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- ABSTRACT

A method for proving chaos in partial differential equations is

discussed and applied to the Benjamin-Ono equation subject to perturba-

tions.__The perturbations_are_of two types: one _that corresponds to
viscous dissipation, the so-called Burger's term, and one that involves
the Hilbert transform and has been used to model Landau damping. The
method proves chaos in the PDE by proving temporal chaocs in its pole
solutions. The spatial structure of the pole solutions remains intact,

but their positions are chaotic in time. Melnikov's method is invoked

to show this temporal chaos. It is discoveredmthat tgé poie behavior

is very sensitive to the Burger's perturbation, but is quite insensitive

to the perturbation involving the Hilbert transform.
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1.  Introduction

It is by now well-known that the generic finite degree-of-freedom
Hamiltonian system exhibits a var?ety of chaotic phenoména. However,
the extension to partial differential equations of ideas such as Arnold

diffusion or Smale horseshoes is a developing area of research. Since

baisc‘modelS-of—physicsT“notabeLthese~%hat—deseribe—continuou5*medﬁa,
are typically infinite dimensional, it is of interest and importance

to investigate the mathematical relevance of nonlinear dynamics concepts.
For example, turbulent flows may possess long-lived coherent structures
that move and interact chaotically. We discuss a technique for proving

chaos in the motion of such coherent nonlinear structures and apply itv

to th;_bertubed Beﬁjamin-Ono (BO) equgfion, a model that possesses
many features that are characteristic of turbulent motion.

The technique requires the existence of pole solutions; i.e.,
exact solutions -that are a superposition of rational functions, with
poles whose postions in the complex plane vary with time [see (3.1)].
Generally the pole dynamics is governed by a set 6f ordinary differential
equations; thus when a partial differential equation possesses pole
solutions the effective number of degrees of freedom is reduced from
infinite to finite. If one can show that the pole ODE's exhibit chaos,
then the "parent" partial differential equation exhibits a kind of
temporal chaos where the spatial structure of a given pole does not change
but its position is a random function of time. In practice we bégin
with an integrable system (in the sense of inverse scattering) with known
pole solutions and then add on special perturbations that preserve the
spatial structure of the pole solutions. In this way one ébtains Hamiltonian

equations for the pole dynamics that are composed of an integrable part




plus a perturbation.. Indeed such systems are generically chaotic and in
some cases this can be shown by the method of Melnikov. [See e.g.
Guckenheimer and Holmes ('85).]

Mathematically speaking this procedure amounts to showing that the

perturbed partial differential equation has invariant manifolds, on

— e eeeWhich-the —infinite-system-reduces-to—a-finite-system—of-ODE"s-with-pole

solutions- that are structurally unstable. In order to use the Melnikov

method we must prove that the unperturbed pole solutions correspond to
homoclinic orbits asymptotic to hyperbolic points at infinity, and that
the perturbations "break" these orbits. Presumably, the same is true for

the soliton solutions.

At first one migﬁt suspect that the procedure described above would
only work in highly specialized situations, but in fact there exist a
variety of systems with pole preserving perturbations. Previously Birnir
('86) has effected this procedure for perturbations of the Korteweg-de
Vries (KdV) equation, while here we demonstrate it for the perturbed BO
equation given by

(1) U = 2uu. + H(uxx) + uu ., * BH(ux) ,

X
where H 'is the Hilbert transform and the terms with the coefficients
u and @B are the pertubations.

The unperturbed BO equation (u =B = 0) was proposed by Benjamin
('67) and derived from the Navier-Stokes equation by Ono ('75). It
describes long wavelength internal waves that propagate in a stratified
fluid (e.g. a layer of cold current in the deep ocean). It was proven
to be integrable by various authors: Joseph ('77), Meiss and Peirera

('78), Case ('78), Chen, Lee and Peirera ('79), Satsuma and Ishimori
('79), Nakamura ('79) and Ablowitz and Fokas ('81). Integrability was
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first shown numerically and then proven analytically, a development.that
was a repeat of the history of the KdV equation and also mathematically
similar.

The perturbed BO equation has two additional physical effects. The

term VU corresponds to viscous dissipation. . Physically one expects

the—-viscosity—v—to-be greater—than zero, thereby avoiding backward

diffusion. We will set v = en, explicitly displaying the small parameter
g, which we assume satisfies 1> ¢ > 0, and consider two cases: (i)
where n is a nonnegative constant and (ii) where n is an explicit
oscillatory function of time. The latter case with n nonnegative con-

cejvably could arise from fluid parameter fluctuations. The second term,

BH(ux), appeared in a perturbed KdV equation that was derived by 0Ott.and
Sudan ('69) for modelling electron Landau damping of nonlinear ion acoustic
waves. If B dis a constant and positive then this term corresponds
to Landau damping, while if B 1is negative it corresponds to growth.
We set B = 8y, with the small parameter & satisffng 1> 6>0,
and consider two cases: (i) where B is constant and (ii) Qhere B has
explicit oscillatory time dependence. The latter could serve as a
phenomenological model of nonlinear electron Landau damping [see Meiss
and Morrison ('83)].

Lee and Chen ('82) have considered Eq. (1), with v and B constant
(>0 and B < 0), as a nonlinear model of plasma turbulence. For
this case they argue that the model possesses many features typical of
plasma systems. In particular it has the usual quadratic nonlinearity
and a linear dispersion relation that is dispersive, marginally stable
for k =0, unstable for small k, and damped for large k. Lee and Chen

and Meiss ('80) showed that Eq. (1), even with time dependent v and B,
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has pole solutions. Their discovery allows us to proceed with the.tech-
nique described above.

