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The noncanonical Hamiltonian formalism is based upon a generalization of the Poisson bracket, a 
particular form of which is possessed by continuous media fields. Associated with this generaliza
tion are special constants of motion called Casimir invariants. These are constants that can be 
viewed as being built into the phase space, for they are invariant for all Hamiltonians. Casimir in
variants are important because when added to the Hamiltonian they yield an effective Hamiltonian 
that produces equilibrium states upon variation. The stability of these states can be ascertained by a 
second variation. Goldstone's theorem, in its usual context, determines zero eigenvalues of the mass 
matrix for a given vacuum state, the equilibrium with minimum energy. Here, since for fluids and 
plasmas the vacuum state is uninteresting, we examine symmetry breaking for general equilibria. 
Broken symmetries imply directions of neutral stability. Two examples are presented: the nonlinear 
Alfven wave of plasma physics and the Korteweg-de Vries soliton. 

I. INTRODUCTION 

The notion of spontaneous symmetry breaking is an 
essential idea in relativistic field-theoretic models that 
describe the electromagnetic, weak, and strong interac
tions. I Spontaneous symmetry breaking occurs when the 
vacuum state of a physical system possesses less symme
try than its Lagrangian. For scalar fields Goldstone's 
theorem2- 4 tells us that corresponding to each broken 
continuous symmetry there is a massless boson. Alterna
tively, for nonrelativistic many-body quantum systems 
such as superfluids, superconductors, and ferromagnets, 
spontaneous symmetry breaking is related to excitation 
branches that do not have an energy gap. S In a classical 
physics sense one can interpret these phenomena as aris
ing from a particular energy functional for which the vac
uum state is not an isolated minimum but possesses direc
tions of neutral stability. It is this general feature that we 
grasp here in order to investigate spontaneous symmetry 
breaking for fields, such as continuous-media fields in the 
Eulerian-variable representation that describe fluids and 
plasmas. 

Field theories are usually described by means of the 
action-functional formalism or its corresponding canoni
cal Hamiltonian description. Here we depart from this 
and describe spontaneous symmetry breaking in what has 
been called the generalized or noncanonical Hamiltonian 
formalism. This is the natural setting for continuous
media fields that are written in terms of the usual physi
cal Eulerian variables. The basic object of the noncanoni
cal Hamiltonian formalism is the Poisson bracket, which 
is generalized. The emphasis is placed on the Lie algebra
ic properties of the bracket rather than on the usual 
specific canonical form. Consequently, the bracket may 
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have dependence upon the field variables, contain opera
tors, and possess degeneracy. For continuous media there 
is a generic form that is earmarked by linear dependence 
upon the field variables in conjunction with operators that 
are structure operators for a Lie algebra. Whether or not 
the bracket is of this generic form, associated with degen
eracy are special constants of motion called Casimir in
variants. These are constants that can be viewed as being 
built into phase space, for they have vanishing Poisson 
bracket with all Hamiltonians. Casimir invariants play an 
important role in the noncanonical formalism and its ap
plication to spontaneous symmetry breaking. 

The spontaneous breaking of symmetry can be observed 
in either the Lagrangian or the Hamiltonian pictures. In 
both cases the vacuum state corresponds to a minimum of 
the potential energy functional. For the noncanonical 
Hamiltonian formalism treated here, equilibria of a field 
theory correspond to extremals of a functional composed 
of the Hamiltonian plus Casimir invariants. The second 
variation of this functional can be used to ascertain the 
stability of an equilibrium. In this paper we draw a paral
lel between the conventional vacuum state, which is an ab
solute minimum of the potential energy functional al
though not necessarily an isolated point, and an equilibri
um of a noncanonical field theory, which may be a non
isolated relative extremum. We thus observe a parallel be
tween the conventional mass matrix and the second varia
tion of our functional. Zero-mass particles of the former 
are analogous to neutral directions of the latter. Broken 
symmetries of our functional result in such neutral direc
tions. 

We organize this paper by first briefly reviewing the 
noncanonical Hamiltonian formalism, then by discussing 
stability, symmetry breaking, and examples, before con-

4205 © 1986 The American Physical Society 



4206 P. J. MORRISON AND S. ELIEZER 33 

cluding. In Sec. II finite-degree-of-freedom systems are 
treated. This material has a long history that includes 
work motivated by Lie, Dirac, and others. For greater 
depth we recommend Ref. 6 for a coordinate approach 
and Ref. 7 (and references therein) for a modern geometri
cal slant. A readable exposition is given in Ref. 8. In Sec. 
III we discuss field theories. The reader may find Refs. 9 
and 10 helpful. Section IV deals with stability. Criteria 
for null eigenvalues and eigenvectors are obtained. In Sec. 
V symmetry breaking is described and generalized to in
clude noncanonical Hamiltonian fields. Applications are 
discussed in Sec. VI. In particular, the nonlinear Alfven 
wave of plasma physics, and the Korteweg-de Vries soli
ton are treated. We conclude in Sec. VII. 

