the fields and the particles in the Eulerian picture, 
the canonical energy-momentum and angular momentum 
tensors were obtained. This was done by applying the 
field-theoretic method that relates invariance properties 
and ,conservation laws. ,The tensors found this way were 
not gauge invariant. Splitting the canonical energy
momentum tensor into a divergence-free gauge-invariant 
part' T~ and a divergence-free non-gauge-invariant part' 
had the consequence that the angular momentum tensor 
likewise split up in a natural way into a divergence-free 
gauge-invariant part Mid (k,i = 1,2,3, IL = 1,2,3,4) and a 
divergence-free non-gauge-invariant part. Mid is related 
to T/, by M/d=xkT/'-xiTf. From this the relation 
Tik= Tic follows immediately. This is a result that ap
pears to be not easily proven explicitly. T~ was expressed 
in normal terms and explicit expressions were given for 
the Maxwell-Vlasov theory and a Maxwell kinetic 
guiding-center theory based on Littlejohn's guiding-center 
equations. 

Finally, we comment about two examples to which the 
formalism presented here is applicable. By appropriate 
choices of ii v the energy-momentum and angular 
momentum tensors for relativistic systems, or systems for 
which the particle Hamiltonian depends upon derivatives 
of E and B, are easily obtained. The former case is im
mediate by making use of Eqs. (63)-(66), while the latter 

(76) 

requires a slight generalization. The relativistic Maxwell
Vlasov equation is an example of the former case. It can 
be formulated in a covariant manner by rewriting the par
ticle portion of the Lagrangian density, Eq. (7), with a 
particular choice of ii V. The electromagnetic field por
tion of course requires no alteration. For a single species 
the appropriate particle form is 

~ { ~~ +e~+c l [ ~~ -~A r +m6c2 )'/2} 

=¢ 

The equality here follows from the substitution 

which introduces the quantity ¢ that is (like S) a Lorentz 
scalar invariant. Upon variation we see that ¢ satisfies a 
covariant continuity equation 

_a_( .I,U,u) =0 
ax,u 'I' , 

where 

u,u= ~o [a~ -~~] 
is the velocity four-vector. 

Note added in proof Results similar to those obtained 
here have recently been obtained by P. L. Similon 
[Lawrence Berkeley Laboratory Report No. 19633, 1985 
(unpublished)] for relativistic guiding-center theory using 
a Lagrangian variable approach. 
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