The question of structural stability is determiﬁed by the phase
space geometry of the pole solutions of the unperturbed BQ equation. In- ‘
vestigating this geometry requires woﬁk, but fortunately the main tools |

were developed by Birnir (3, '86), where analogous results for the

perturbed KdV equation Were obtained. However, the Benjamin-Ono theory
is quite different from that of KdV. First, the pole solutions of KdVv
are singular, with pole-like singularities, whereas the pole solutions
of BO are smooth and physically relevant. Secondly, the BO invariant

manifolds are unconstrained whereas the pd]es of the solutions of most

other integrable equations, including KdV, are constrained to lie on a
subset of the phase space. The third most important difference is.that
the fixed point at infinity of the BO solutions is elliptic whereas that
of the KdV is hyperbolic. This makes it more difficu{t to apbly the
Me]niko& method to BO than KdV.

There are also similarities between the pole solutions of KdV and
BO. Both have a degenerate fixed point at infinity and-the phase space
of both equations can be completed by embedding them as constraints in
the phase space of an N-body problem. For either equation, perturbations
that are (i) composed of the Hilbert transform operator acting on lower
order gradients and (ii) vector fields in the hierarchy associated with
integrable PDE's, result in invariant manifolds; i.e. do not destroy the
pole solutions. Perturbations of type (i) and (ii) are different in
nature: the former produces chaotic pole solutions while the latter
produces regular pole solutions, for both BO and Kdv.
This paper is organized into nine sections. In Sec. 2, we list the

Hamiltonians, gradients and vector fields for the infinite dimensional
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hierarchy of Benjamin-One equations. We then discuss the pole so]uiions

in Sec. 3, and describe their shapes and symmetries. Sectijon 4 contains
the system of ODE's that deterﬁines the invariant manifold of the perturbed
BO equation; here it is seen that these equations embed as constraints in
an N-body system. We show in Sec. 5 that the unperturbed N-body system has

a degenerate fixed point at infinity, which_we designularize by a McGehee

transformation [see Birnir (3, '86)], to produce the space S4n, the 4n

sphere, with a center (elliptic fixed point) on top. Indeed, the unper-
turbed BO solutions are neither homoclinic nor heteroclinic orbits, but
periodic in the independent variable that desingularizes the fixed point.

This is disastrous for the Melnikov method which requires a hyperbolic

fixed pBint. Nevertheless, we show tﬁét witﬁ' e = d_ménd é ¢—6; i.e.
with viscous dissipation but without the "Landau" term, the center
miraculously turns into a hyperbolic fixed point, whose stable and unstable -
manifolds are the perturbed BO solutions. Next, in Sec. 6 we give the
stable and unstable manifold theorem for the Poincaré maps that arise in
the case where the parameters are driven periodicé]]y. For n a periodic
function one can get a fixed point whose stability changes with time.
However, if we avoid the finitely many Poincaré maps that have centers,
i.e. where n(t) = 0, then the stable and unstable manifold theorem
applies. This technical difficulty is avoided if we restrict ourselves

to the phyéica]]y relevant case of a nonnegative diffusion coefficient,
where n is periodic in time yet nonnegative. In Sec. 7 we compute the
Melnikov functions, which are then used to prove the main results in Sec.
8, that the solutions are regular in the 1imit that & vanishes, for

€ # 0, and chaotic when 6 # 0 and n 1is a periodic function. Moreover,
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when &6 # 0, n 1is a constant, and € # 0, then the driven “good"'per-
turbation H(ux) can couple with the "bad" perturbation to produce chaos.
Finally, we discuss the perturbation H(u) and compare with the corres-

ponding results for KdV.
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2. Hamiltonians, Gradients and Vector Fields.

The Benjamin-Ono equations is a completely integrable Hamiltonian
system. This is manifested in the existence of infinitely man; conserved
quantities, Hamiltonians Hk’ the first few of which are listed in Table

1. The functional derivatives of the Hamiltonians produce gradients GHk;

for example, for H2 we have

[

H, = 5 {v(l/Z)ClH(ux)-f(l/Z)uH(G)+u2C|}dx .
= S {[H(ux)+u2]ﬁ}dx = j GHzﬁdx,

where we have used the skewness of the Hilbert transform and integration

niby partét
The Hamiltonians are in involution which means that their Poisson

brackets vanish

=]

{Hk’Hj} = j. GHkDXGdex =0, for all k and j,
-

where DX = d/dx s the Poisson structure. This implies that the vector
fields Xk(u) which are defined by Hamilton's equations,
u, = DxﬁHk(u) = Xk(u), (k=1,....),

commute. In other words, there exists a weak symplectic form

o X
Qlv.w) = 1/2 J j £V (y IW(x) v (xOw(y) ] dydx

defined on the tangent bundle of smooth functions on (v,w) Rl; which

vanish at infinity. This symplectic form vanishes on any two vector

fields that are generated from the Hamiltonians; i.e.
- -}
Q(Xk(u),Xj(u)) = J. 6HkDX6dex =0, for al1 k and j.
-0

The first four gradients and vector fields are listed in Table 1.