II. NONCANONICAL HAMILTONIAN MECHANICS 

The canonical method for obtaining Hamilton's equa
tions of motion is to start by identifying the configuration 
space and then through physical considerations write 
down the Lagrangian 

L(q,q)=T- V. (2.1) 

Here the configuration-space coordinates are 
q=(ql, ... ,qN) with corresponding velocities 
q=(ql>'" ,qN); T and V are the usual kinetic and po
tential energies. Variation of the Lagrangian (2.1) yields 
the Euler-Lagrange equations of motion, from which 
Hamilton's equations are obtained by a Legendre transfor
mation. The Hamiltonian H is given by 

N 

H(q,p)= l: Pkqk-L(q,q), (2.2) 
k=1 

where the canonical momenta Pk are defined by 

aL 
Pk=-.-, k =1, ... ,N . 

aqk 
(2.3) 

Hamilton's equations in canonical form are conveniently 
written as 

qj = aaH =[qj,H] , 
'PI 

P; = - aaH =[pj,H], i = 1, ... ,N 
qj 

where the Poisson bracket is defined by 

[j,g]= f [-2L..EL_-2L..EL 1 ' 
k = I aqk apk apk aqk 

(2.4) 

(2.5) 

and j and g are functions of the phase-space variables 
(q,p). Alternately, one can define the phase space by 
zj=qj for i=I, ... ,N and zj=Pi-N for 
i =N + I,N +2, ... ,2N. Using Zi, the Poisson bracket 
becomes 

where 

(Jji)= [ 0 
-IN 

(2.6) 

(2.7) 

is a 2NX2N matrix and IN is the NXN unit matrix. 
(Here and henceforth we sum repeated indices.) The 
quantity (Jii) is a second-order contravariant tensor that 
is called the cosymplectic form. It is the dual or inverse 
of the symplectic two-form that is sometimes taken as the 
starting point for defining Hamiltonian flows. 
Hamilton's equations in this representation are 

i i=[ZI,H]=Jli aH . (2.8) 
azi 

It is not always possible to obtain Eqs. (2.8) by the pro
cedure described above because the Legendre transforma
tion may not exist. When this occurs one must employ 
Dirac constraint theory.6.11-13 This theory leads one to 
Poisson brackets that are not of the standard form, the 
so-called Dirac brackets. Also, brackets of nonstandard 
form arise by the process of reductionl4•15 where the di
mension of a phase space is decreased by virtue of certain 
symmetries in a Hamiltonian. Here we are not concerned 
with this passage from degenerate Lagrangians to Dirac 
brackets or with reduction, but rather we emphasize a 
generalization of the Poisson bracket that includes both. 

Canonical transformations, by definition, preserve the 
form of the Poisson bracket, but an arbitrary coordinate 
transformation does not and thus in this case the form of 
Hamilton's equations can be obscured. However, in spite 
of the obscured form in the latter case, the important 
algebraic properties, such as bilinearity, antisymmetry, 
and the Jacobi identity conditions of the Poisson bracket, 
are maintained. This motivates the following definition 
of the generalized or noncanical Hamiltonian formalism: 
a system is Hamiltonian in this sense if one can find a 
Poisson bracket with the appropriate algebraic properties 
and a Hamiltonian which generates the time evolution of 
the system. The formalism can be cast in the following 
form: 

'j J-ijaH . 1 M Z= -.,1= , ... , , 
azJ 

(2.9) 

where aii) need not have the form of Eq. (2.7). It may 
depend explicitly on zi, and the number of coordinates M 
defining the phase space need not be even. The M X M 
matrix a ii) defines the Poisson bracket in analogy to Eq. 
(2.6), 

(f,g]=~Jii ago . (2.10) 
az' azJ 

This generalized Poisson bracket allows for special con
stants C, called Casimir invariants, which commute with 
the Hamiltonian as well as with any function F of the 
dynamical variables Zi describing the system, i.e., 

[C,F(z)] =0 . (2.11) 

A consequence of this definition of the Casimir invari
ants, using Eq. (2.10), is 

ac: Jii a~ =0 , (2.12) 
az' azJ 

but F is arbitrary and therefore 

Jii ac, = 0 . 1 M azJ ,I = , ... , . (2.13) 
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Thus, the phase-space gradient of a Casimir invariant 
(aC laz i ) is a null eigenvector of a Ii). In fact, it can be 
shown that the null space of ail) is spanned by null 
eigenfunctions that are gradients. Clearly, nontrivial 
Casimir invariants (Le., not constants) exist only if 

(2.14) 

and the number of independent Casimir invariants is 
equal to the co-rank of ali). In the case that (Jil) is 
canonical, it has the structure given in Eq. (2.7) and the 
determinant is unity. Therefore in the canonical Hamil
tonian formalism there are no nontrivial Casimir invari
ants. When (Jii) has null eigenvectors, then the phase 
space can be described by leaves, or hyperplanes, which 
are labeled by the Casimir invariants. A trajectory must 
remain in the hyperplane of phase space as determined by 
the specification of the initial conditions. This follows 
from the fact that the generalized Poisson bracket cannot 
generate flow, i.e., trajectories in phase space, in the direc
tion of these null eigenvectors. 

This noncanonical yet Hamiltonian formalism is 
relevant and useful in describing the nondissipative equa
tions that govern fluids and plasmas. However, since 
these systems are usually described by an infinite number 
of degrees of freedom, it is necessary to describe the non
canonical Hamiltonian field formalism. 