TR
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The Tevel sets

(k=1,...),

are infinte dimensional, possibly degenerate, tori whose tangent bundle
is spanned by the vector fields Xk‘ These tori foliate phase space.
Finite dimensional tori are also dense in phase space and we restrict

our attention to those below.
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Table 1
Order Hamiltonians
X M
0 > udx
S,
1 1/2 Sm u2dx
-0
2 Sm {1/3u3+1/2uHu }dx
3 % {1/4u4+3/4u2Hux+1/2u2x }dx
-0

4 _ _‘(f‘.{l/.su‘r?.tB/.Zuug.xﬂ/z uk.Huxxtllz.u?-Huu_i-l-.z./3u3Hu_itl./2u(Hux-)»z»} X

-

Orderb Grédients Vector Fields
0 1 0
1 u u
X
2 Hu +u2 Hu__+2uu
X XX X
3
3 uxx+3uHux+u uxxx+3uxHux+3uHuxx+3uux
_ - - 2
4 Huxxx+uHuux uuxHu Huxxxx+uxHuux+uHux +uHuuxx
+2u2Hu -2Hu2u +1/2(Hu )2 -u 2Hu-uu Hu-uu Hu +4uu Hu
X X X X XX X X X X
+H(u_Hu_ )+H(uHu ) +2u2Hu__~4Huu 2-2Hulu_ +Hu Hu -
X XX XX XX X XX X XX
-3/2u 2-3uu +u4 +H(u__Hu )+2H(u_Hu_ )+H(uHu__. )
X X XX X X XX XXX

‘ 2_ 3
3ux 3uuxx+4uxu

-3u_u
X XX

YT
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3. Rational Pole Solutions.

Matsuno ('79) computed rational (pole) solutions of the Benjamin-0Ono
equation by the method developed by Hirota ('76) to change integrable non-
linear PDE's into bilinear equations. Let

u(x,t) = iD In{f(x,t)/F(x,t)},

where the analytic continuation of f off the real x-axis has zerces in

the lower half plan. Then substitute u into the BO equation to get
the equation
n - n2\e1T o
CIDt_ Dx)f f=0.

where Dt = d/dt'-d/dt, Dx = d/dx'-d/dx and after performing the dif-

ferentiation you set t=1t' and x = x'.

~ Now if we Took for algebraic solutions to the bilinear equation;

the result is the following formula

f(x,t) = = n (x-ckt)mk 1.ll-m | - 4(l-mk)(l-mj)
m=0,1 k=1 ok
(D) 1 (ck+cj) Z(I-mk)(l-mj),
ck(l-mk)cj(l-mj) (ck-cj)

where the sum is over all vectors m, of length n, with entries 0 or 1,
the ck's are arbitrary parameters and ]m |= ka. The first few of
the algebraic solutions are listed in Table 2 and their shape and time
evolution is shown in Figure 1.
The zeroes of the second algebraic solution are
x,(£) = $(epre,)t - 1(617Cp)

2 clcz

- %(cl-cz)J(t-Zi/c1c2)2+16/(c1-c2)4

T T
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1(c1+c2)

1
X,(t) = 5(c,+c, )t -
2 271 "2 5 C

12

+ %cc1~c2)JQt~21/clc2)2+1s/(c1-c2)4 ,

where fz(x,t) = (x - xl(t))(x - xz(t)). This suggests that we look

fof solutions of the form

-"ﬂetaﬁtst“‘If“thé—humbéf”a?‘ﬁaTés*ﬁh‘ﬁaf“é‘ﬁﬁdaﬁai‘Bf“Aj"”?;"_Ean be deter-

n 3

. j . 2,..2
f,. = N N [(x-at-ib)~-g ¢J (t-ie )"+f]
4n k=1 j=0 k k k
n 4_ 4 2,,2.2
= N [(x-at-ib) -g ((t-ie ) +fS)“],
— k k k
k=1
¢ being a fourth root of unity, where a, b, 9y ek and fk are con-

mined from

fane1 = Tanfir Tgneo =

fofor f

4n 2? TanTof

4n+3 = TanToTye

with the f's from Table 2. Apart from the linear factors at+ib, the
zeroes move in groups of 4, except for the possible leftover triplet,
in the complex plane. Each group expands as fourth roots of unity.

These functions will be used below along with their t derivaties

- il \2..2

y4k-j(t) gk¢ (t 1ek) +fk
Fremsi N e 2.2
g o (t 1ek)/ (t 1ek) o

(k=1"'°), (j=0)"’4>,

(2)

Z4-5(V)

to compute the Melnikov function. Notice that the full solution of the
PDE also requires the complex conjugates of these functions, and that

the zeros of f and f become the poles of the BO solutions.

MY T
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Remark 1: The 4 symmetry implies that the 8n poles in the complex blane

combine to make 2n humps on the Tines, see Figure 1. The above solutions

to BO can be expressed as

n
u(x,t) = 4 3 (cat=10)/[(x-at-ib) gl ((t-ie )21D)2]
k=1

1
H
—

H ™MD
~N
x

[}
[+1}
<
3
o

~—
w
~
—
~
X
1
o)
ct
+
=
O]
N~
>
d
!
~
A
+
e
°|
>
[
n
+
-
N
)
N
s

Figure 1.

t=3
t=7

u(xqt) = lizn{fl/?l}

The first pole solution
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Table 2.
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fi = 1’(x-c1t)+1/c1
fp = (1(xe t)+1/c)) (3 (x-c,t)+1/c, ) +4/ (e )
fg+ (1'(x-clt)+1/c1)(1'(x-czt)+1/c2)(1'(X'C3t)+1/C,3)

+4[('i(x-c3t)+1/c3)/(c2-c1)2+(1'(x-czt)+1/c2)/(c3-cl)2
2
)

+(_1'.(x:c,1,t)_tl/‘c 1_)4/_(>c,2:c,3A)£J¢15 [1 /‘(‘Cfcz‘)‘z‘(‘c“z"‘c 3)
+1/(C3-C1)2(Cl'cz)2+1/(C2'C3)2(C3'C1)2]

T T TE 1T
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4. Invariant Manifolds.