III. NONCANONICAL HAMILTONIAN 
FIELD THEORY 

The state of a system is given by the specification of the 
dynamical field variables 1/JI (i = 1, ... ,M) at time t, 
which are defined on some spatial domain ~. The 
dynamical systems we consider are defined by a system of 
equations such as 

. -i . 
1/J~=1/J=A'(1/JI,1/J2, ... ,1/JM)' i=I, ... ,M (3.1) 

where A I is some operator, e.g., a general nonlinear partial 
differential or integro-differential operator. Clearly, usual 
field theories fit into this form. A canonical Hamiltonian 
field theory possesses some functional H, usually derived 
from a Lagrangian functional, by performing a Legendre 
transformation [similar to that of Eq. (2.2)]. In this case 
the set of equations (3.1) becomes 

tfr={1/Ji,Hj, i=I, ... ,M (3.2) 

where M is even (M = 2N) and the Poisson bracket is 
given, for any arbitrary functions F and G of the variables 
~,by 

{F Gj = f dT BF.Oji BG .. 
, !'R B1/J' B1/JJ 

(3.3) 

Here dT is the volume element and the MXM matrix 0 
is 

(3.4) 

with IN the NXN unit matrix. Conventionally, canoni
cal field theories split the 2N ( = M) dynamical variables 
~ into configuration components r/ (i = 1, ... , N) and 

their canonically conjugate momenta 1Tj (i = 1, ... ,N). 
For r/,1TI defined on ~ CR3 the Poisson bracket, Eq. 
(3.3), can be rewritten as 

{F,Gj = f d 3x f B~ BG _ BG. BF . (3.5) 
1=1 B'TJ' B1Ti B'TJ' B1Ti 

In this case the equations of motion (3.2) reduce to the 
Hamiltonian field equations 

BH 'TJI __ -
r- B1T1 ' 

aH 
1Tit=- B'TJI ' i=I, ... ,N. (3.6) 

As is well known, the Poisson bracket of Eq. (3.5) satisfies 
the following algebraic relations: 

[aF+pG,Kj =a[F,Kj +P[G,Kj , (3.7) 

{F,Gj=-{G,Fj, (3.8) 

{FG,Kj=F{G,Kj+{F,KjG, (3.9) 

{{ F,Gj,K} + ({K,Fj,G} + {{G,Kj,F} =0, (3.10) 

where F, G, and K are arbitrary functionals of the 
dynamic variables ('TJ, 1T), and a and P are constants. 

Noncanonical Hamiltonian field theory is defined in 
terms of the generalized Poisson brackets, analogous to 
the case of a system with a finite number of degrees of 
freedom. In this case the general set of equations (3.1) can 
be cast into the form 

. . -··BH 
1/J~={"",HJ=O'J-., i=I, ... ,M (3.11) 

B1/JJ 

where (5 is a matrix operator that endows the generalized 
Poisson bracket defined by 

{ F G I = f dT BF. i5 Ii BG 
, !i" B1/J' 81/J J ' 

(3.12) 

with the algebraic properties (3.7)-(3.10) as in the canoni
cal case. However, the matrix operator (5 need not have 
the form of 0 in Eq. (3.4). In particular, for continuous 
media described by means of Eulerian variables this quan
tity has the following generic form: 

(3.13) 

where the quantities Ciik are the structure operators for 
some Lie algebra. This Ubiquitous form occurs for a wide 
range of field theories including, e.g., models for toka
mak discharges 10, 16 and the Bogoliubov-Born-Green
Kirkwood-Yvon (BBGKY) heirarchyY 

In a way similar to the finite-dimensional systems treat
ed in Sec. II, a noncanonical Hamiltonian field theory can 
have a number (often infinite) of Casimir invariants that 
satisfy 

{Ck,Fj =0, k =1, ... ,P (3.14) 

where F is an arbitrary functional of the dynamical vari
ables ~, i = 1, ... ,M (not necessarily an even number). 
A noncanonical field theory is defined by the knowledge 
of the Poisson bracket (i.e., knowledge of (5), as well as 
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the Hamiltonian H. 
An important by-product of this fonnalism is that vari

tional principles for equilibria are automatic. Here, 
equilibria are defined by a set of time-independent dynam
ical variables t/Ji which satisfy the vanishing of the right
hand side of the equation of motion (3.11). This defini
tion includes the so-called static and stationary solutions 
of fluid mechanics. Equilibria arise upon variation of the 
following functional: 

p 

1(t/J)=H(t/J)+ :I Ck(t/J) . (3.15) 
k=l 

The Casimir invariants Ck have the role of the constraints 
on the system (note that the Lagrange multipliers are here 
incorporated in the Casimir invariants), so that the equa
tions for equilibria are obtained from 

81. =0, i = 1, ... ,M . (3.16) 
8t/Jl 

One can see that Eqs. (3.16) are equilibrium equations 
from the fact that I (t/J) produces the same equation as 
H(t/J) [using (3.14)], 

t/J~= I t/Ji,HJ = I t/Ji,lJ =0 ij 81. , (3.17) 
8t/Jl 

and the vanishing of 81 18t/Jj implies t/J~ =0 for 
i = 1, ... ,M. Therefore the addition of the Casimir in
variants to the Hamiltonian enriches the variety of the 
equilibria obtainable from variational principles. Suppose 
that vie are solutions of Eqs. (3.16). In this case the first 
variation of I in the direction of 1/=(1/1, ... ,1/M), denot
ed by Dl'1/, is given by 

d I J 81 . 81= -1(t/J+E1/) =Dl'1/= d-r-.1/'. (3.18) 
dE E=O 8t/J' 

Equation (3.16) implies that Dl'1/=O for all 1/. 
variation at fixed 1/ yields 

821= dd Dl(t/J+E1/)'1/1 
E E=O 

2 2 J . 821 . =D 1(t/J)'1/ = d-r1/'-.-.1l'. 
8t/J'8t/Jl 

A second 

(3.19) 

The quantity (821)/8t/Ji8t/Jj is an operator that depends in 
general upon t/J and acts on the quantity to its right. If 
D 21'1/2 is a positive-definite quadratic fonn in 1/, then we 
will see in Sec. IV how this can be used to ascertain stabil
ity.18-20 

IV. STABILITY 

The notion of stability lies at the heart of the idea of 
symmetry breaking, for classically the positivity of mass 
is equivalent to a statement of stability while zero mass 
corresponds to neutral stability. In this section we explore 
questions of stability and neutral stability in the context 
of finite-dimensional systems. We will conclude with 
some comments regarding the extension to field theory. 
The principal new result of the section is the connection 
between null eigenvalues and eigenvectors of the "stability 

matrix," (a21Iaziazj ), and null eigenvalues and eigenvec
tors of the linearized dynamical system. 