An alternate way of writing the rational solutions of BO is to write

4

them explicitly as pole solutions

u(x,t) = i 5 [a(x - xk)'l-a(x - Ik)'lj.

k=1

These functions are meromorphic_functions_of x_and_their time_ dependence

is through the poles, which move in the complex plane. When u is sub-
stituted into BO, the PDE reduces to a finite system of nonlinear ODE's.
The surprising result that was, as noted above, discovered by Meiss ('80)
and Chen and Lee ('82) is that the perturbed BO equation also has finite

dimensional invariant manifolds.

Theorem 1: The perturbed Benjamin-Ono equation
u, = H(uxx) + 2uux + 6n(t)uxx + sp(t)H(ux)
has finite dimensional invariant manifolds, which are described exactly

by the nonlinear system of ODE's

- _ 0 -1 2 = -1

X, = z (i-ﬁn)(xk-xj) - (i-éq)(xk-xj) + iu(t)
J#k j=1

- n. - =,-1 n - = .-1

X = z (i+6n)(xk-x.) - Z (i+6n)(xk-x.) = ip(t)
j#k J =1 J

(k+1l,...,n).
Proof: The ODE's determine the motion of the poles of u 1in the complex
plane. We substitute the pole solutions, with « = 1+ién, into the PDE,
then for fixed t,

f(x,*) = ug - H(uxx) - 2uux - 6n(')uxx - ep(-)H(ux)

is a function on the Riemann sphere. It has no poles if the ODE's are

satisfied, moreover it vanishes at infinity, Therefore it must vanish

T T
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identically, but this holds for any t, so u is a solution of thé PDE
if and only if the ODE's are satisfied. Birnir (3, '86) contains more

details. QED.

Remark 2: The fact that u has first order poles means that there are

no locus conditions restricting the motion of the poles, on the copy of

R4n, in C4n, where the poles move because of the conjugation symmetry.

This has important consequences for the perturbation H(u) of the BO
equation, which will be discussed Section 8.
The existence of invariant manifolds reduces the analysis of pertur-

bations of PDE's into questions about the structural stability of a finite

“dimensional phase flow. We can apply the qualitative theory of dynamical

systems to answer these questions and we hope that the unperturbed BO flow
of rational solutions is a homoclinic orbit of a fixed point at infinity.
However, to show that this orbit is structurally unstable, we must examine
it w%thin a system containing orbits that are not homoclinic. This is

accomplished by embedding the perturbed BO system in an N-body system.

Lemma_1: The perturbed Benjamin-Ono system of ODE's embeds as constraints

in the perturbed N-body system:

- n -— —
X, = 8(i+sn(t))? = (x %) 3. 16isn(t) = (X ~X.) 3,
jek K30 =1 ¢
o n -1 n -— -1 .
-ién(t)[ = (xk-x.) + (xk-x.) ]+ dgp(t)
jek < =1 ¢ J

T IT
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.o no_ N .
X = 8(i-sn(t)’ I (x,7%) 3+ 1696n(t) 3 CRIP I
. n _ - .-1 n _ -1 .
+i6n(t)[ 2 (x, =x:) © + 5 (x,~x;) 71 - iep(t)
J#k J j=1 J
(k=1,...n).

Proof: Differentiate the perturbed BO system with respect to t and
simplify using the identity
o "2, _,\1 o vl -2

(xk xj) (xk xm) + (xk xj) (xk xm)

= oyl o V"2 . o £"2

= (xk xm) [(xk Xj) (xk xm) 1. QED.
Remark 3: The above N-body system admits, but is not restricted to,
the cases of physical interest discussed in the Introduction. In
particular for the case when n s a nonnegative cbnstant, the system
simplifies. If n > 0 and we drive the system with p(t) périodic and

nonpositive, then we have an interesting damped-driven system.

SRAE 18041 1B 18
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5.  The Desingularized Phase Space.

In this section we investigate the structure of the phase space of
the unperturbed N-body equations. The form of the algebraic solutions,
in Section 3, suggests that we look for solutions of the form

xk(t) = at + ib + yk(t).

In these coordinates the unperturbed N-body system becomes

Yk T %k
z, =8 (y ys) 3
jrk I
Y = 7 (k=1,...,n)
7, =8 (v oy
j#k <7

This is a dynamical system on a copy of‘ R4n in C4n, because of the

complex symmetry. To make 1ife easier we make é further simplification
Y () = d y(t), (k=1,..,n).
This amounts to a restriction of the parameters in Section 3, e, = e
and fk = f, however the same analysis goes through in the general case,
although with more involved computations. Now the N-body system simplifies

and becomes

Vi = 2y
-3
Z, 16yk

Vi T %
—3

NI
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where the conditions

d = /2 3 (d=d )7, (k=1,..,0),

require the coefficients dk to be constant multiples of the fourth roots

of unity. We have written the full 4n dimensional system, instead of

its generic 4 dimensional system, because the perturbation will destroy

that symmetry and make the system 4n dimensional again.

Lemma 2: The phase space of the N-body problem is the 4n dimensional sphere

4n . . - _ - _ . . .
S, Infinity, 2,52, = 0, Yio¥ ==, s a degenerate fixed point.

Proof: Consider the kth equation

= flyz).
s _ -3
z, = 16yk
We form a sphere by identifying the lines Y = +» and shrinking the
lines z, =i to a point. Then Yo T 0, 1is a fixed point. It is

badly degenerate

3

det Df, = 16y ° = 0,

at Y = . The flow in the Yir 2k plane is shown in Figure 2. QED.