Let us recall some fonnal definitions concerning stabili
ty of a set of autonomous ordinary differential equations 

(4.1) 

A phase-space point ze=(z\t ... ,ZN) is an equilibrium 
for Eq. (4.1) if Ai(ze)=O for all i. An equilibrium Ze is 
stable if for any neighborhood N of Ze there is some 
neighborhood M of Ze which is contained in N, with the 
property that if Z is initially in M it will remain in N for 
all time. This type of stability is sometimes referred to as 
nonlinear stability since the "distance" between Z and Ze 

need not be infinitesimal. Alternatively, an equilibrium is 
linearly stable if the system obtained by linearizing Eq. 
(4.1) about Ze is stable. If the eigenvalues of this linear
ized system have real parts that preclude exponential 
growth, then the equilibrium Ze is spectrally stable. Be
cause of the well-known symmetries in the spectrum of 
Hamiltonian systems, spectral stability can only occur if 
the eigenvalues are pure imaginary. It is evident from the 
above definitions that if Ze is a stable equilibrium point 
then it is also linearly stable, since the neighborhood N 
can be chosen as "small" as desired. Also, linear stability 
implies spectral stability. 

Hamiltonian systems possess a built-in sufficient cri
terion for stability. For example, if the kinetic energy is a 
positive definite quadratic fonn in the momenta, then sta
bility is detennined by the curvature of the potential at 
the equilibrium point. The equilibrium being a potential 
minimum is a sufficient criterion for stability. The field
theoretical extension of this example, with quartic poten
tial, is the archetype for spontaneous symmetry breaking 
(cf. Sec. V). In general, there may exist energy-type argu
ments for ascertaining stability; i.e., where the total ener
gy or Hamiltonian is used as a Liapunov function. To 
serve as a Liapunov function a Hamiltonian H must satis
fy (i) H (ze ) = 0, (ii) H (z) > 0 for some neighborhood N of 
Ze (deleting ze), (iii) if = 0 in N. If (i)-Wi) are satisfied 
for the H of a canonical Hamiltonian system, then the 
equilibrium Ze is stable. Condition (i) is trivial since a 
constant can always be added to H, while condition (iii) is 
true for any H that lacks explicit time dependence. Con
dition (ii) is equivalent to definiteness of the stability ma
trix (Hij)=(a2H(ze)/aziazi), i.e., to the condition that all 
of the eigenvalues of (Hij ) are greater than zero or all are 
negative. In the latter case the negative of H serves as a 
Liapunov function. It should be emphasized that definite
ness of (Hii ) is a sufficient but not necessary condition for 
stability. There is an interesting example due to Cherry21 
for which (Hij ) is indefinite and the system is spectrally 
and linearly stable, but unstable. Cherry's Hamiltonian is 

H=m(qI+PI)/2 

-m(q~+p~)+k[q2(qr-pr)-2qlpIP2] . 

This example typifies negative energy waves. 
Let us now consider what transpires in the noncartoni

cal case, where the cosymplectic fonn J may be degen
erate and depend upon phase-space coordinates. Here we 
will assume that near equilibrium points of interest, the 
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rank of J is constant. (See Ref. 7 for a discussion of 
phase space near points where the rank changes.) If the 
rank of J is less than the dimension of the phase space, 
then the system possesses Casimir invariants and the 
Hamiltonian is no longer unique. This is evident from the 
following form: 

il=[ZiH]=Jij3~=Jij[3~+ 3C: ]=[Zi I ] 
, 3zJ 3zJ 3zJ " 

(4.2) 

where I =H +C and the penultimate equality arises be
cause, by definition, the phase-space gradient of C is a 
null eigenvector of J. It is an interesting and important 
fact that critical points of H (i.e., points where 
3H 13zi=0 for all i) and I are not equivalent. Since 
physically H should correspond to the energy, we observe 
that the set of critical points of the energy does not in 
general include all equilibria. Thus by adding the Casimir 
invariant to the energy one obtains a candidate Liapunov 
function for a larger class of eqUilibria. This is important 
since for fluid and plasma fields, as some for finite
degree-of-freedom systems, the critical points of the ener
gy yield trivial and uninteresting equilibria, a situation 
which is remedied by the addition of Casimir invariants 
(see Sec. VI). It is now evident that a sufficient condition 
for the stability of an equilibrium point Ze' which is a crit
ical point of some I, is definiteness of the matrix 
(lij )=W2I(ze lI3z i3z i ). 