TN




Figure 2.
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The degeneracy of the fixed point is a serious problem, since the
Melnikov method requires a nondegenerate hyperbolic point.
the situation is saved by a technique invented by McGehee ('73) to solve

the Sitnikov problem and adapted to the KdV equation by Birnir (3,'86).
Lemma 3: A McGehee transformation gives a nondegenerate center at infinity.

Proof: We change variables to local coordinates at infinity and repara-

metrize time,

then

The flow in the y-z plane.

-1 dt 2
qk yk and .d_Y‘='y ’
_dﬂ - - 2, 2. = - .
ark = Wy Dy = -y /d
By = 2742y = —1eul
drk (y /dk)Zk 16_yk

singular line

2 _
k - Pk

= -16qk

g(a,,p,)-

However,

T T
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Now
g, = )
-16 0

with eigenvalues T = +4i. Similarly ?k = +4j. This works for'any k.

QED. .

Proposition 1: The phase space of the desingularized unperturbed N-body

flow is the 4n dimensional sphere S4n, lying by the conjugation symmetry

in Sen. The z axis is singular and infinity is a 2n fold center.

4n punctured at

Proof: We take an atlas consisting of two charts, one S
infinity with coordinates (x,y) and the other S4n ’punctured at the origin
with coordinates (q,p). These coordinate pairs are smooth functions of
each other on the overlap of the charts and we can continue orbits smoothly
from one onto the other. Invoking Lemmas 2 and 3 finishes the proof. The

flow on the kth sphere is shown in Figure 3.

QED.
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Figure 3.

o ~ The desingularized flow in S
Proposition 1 is very disappointing. We want to show that perturbed

BO has chaotic solution but for that we need a hyperbolic fixed point not

a center. However, the N-body flow on S4n is still structurally unstable

and there exist arbitrarily small perturbations that change the center,

at infinity, into a hyperbolic fixed point.

Proposition 2: The perturbed N-body flow, ¢ = 0, 6#0,n=1, on

S4n, has a 2n fold hyperbolic fixed point at infinity. Moreover, the

corresponding perturbed Benjamin-Ono solutions are the stable and unstable

manifolds of that fixed point.

Proof: The McGehee transformation of the perturbed N-body equatioﬁs

produces the nonlinear system at infinity

_1..»._‘__..__. 0 U OO U S P

T T




dg, _
drk pk

n
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-3-3

d 2 i = -
agk = -16(1+16)q, + 1615 = (21bqkq.+qj-qk) a39,

j=1
(k =

J

1,..,n),

along with its complex conjugate. The derivatives of the nonlinear

terms vanish at infinity so the linearized v

ector field becomes

0 1
ng = ’
-16(1+i8)2 0

with eigenvalues Tt = +4(i-8), similary Dg

It remains to prove that the perturbed Benja

tially contracting or expanding at infinity.

constraints

i has eigenvalues 1 = +4(i-6).

min-Ono solutions are exponen-

But BO corresponds to.the

_ . . L= =\ =3-
P = a* 2(-i+8)1 . q + (1+5)'§ (21bqkqj+qj q,) 459 »

Jj=1
(k =
where the constants

(-i+6)1 = (-i+8) £ d (d -d.)
k ek kY k 7]

have a positive real part.
Now Py = qu/dr, so the constraints a
the gq's. We rewrite the constraints as inte

the solutions are exponentially expanding.

Remark 4: The unperturbed Benjamin-Ono solu
orbits, of the N-body flow around the center

periodic in the desingularization parameter.

1,..,n),

-1

re first order equations for
gral equations to see that

The q's are similar. QED.

tions form only one of the
at infinity, which are

But the perturbations pick
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precisely this orbit, out of the continuum of periodic orbits, to méke

the stable and unstable manifolds of the hyperbolic point at infinity.
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6. Persistence of Stable and Unstable Manifolds

In this section we state the technical lemmas that allow us to
apply the Melnikov method. We use the stable and unstable manifold
theorem for hyperbolic fixed points, first with n a constant (=1)
and then with n a periodic function. |

Consider the perturbed system in McGehee's coordinates

Ut NUSI I e e T e g e = T R e e = = e _.‘__—3 .
Py = °16(1-61kq'-16n)qk - 1615q.21(-2mbqkqj+qj-qk) q

-
qk"'pk

ro— o _ e . . - = _ -3-3
Py = ~16(1-61.n'+idn)q, + 1616nj§1(21bqkqj+qj q,) a5

o = = -1- .
+ 6n'j51(21bqkqj+qj-qk) q39 - iep'.
(1) N

9k T P

3_ —_—
. q k
j= J
. -1 = .
+6n' X (-2ibq, q.+q.-q,) “q.q, + iep’.
=1 k73 73 "k j'k
(k =1,..,n),

where ' denotes d/dr, and the 1's are the constants in Proposition 2.

Lemma 4: Suppose 6 # 0 and n =1, then the perturbed system ¢ # 0
has a hyperbolic periodic orbit, whose stable and unstable manifolds are
¢® close to those of the unperturbed system, € = 0. Let x = (q,p),
then the perturbations expansions

xs(r,ro,a) = xg(r-ro,é) + exi(r,ro,ﬁ) + 0(82), re [ro,m)

xu(r,ro,é) = xg(r-ro,é) + ex;(r,ro,é) + 6(52), re (-w,roj
converge uniformly in the indijcated time intervals.

Phase space S4n of the perturbed N-body system with & = 0,
n=1, and &6 # 0, consists of two charts as discussed in the proof
of Theorem 2. On the chart convering infinity, r parameterizes orbits,

whereas t parameterizes the orbits on the chart covering the origin.

T "I
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The stable and unstable manifolds pass smoothly from one chart to tﬁe
other. We can choose whether we use t or r to compute the Melnikov
function, but t 1is more natural because its Poincaré map is based on
the driving périod. Consequently, we restate Lemma 4 in the y and z

coordinates, and use those to compute the Melnikov functioﬁs.

Lemma 5: With 6 #0 and n =1, the stable and unstable manifolds of
the hyperbolic periodic orbit, of the perturbed system, & # 0, are c®
close to those of the unperturbed system, & =0. Let x = (y,z), then
the perturbation expansions

xs(t,t ,8) = xg(t-t ,8) + exi(t t .5) + 0(e2), t ¢ [ty

e x5 6) = X, 6) + exh (1, 1556) + 0(eD)it e (rostgd e

converge uniformly in the indicated time intervals.

Now consider the perturbed system

n -
= 8(l+16n(t)) z vy 'z ) - 16i6n(t) = (21b+yk-yj) 3
Jj#k j=1

-6n(t)[ Z (yk-y by L Z (21b+yk-y D ] + jep(t)
(2) i =

7, = 8(1-16n(t))> z (yk-y )73 + 16i6n(t) z (- 21b+yk-y ) -3

Jj#k j=1

-6n(t)L s Y5 )7 3 (-2ib+y, -y )7h - epct).
Jj#k =1

We want to set & = 0 and say that the perturbed solution xa(t) = (yé,zé)

is close to the unpperturbed solutions xo(t) that we know explicitly.

bt 1 00l 4. 18 | N
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This would enable us to use X5 to compute the Melnikov function. .However,
when & = 0, the fixed point becomes a center and the stable and unstable
manifolds disappear. We use a simple trick to get around this difficulty.

Instead of the above system consider the system

Yk T %

. 2] -3 2 - -3
2, = 8(1+ion(t))” = (y, ~y:) ~ - 16i6n(t) £ (21b+yk-yj)

j#k J j=1
. n -1 D - -1 .
-6n(t)[ z (yk-yj) + 3 (Zib+yk-yj) 1+ igp(t)
j#k i=1
(3)
i = 7y

.

n o n _ _
Z, = 8(1-ion(t)? 5 (7,-7.)" + 16i8n(t) 3 (-2ib+y,-y.) 3
K jrk K =1 k=3

. n —_— - —1
‘Gﬂ(t)[ b3 (yk-‘yj) +

n - .
£ (-2ib¥,my) 7] - ().
j#k =1

j=
(k=1,..,n),
where we have substituted the fixed parameter ¢ 9in for & 1in the first
component of the derivatives of 2z, and Ek‘
| Now the stable and unstable manifold theorem applies:
Lemma 6: When & =0, o# 0 is fixed and n =‘1, the perturbed system
6 # 0, has a hyperbolic periodic orbit whose stable and unstable manifolds
are C° close to their unperturbed counterparts. Let x = (y,z), then
the perturbation expansions
x*(t,t0,6) = xg(t=tg,8) + ex}(t,t5,6) + 0(e?), t & [tg,)
xU(t,t5,8) = xg(t=ty,8) + ex1(t,t,,6) + 02, te (-=,t,]

converge uniformly in their time intervals.

T T
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Proof: The existence of the stable and unstable manifolds in the (q,p)
coordinates implies their existence in the (y,z) coordinates, see McGehee
('73) or Birnir (3,'86).

Finally we are interested in what happens when the diffusion term

Upy is driven or when n(t) 1is a periodic function. This situation is
more complicated, because the hyperbolic beriodic orbit changes its |
stability during a (driving) period. There are finitely many points

tk where n(tk) = 0 and the Poincaré map has a hyperbolic fixed point,

except at the times tk’ when its eigenvalues move through the unit

~circle, see Figure 4. However, we will be able to apply the Melnikov

method by avoiding the exceptional transversals:

4n

5,2 {06t £ ST xR t=t, 0 < k < N1}

K’
Lemma 7: With € # 0, o# 0 fixed and n(t) a periodic function,
the perturbed system, &6 # 0, has a periodic orbit that is hyperbolic
during a period except at finitely many time values tk, 0 < k < N+1,
where the corresponding Poincaré map has a center. Apart from these
exceptional times, the stable and unstable manifolds are C~ close to
those of the unperturbed, & = 0, system. The perturbations expansions
X°(t,t)) = x5(t=ty) + 6xJ(t,tp) + 0(6%), t & [ty,®)
xI(t,t) = xg(t-tg) + 8xS(t,t) + 0(8%), te (-=,ty]
converge uniformly in their time intervals.
Now the trick is to set o =8, for fixed 6 # 0, then the above

systems are identical to the perturbed Benjamin-Ono systems.

T A T
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Figure 4.

The stable and unstable manifolds

of the fixed point of the Poincaré map.

Remark 5: Recall from Remark 3 that the physically most interesting case

is n nonnegative and p nonpositive. Lemma 6 applies to the case namely
n = constant, and p periodic. In particular, p could be a negative
constant plus an oscillatory function of a smaller amplitude. In Lemma 7,
if n 1is a similar but positive function, then there are no exceptional
time values and the eigenvalues of the Poincaré map .never cross the unit

circle.
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7. The Melnikov Method.

The Melnikov function M(to) measures the distance between the
stable and unstable manifolds of the hyperbolic fixed point of the Poincaré
map. If M(to) has é simple zero then these intersect trgnsverse]y, see

Guckenheimer and Holmes ('83), and this results in chaotic solutions of

the original system.