The implication of indefiniteness of (Iij ) on stability is 
indeterminate. This is evidenced by the Cherry's example 
in the canonical case and a similar caution applies in the 
noncanonical case. Also, in spite of indefiniteness of a 
particular (Iij ) an equilibrium point can still be stable. 
Nevertheless, (Ii}) does contain information regarding 
linear stability and may contain information about stabili
ty. If we suppose that z(t)=ze+&(t) where &(0) is an 
initial small perturbation away from an equilibrium point 
Ze' then in the canonical case the equation governing z (t) 
to leading order is 

.' .. 32H(ze) k 
8z '=J'J . & (4.3) 

3zJ3zk 

Linear equations such as Eq. (4.3) may have exponential 
as well as secular or algebraic solutions, depending on the 
Jordan form of the matrix ( A ij ) = (JilHjk ). (For a discus
sion of linear canonical stability see Refs. 22 and 23.) A 
general discussion of linear stability is not our concern 
here; rather, we wish to investigate neutral direction, i.e., 
situations where Eq. (4.3) will possess zero eigenvalues. 
Clearly Eq. (4.3) will possess a zero eigenvalue if 
det( A i k ) = O. Using the product rule for determinants, 
this condition becom~ det(Jij)det(Hij)=O. Since in the 
canonical case det(JiJ) = 1, Eq. (4.3) possesses a zero 
eigenvalue if and only if det( Hi}) =0. Moreover, it is ob
vious that an eigenvector 8Z corresponding to a null eigen
value of (Hij ) is a null eigenvector of (A I k) and thus 
represents a direction of neutral linear stability. Equili
bria that possess neutral directions are the objects of dis
cussion in Sec. V. 

Consider now the noncanonical version of Eq. (4.3), 

. - .. 3 21 (ze ) k 
8i'=J'J(ze) } k 8z , 

3z 3z 
(4.4) 

where the equilibrium Ze is a critical point of I. There is 
a distinction between the evolution of the component of 
8z(0) that lies in the symplectic leaf of Ze and the com
ponent that does not. Separation of the latter component 
from Ze is restricted by the fact that the perturbed orbit 
for finite perturbation lies on and is confined to a dif
ferent symplectic leaf than that of Ze' Here we will not 
concern ourselves with detailed noncanonical stability 
analysis, but investigate the noncanonical condition for 
zero eigenvalues, i.e., det(] i})det(Iij) =0. Unlike the 
canonical case we see that this condition can now be ful
filled by dedi ij) = 0, as well as the existence of a null 
eij~valu~ .~or (lij)' In general we know that the rank of 
(A 'k)=(J'JIjk ) satisfies 

rankcA Ik ):::;; min(ranklij,rankIjk ) • 

Thus for every null eigenvector of Iij the system possesses 
a null eigenvalue. Moreover, as in the canonical case a 
null eigenvector 8Z corresponding to a null eigenvalue of 
( Ii) ) is also a (right) null eigenvector of (A i k ). 

A further remark concerning stability can be made 
when (Ii}) is semidefinite, i.e., when (Iij ) possesses eigen
values that are either zero or have common sign. In this 
case (Ii}) can be used to place a restriction on the behavior 
of a solution if it is indeed unstable. 

To conclude this section we note that there are 
subtleties associated with the field-theoretic extention of 
the stability notions presented above. The obvious 
infinite-~im~nsional generalization of (Ii}) is the quantity 
(82I18t/18t/JJ) defined by Eq. (3.19), although caution must 
be observed before concluding that definiteness of this 
operator implies stability. For infinite-dimensional sys
tems, definiteness of the second variation of a function at 
an extremal point is not sufficient for determining that an 
extremal point is an extremum.24 A field theory possesses 
a stable equilibrium point when one produces a norm that 
is bounded in time. In practice the transition from a de
finite quadratic form on perturbation 11 such as Eq. (3.19) 
to a norm on finite perturbations can be a trivial matter. 
(Many examples of this are worked out in Ref. 19.) For 
our purposes we will rely on the fact that definiteness of 
(821 18~8t/Jj) guarantees linear stability. Also, our obser
vations concerning null eigenvalues and eigenvectors for 
finite systems carries over. 

V. SYMMETRY BREAKING 

Conventionally Goldstone's theorem appears in the con
text of Lorentz-invariant scalar field theory. Let us con
sider an example with two real scalar fields qi, i= 1,2, and 
a Lagrangian density given by 

2'=(3p.qidl'qi)/2-m 2qlqlI2-'A(qiq:l)2/4. (5.1) 

Observe that in addition to the requisite Lorentz invari
ance, 2' possesses an internal 0(2) symmetry, i.e., 

[q, I ] = [ co~B sinB ] [epl]. 
q, 2 - smB cosB ep2 (5.2) 
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This symmetry is maintained when .!t' is Legendre 
transformed to obtained the Hamiltonian density 

K=(1T(Trj )/2 + (Vlf.i·Vlf.i)/2 

(5.3) 

where 1Tj == aOq/. Since the first two terms on the right
hand side of Eq. (5.3) are non-negative, K will be mini
mized when qJi is constant and equal to the minimum of 
the "potential" 

r=m2(qJiqJi)/2+'A.(q/q>!)2/4. 

Extrema of r are given by 

q:J[m2+'A.(qJiqJi)] =0, j = 1,2. 

(5.4) 

(5.5) 

Equations (5.5) can be solved in two ways, either (i) 
qJl =qJ2=0 or (ii) (qJiqJl)= _m 2 I'A.. For case (ii) to possess 
a sensible solution we must have m 2 < 0 and 'A. > 0; hence 
r takes the "sombrero" shape with a ring of minima at a 
radius (- m 2/'A.)1/2. There is an important difference be
tween these two cases. In case (i) the 0(2) symmetry of K 
(and r) is maintained, while in case (ii) this symmetry is 
broken for any choice on the ring. A ramification of this 
is that the "mass matrix," _(a2r laqJiaq:J), in the latter 
case possesses a zero eigenvalue. From a stability point of 
view this may seem obvious (recall Sec. IV were stability 
of systems with positive definite kinetic energy was dis
cussed), but it is perhaps not apparent that there is a gen
eral principle at work here, namely, that corresponding to 
each such continuous symmetry that is "broken" (i.e., not 
possessed) by the vacuum state there is a zero eigenvalue. 
This is Goldstone's theorem that we shall shortly prove 
formally in the context of noncanonical field theory. 

There are some comments and generalizations regard
ing the above conventional picture that can be made. 
Notably, while the Lagrangian approach is useful for 
building symmetries into field theories, the Hamiltonian 
approach is more natural for discussing equilibria. For 
the conventional case this distinction is trivial since the 
connection between the two approaches is immediate, and 
since one is interested in the vacuum state, which corre
sponds to the absolute (although not necessarily isolated) 
minimum of the Hamiltonian. More generally, it should 
be emphasized that the vacuum state (or states) is only 
one element of the larger class of equilibrium states, 
which is composed of all critical points of the Hamiltoni
an. Goldstone's theorem is valid for all of these equili
bria. This is important since for fluids and plasmas the 
minimum-energy equilibrium is uninteresting becaus~ it 
typically corresponds to no fluid motion, zero magnetic 
field, etc. If the Lagrangian is nonstandard or there exist 
constraints, the transition to the Hamiltonian may require 
effort; thus, the distinction between the two approaches 
may no longer be trivial. Nonstandard as well as conven
tional cases are contained within the noncanonical Hamil
tonian formalism, which has the equilibrium and stability 
apparatus discussed in Secs. III and IV. 

In Sec. III we observed that for a noncanonical field 
theory with field components t/Ji (i = I, ... ,M) the func
tional I(t/J)=H + ~k Ck is an effective Hamiltonian. 
The generalization of Goldstone's theorem to the func-

tional I follows directly. Let us suppose that I is invari
ant under a (maximal) n-parameter continuous group [§. 
Evidently [§ has n generators and t/J transforms according 
to some M-dimensional representation La (a = 1, ... ,n) 
as follows: 

(5.6) 

where~, the group parameters, need not be constant. (A 
symmetry is called global if the ~ are constant, otherwise 
it is referred to as local.) In Eq. (5.6) we have arranged 
things so that La is a real MXM matrix (operator). Since 
by supposition] is invariant under [§, we have 

M = f (&1 If)ftJ)8t/idT= f (&1 18t/Ji)~L/jt/JjdT=0. (5.7) 

Upon taking the second variation of Eq. (5.7) we obtain 

82] = f ~[L/jt/Jj(821 18t/Jk8t/i)8~ 
(5.8) 

where this second 8~ is assumed to be arbitrary and thus 
it need not satisfy Eq. (5.6). Evaluating Eq. (5.8) on the 
equilibrium, i.e., setting t/J=t/Je, yields 

821e = f ~[La iitft!(82] 18~8t/i)e8t/Jk]dT=0 . (5.9) 

Observe that Eq. (5.9) contains the stability matrix (opera
tor) (821ISt/JkSt/i)e evaluated on t/Je. From the definition 
of the stability matrix [Eq. (3.19)] it is seen that its adjoint 
is given by the interchange of i and k. Using this adjoint
ness property together with the Du Boise-Reymond lem
ma (arbitrariness of St/Jk) we obtain 

(82I/8t/iS~)e~L/itft! =0. (5.10) 

Now suppose that the equilibrium t/Je is invariant under 
an m-dimensional subgroup .Y of [§; therefore, if La is a 
generator of.Y then Lat/Je=O. If La does not generate a 
symmetry of the equilibrium then Lat/Je=l=O and in order 
for Eq. (5.10) to hold, the stability matrix must possess a 
zero eigenvalue. Given that in fact there are n - m in
dependent quantities La "'e for which this is true, it fol
lows that there are n - m zero eigenvalues, one corre
sponding to each symmetry that is broken by the equili
brium. By the discussion in Sec. IV these zero eigenvalues 
and corresponding eigenvectors are eigenvalues and eigen
vectors for the linearization of the field theory. In the 
next section we will look at some examples of this. 

VI. APPLICATIONS 

A. Nonlinear AIfven waves 

The equations of ideal magnetohydrodynamics (MHD) 
possess exact nonlinear Alfven-wave solutions.25 These 
are solutions composed of a magnetic disturbance of arbi
trary shape that can propagate at a fixed velocity along 
the direction of a given constant magnetic field. The 
magnetic disturbance has a direction perpendicular to the 
given field and is accompanied by a velocity disturbance. 
This physical description is the same as that for the usual 
linear Alfveo wave, except that there is no restriction on 
the relative size or shape of the disturbances. In a frame 
moving at the propagation velocity of the disturbances the 
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nonlinear Alfven wave can be viewed as a stationary 
equilibrium state. We will see that this equilibrium does 
not possess a symmetry of its effective Hamiltonian; 
hence, there exists a zero eigenvalue. 

For simplicity we discuss symmetry breaking by the 
nonlinear Alfven wave in the context of reduced magne
tohydrodynamics (RMHD). This system was derived26•27 

in the context of controlled fusion for modeling some 
dominant physics of the tokamak machine, but more gen
erally it may be applicable whenever there is a strong 
magnetic field and one desires to describe perpendicular 
motion. Previously, the presence of the nonlinear Alfven 
wave in this model was discussed in Ref. 28. Here we use 
RMHD since it can describe the nonlinear Alfven wave 
with only two scalar fields, although we emphasize that 
the results we present hold true for the ideal MHD 
"parent" of the RMHD model. 