First we show that thé Melnikov function associated with the perturbed
BO equation (setting n = 1)
u, = H(uxx) + 2uux + 6uxx + sp(t)H(ux)
vanishes identically to all algebraic orders in & and zeroth order in

S.

Lemma é: The Melnikov function of the perturbed system 6.2 is identically

zero to the zero order in 6 and all algebraic orders in e.

Proof: We compute the Melnikov function for the system 6.2,

Co

M(ty) = s f(xg(1),8)~g(t+ty)at,

-

where we have written 6.2 in the form

x = f(x,6) + eg(t),
with g(t) = (0,0,I,-I)tﬁ(t), and x = (y,y,z,z)t, t denotes transpose.

Substituting in from 6.2 gives

n F
M(tg) =1z | 7, (4,8)Z,(,6)TuCtty)at,
1)
no( _ i
= iz [z, (t,0)-z, (t,0)Ju(t+ty)dt + 0(6).

k=1 o
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Recall the formulas for z and z from Section 2,

2,(t,0) = d (t-ie)/((t-ie)2+r)L/2

1/2

Z,(t,0) Ek(t+ie)/((t+ie)2+f2)

Therefore, zk = dk’ zk = dk’ at t =t and since dk+2 = dk’ the

d's being fourth roots of unity, by integration by parts

[+ -]
n .
M(t.) = iz [z, (t))-Z,(t,8)p(t+t.)dt + 0(5)
0 2 K K 0
k=1)_
[--
A R N JU
= iz Ly, “(t)-y ~(t)Ju(t+t.)dt + 0(8).
< K K 0
k=1 )
JBut R
¥ (£,0) = d /((t-ie)2er?)l/2
¥, (1,0) = T /((trie)2er?)l/2
SO
n [+-]
M(ty) = iZ d, S ((t-ie)2+f2)'3/2p(t+t0)dt
k=1 * )
n [+-]
- iz 4, j ((t+tie)2+f2)'3/2g(t+to)dt + 0(8)
k=1 .
-0
= 0(68),
n n_
because X dk’ z dk = 0, the d's being roots of unity. To see that the
k=1 © k=1

higher order (in &) Melnikov functions are also 0(8), it is easjest to
consider the perturbed system 6.1 in McGehee's coordinates. The system
is linear up to order & and the & perturbation term does not depend
on q and p. This makes all the higher order Melnikov functions vanish

to the zero order in 8.

T AT T
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A small driven diffusion perturbation produces a very different
result. The perturbed equation
u, = H(uxx) + 2uux + én(t)uxx

corresponds to the perturbed system 6.2, with € = 0.

Lemma 9: Let n = acos(Qt)+bsin(Qt) be a simple periodic function,

T R et - - e TR

c =6 small, and consider an unexceptional Poincaré map, see Lemma 7.
Then the corresponding Melnikov function of the system 6.3 has a simple

zZero.

Proof: The Melnikov function is

M(ty) = j- f(xy(t),6) g(xo(t),t+t0>dt{

with f as above, but now the perturbation vector depends on x:
g = (0,0,

-18in(t) 3 (21b*y, -y 5 )73l = ey DS (21b+yk-y )71,
Jj=1 Jj#k j=1

16in(t) = (- 21b+yk-y ) -n(t)[ z (yk-y ) s (21b+yk-y b ]).
j=1 Jjzk - j=1

We get

ISE

M(t,) = - {z Z (Y, -y ) Z (y -y ) }n(t+t )dt
0 N J:m kJ¢k k¥j kJ¢k k 0

- 1612 J- {(z +Z, ) Z (21b+yk-y ) }n(t+t )dt
e J#k

- Z Jﬂ {(zk-zJ) z (21b+yk-y by }n(t+t )dt.
k=1 J#k

-0

Now we substitute the above solutions into these integrals. The first

one is easy to do, whereas the last two can be evaluated numerically
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to show that they do not vanish, except for exceptional parameter (e,f)
values. However, we can also get rid of the last two integrals by a
simple rescaling of the poles. Recall that the constants d are constant
multiplies of roots of unity. We set that constant equal .to 6. Then

the last two integrals are 0(5) and

“n(n+1) J (((t-e) 2+ Lag(erie)2er?) ]

M(ty)

. {acos(Q(t+t0))+bsin(9(t+t0))}dt

(n/f)sinh(Qe)cosh(Qf){acos(Qt0)+bsin(QtO)}.
This function has a simple zero in to, unless a =b =0.

In the next section these Melnikov functions will enable us to prove

‘the main results.

Remark 6: Note that the computations above involve only the time deri-
vatives of n and p, and are thus unchanged if constants are added.
Therefore, Lemmas 8 and 9 hold when n and p are definite (positive

or negative oscillatory functions.

T

T
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8. Chaotic Solutions.

The moral of the above story is that the global time behavior of,
the structurally unstable, pole solutions of the Benjamin-Ono equation is
very sensitive to the perturbation Ugys but quite insensjtive to the
perturbation H(ux). The time evolution of the solutions in presence of

the former perturbation, slightly driven, is chaotic, whereas it is indis-

tinguishable from the integrable case for the latter perturbation, up to

exponentially small terms. We state these results in two theorems.

Theorem 2: In the limit as & tends to zero, the time evolution of the

pole solutions to the perturbed Benjamin-Ono equation

u, = H(uxx) + 2uux + 5Uxx + sp(t)H(ux)
is the same as the solutions of the unperturbed equations, up to any

algebraic order in «.