The small parameter on which the RMHD reduction is 
based is the so-called inverse aspect ratio E=a IRa, where 
Ro is a characteristic length in the direction of the dom
inant magnetic field and a is a characteristic length of the 
direction perpendicular to this. For a tokmak Ro is the 
major radius of the torus, while a is the minor radius. 
The magnetic and velocity fields take the following diver
genceless (to the order indicated) forms: 

(6.1) 

where t/I is a "stream function" for the magnetic field, 
which is proportional to the flux through a poloidal cut of 
the torus (it is also the parallel component of the vector 
potential), and qJ is the usual velocity stream function. 
Both t/I and qJ are functions z and of the plane coordinates 
perpendicular to 'Z. The field variables of RMHD are t/I 
and the scalar vorticity U =z·Vxv. Evidently, U is re
lated to the stream function through U = VtqJ, while simi
larly the current in the 'Z direction (- J) is related to t/I 
through J = Vtt/l. The equations29 governing the RMHD 
fields can be compactly written in terms of normalized 
variables as follows: 

Ut=[U,qJ]+[t/I,J)-Jz , 

t/lt = [t/I,qJ]-qJz , 

(6.2) 

(6.3) 

where the square bracket [, ] in polar coordinates is de
fined by 

(6.4) 

Observe that if one sets t/I=O then Eqs. (6.2) and (6.3) 
reduce to the well-known two-dimensional Euler equa
tions of fluid mechanics. 

Equations (6.2)-(6.4) posses a Hamiltonian description 
in terms of the following noncanonical Poisson brack
et:30 - 34 

IF,Gj = J I U[Fu,Gu ] +t/I([F""Gu ] + [G""Fu ]) 

(6.5) 

where F u is a shorthand for the functional derivative3S 

BF IBU and az means a/az. The conserved energy for this 
system is 

H =+ J ( 1 V1qJ 12+ 1 V1t/lI2)dT. (6.6) 

Using Eqs. (6.5) and (6.6), Eqs. (6.2) and (6.3) can be writ
ten in the following concise form: 

t/lt=lt/I,Hj, 

Ut=IU,Hj. (6.7) 

The bracket of Eq. (6.5) has the following Casimir invari
ants: 

C=J.Jt/ldT, 

C=AJ t/lUdT, 
(6.8) 

which corresJ>ond respectively to magnetic and cross heli
cities. Here A and A are constants. 

We now can construct variational principles for equili
bria, and thus investigate stability by means of the stabili
ty matrix. In fact, this calculation was previously done in 
Ref. 20, where it was observed for the nonlinear Alfven 
wave that the stability matrix did not quite provide a 
norm for stability. Technically the stability matrix pro
vides a prenorm, i.e., a "norm" with degeneracy. We are 
now in a position to explain this degeneracy, since in gen
eral degeneracies correspond to zero eigenvalues of the 
stability matrix, which in turn arise from broken sym
metries. The effective Hamiltonian36 for the Alfven wave 
is 

1=+ J( IV1qJ1 2+ IV1t/lI2_2AV1qJ·V1t/l)dT. (6.9) 

Variation of I yields the following eqUilibrium equations: 

BIIBU=-qJ+At/I=O, 
(6.10) 

BI IBt/I= -J +AU =0 . 

These equations become effectively redundant if A= ± 1 
and their solution is qJ= ±t/I, where the spatial dependence 
is unrestricted. Thus the shape of the magnetic distur
bance is arbitrary and it is paralleled by the velocity flow 
corresponding to qJ. Let us consider the case where 
A= -1 and rewrite Eq. (6.9) as follows: 

1=+ J I V1(qJ+t/I) 1 2dT . (6.11) 

Evidently Eq. (6.11) is invariant under the transformation 

[~]= [a ±1-d] [qJ] 
t/I ±1-a d t/I' 

(6.12) 

where a and d are arbitrary except a +d=l= 1. This group 
is really a single-parameter local continuous group with 
two Z2 subgroups. The upper sign corresponds to the 
subgroup connected to the identity; it has the following 
elements: 

(6.13) 

where a is arbitrary. The generator corresponding to the 
second (continuous) element of (6.13) is 

L=[~1 ~l· (6.14) 

This symmetry is broken by any choice for the Alfven 
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wave equilibrium. 
Let us now show this directly. Suppose that .,pe is a 

choice for a spatially dependent equilibrium magnetic per
turbation with corresponding velocity perturbation 
rpe = -.,pe· The equilibrium state is then given by the fol
lowing column vector: 

~e=[~~el· (6.15) 

The upper entry corresponds to the equilibrium-velocity 
stream function. According to the analysis of Sec. V, the 
quantity (L ij~~) should be a null eigenvector of the sta
bility matrix. The stability matrix ([ij) in this case is 
given by 

(6.16) 

From Eq. (6.16) it is clear that JijELjk~:=O for i= 1,2. 
(Here we have defined the stability matrix in terms of the 
variable rp instead of the dynamical variable U; in particu
lar, J \1 =f:J2J 1f:Jrp2.) It is now evident why the analysis of 
Ref. 20 resulted in a prenorm: the Alfven wave breaks 
symmetry. 

B. Solitons and solitary waves 

Sometimes nonlinear field theories possess soliton or, 
more commonly, solitary-wave solutions. These are non
linear solutions that propagate at constant velocity (c), 

with an unchanged shape that may be pulselike or step
like. In the "wave frame", which moves at velocity c, the 
shape corresponds to an equilibrium state. Loosely speak
ing, solitons are solitary waves with the further property 
that when two collide the original shapes and velocities 
are preserved after the interaction. Typically this is only 
approximately true for solitary waves. Solitons have all 
or part of the inverse-scattering machinery available for 
integration (see, e.g., Ref. 37). The distinction between 
solitons and solitary waves will not concern us here; our 
results are not restricted to the relatively rare case of soli
ton solutions. In fact our results apply for equilibria of 
any field theory with a conserved momentum. 

Field theories that have soliton or solitary-wave solu
tions can be either canonical or noncanonical. For exam
ple, the rp4 Klein-Gordon equation, the sine-Gordon equa
tion, and the cubic nonlinear SchrOedinger equation are 
canonical (see, e.g., Refs. 37 and 38), while the 
Korteweg-de Vries (KdV) equation and the regularized
long-wave equation are naturally non~anonical (see, e.g., 
Refs. 37 and 39 for the former and Ref. 40 for the latter). 
As an example we will work out the case for a single KdV 
soliton. Stability for this example has previously been in
vestigated.41 ,42 

Consider the KdV equation transformed into a frame 
moving at a constant velocity c, 

(6.17) 

This equation possesses the following Poisson bracket due 
to Gardner:39 

I co a 
( F, G J = _ co (f:JF If:Ju) ax (f:JG If:Ju)dx . (6.18) 

The Hamiltonian and Casimir invariant are given, respec
tively, by 

H= I_COco (u 3/6-u;/2-cu 2/2)dx, (6.19) 

C=AI_ooooudx. 

For our purposes the Casimir C is not needed. The 
"momentum" I u 2dx has been added to the Hamiltonian 
in order to boost the system into the wave frame. Thus 
we have J =H and 

(6.20) 

Equilibrium requires that UJOC - cu + U 212 = 0, which has 
the desired solution Ue = A sech2( kx), where A = ± VUk 
and k 2=c/4. The specification of c at the outset deter
mines a particular equilibrium solution. Observe that J is 
invariant under space translation. This is evident from 
Eq. (6.20) since if f:Ju =EUx , we obtain f:JJ=O upon enforc
ing the boundary conditions U (± 00 )=0. The choice of 
U = Ue for an equilibrium breaks this symmetry; thus, we 
expect a zero eigenvalue. Consider the second variation 

f:J2J = r:co f:Ju (u -c +a2/ax2)f:J'17dx . (6.21) 

The stability operator u -c +a2/ax 2 possesses the null 
eigenvalue when evaluated at U =Ue • The corresponding 
eigenfunction is given by 

f:J'17=EUx =E'sech2(kx)tanh(kx) , (6.22) 

as can be shown directly. Here E and E' are constants. 

VII. CONCLUSIONS 

In Secs. II and III we have reviewed the noncanonical 
Hamiltonian formalism for finite-degree-of-freedom sys
tems and field theories, respectively. This formalism is 
based upon a generalization of the Poisson bracket. Un
like typical quantum fields, Poisson brackets for continu
ous media fields that are written in terms of Eulerian 
variables, have explicit linear dependence upon the field 
components. Additionally, because of degeneracies there 
are Casimir invariants. Casimir invariants are important 
because they enlarge the class of equilibria obtainable 
from variational principles. Typically for media fields, 
variation of the energy alone yields uninteresting equili
bria, a situation that is remedied by using the Casimir 
constraints. The so-called "thermodynamic" variational 
principles of plasma physics43 are Casimir-constrained 
variational principles. The noncanonical formalism ex
plains the existence of these Casimir invariants, explains 
the connection between the equilibrium-variational princi
ples and the dynamics [see, e.g., Eqs. (3.17) and (4.2)], and 
provides a framework for finding new Casimir invariants. 

Stability was treated in Sec. IV. For canonical finite
degree-of-freedom-systems the Hamiltonian can serve as a 
Liapunov function for determining nonlinear stability. If 
the Hamilton has standard kinetic energy and potential 
energy terms, then the sign of the curvature at the equili
brium point provides a necessary and sufficient condition 
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for nonlinear stability. If the Hamiltonian is not of this 
standard form then one must examine the curvature of the 
entire Hamiltonian. A sufficient condition for stability is 
definiteness of the stability matrix (Hij ). In the non
canonical case the situation is complicated. If one can 
find an I for which the desired equilibrium is an extremal 
point and for which (Iij ) is definite, then a sufficient con
dition for nonlinear stability is obtained. We have shown 
that if (Iij) is indefinite by possessing zero eigenvalues, 
then the zero eigenvalues and eigenvectors of (Iij ) imply 
neutral stability for the linearized system. The zero eigen
vectors of (Iij ) are neutral directions. Neutral linear sta
bility for infinite-dimensional systems similarly arises if 
(f/Ilot/it"J) has zero directions. 

In Sec. V Goldstone's theorem was adapted to the non
canonical formalism. It was emphasized that the Hamil
tonian formalism is the natural place to discuss symmetry 
breaking since the Hamiltonian or its generalization I 
provides a variational principle for equilibria. If an 
equilibrium obtained in this way has less symmetry than 
that of I, then for each such broken continuous symmetry 
there is a zero eigenvalue of (Iij)' The corresponding null 
eigendirection of (IiJ ) is a null eigendirection of the linear 
equations. 

There are two features of our presentation of 
Goldstone's theorem in the noncanonical context that 
differ from the "conventional" context discussed at the 
beginning of Sec. V. Firstly, the conventional case makes 
a distinction between coordinates and momenta, the neu
tral direction being solely in the configurations pace. Our 
presentation includes this possibility, but is not restricted 
to it. Secondly, in the noncanonical context we have 
made the connection between symmetry and neutral direc
tions of the linearized system, but in the conventional case 
it is apparent that the neutral direction persists nonlinear
ly. Neutral stability on the linear level is necessary but 
not sufficient for the nonlinear level. 
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