Proof: We must show that the stable and unstable manifolds of the hyper-

bolic fixed point of the Poincaré map on S4n, from Proposition 2,

intersect non-transversely up to exponentially small terms as & vanishes.

But this is the content of Lemma 8, in Section 7. QED
The effect of driving the diffusion term is more spectacular. The
solutions remain regular in space but their time behavior is chaotic.

4n

Theorem 5: There exists an invariant hyperbolic set in S on which

the Poincaré map of the perturbed Benjamin-Ono flow
u, = H(uxx) + 2uuX + Gn(t)uxx

is topologically conjugate to shift on finitely many symbols.
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Proof: First we prove that the stable and unstable manifolds of thé

4n

hyperbolic fixed point of the Poincaré map on S, from Proposition 2,

intersect transversely. We pick a transversal

M yR t=t #t,0<k< N1},

0 k’
where the tk are the exceptional values from Lemma 7, Section 6. Then

2= {(y,z,t) € S

the corresponding Poincaré map has a hyperbolic fixed point. Now by

Lemma 9, in Section 7, the Melnikov function has a simple zero for
appropriately chosen driving function n. Consequently, the stable and
unstable manifolds intersect transversely.

We want to apply the Smale-Birkoff homoclinic theorem but recall

that by Lemma 1, in Section 2, the Benjamin-Ono solutions form a sub-

-manifold ‘in’“'the"phase ‘space “of the N‘bOdy 'equa‘ti'ons* and we must adapt S s

the Smale-Birkoff theorem to submanifolds. This was done by Birnir

(3,'86), Section 9:

The submanifold lemma: The Smale horseshoe can be constructed so that

the stable and unstable manifolds, of the fixed point of the Poincaré map,

are dense in the horseshoe.

By the submanifold lemma, the perturbed N-body map restricted to the
stable and unstable manifolds, which is just the perturbed Benjamin-Ono

map, is topologically conjugate to shift on finitely many symbols. QED.

The perturbation breaks the 4 symmetry of the poles, see Remark 1,

so more that 2n poles will appear.
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Corollary 1: The number of poles (humps) observed in the perturbed flow

will vary in the range [2n,8n].

The proof is similar to the analogous statement for KdV, see Birnir

(3,'86), Proposition 4, Section 9.

Corollary 2: There exist no analytic integrals of the perturbed Benjamin-

Ono equation, with n periodic.

This is a simple consequence of the presence of the horseshoe, see Birnir

(3,'86), Section 8, or Moser (1973).

~ The question still remains what happens when both the above pertur-
bations are present, i.e. & s not infinitesimal, but the diffusion is

not driven, so that n = constant (=1).

Corollary 3: The pole solutions of the perturbed Benjamin-Ono equation
u, = H(uxx) + 2uux + éuxx + ap(t)H(ux)

are chaotic in time for 6/¢ sufficiently large.

Proof: Here the 0(8) and higher order terms generated by éuxx come
into play and couple with p(t)H(ux). The details are similar to the

proof of Theorem 5. QED.

Remark 7: Corollary 3 shows that in the presence of a bad term Uy @
driven good term H(ux) can cause chaotic time behavior. This is in fact
what happens in the physically interesting case, when p is a negative

oscillatory function. Recall Remarks 3, 5 and 6.
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We conclude with a discussion of a classification of:perturbatkons
into those who cause regular and those that cause chaotic time behavior.

So far, H(ux) falls into the first catagory whereas u belongs to the

XX
second. We want to restrict ourselves to the perturbations whose degree
in u and its derivatives is less than that of the unperturbed vector

field. If we count each power of u as 1 and the derivative also as

1, the degree of the Benjamin-Ono vector field X2 is 3. The higher
and lower order vector fields in Table 1 are homogeneous. It is reason-
able to conjecture that perturbations close to the tangent space of the
Benjamin-0Ono tori will be regular whereas those in the normal space

(spanned by the gradients in Table 1,), will be irregular, and chaotic

~if driven. Our results for both BO and KdV, see Birnir (3,'8S6),
support this. However, most perturbations will excite all the infinitely
many nonlinear modes and the solutions do not stay finite dimensional.

For example, the perturbation u will not have invarianf manifolds. The
conjecture was that the Hilbert transform of either lower order gradients
or vector fields will givé invariant manifolds, because of the skew action
of the Hilbert transform. This is true for KdV, with the Hilbert transform

of Tower order vector fields producing regular, and the Hilbert transform

of lower order gradients chaotic, solutions. For BO, H(Xl) = H(ux)

produces regular solutions but H(5H1) = H(u) does not have an invariant
manifold. The reason is the fact discussed in Remark 2, Section 4, that

the system of ODE's in Theorem 1, is not accompanied by a locus condition.
However, we can produce invariant manifolds for H(u) by adding a 0(62)

perturbation, namely, the perturbed BO equation

. . 2 .
5 &7nn
u, = H(u_. ) + 2uu_ + 6n(t)u__ - —°n H(u) + u
t XX X XX 1+62n2 4 1+(52‘_12

has the invariant manifold S2n x R, and on it an invariant hyperboiic
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set, where it Poincaré map is topologically conjugate to a shift on
finitely many symbols. The proof of this statement is analogous to that

of Theorem 3. We summarize these results in Table 3.

Table 3.
Perturbation u, u H(ux) H{u) Uy s
m«»KdV—----4ﬂtegrab%e¥~~—ﬂo~ﬁnvarr*-reguiar-g~“chaotiL ?
manifold
BO integrable no invar. regular no invar. chaotic
manifold manifold

(but almost
chaotic)
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