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Abstract

quLINEAR TOROIDAL PLASMA DYNAMICS BY REDUCED FLUID MODELS.

Fluid models are presented which generalize reduced MHD by allowing for compressibility,
Finite Larmor Radius, and long mean free path in toroidal geometry. The Hamiltonian structure of the
models leads to a generalized energy principle for determining linear and nonlinear MHD stability of

uulbna with flows and Finite Larmor Radius effects. Neoclassical effects from the long mean free

th lead to new dissipative terms giving rotation damping, bootstrap currents and the Ware pinch. Rota-
jon damping from non-ambipolar transport in stellarators can lead to self-consistent plasma currents’
- hich strongly reduce or ‘‘heal’’ steady-state magnetic stochasticity (e.g., from coil errors or
pfirsch-Schliiter currents). The bootstrap current in tokamaks causes the growth of nonlinear magnetic
islands in the Rutherford regime. Thus, otherwise stable moderate mode number islands can potentially
overlap, with serious detriment to confinement.

INTRODUCTION

We present models that generalize reduced MHD by allowing for compress-
ibility, Finite Larmor Radius, and long mean free path. The Hamiltonian
structure of the models leads to a significantly generalized energy principle.
Applications include linear and nonlinear instabilities and results regarding
self-consistent magnetic stochasticity.

1. MORE REALISTIC FLUID MODELS

A. Conventional high 8 reduced MHD[1] contains three fields: the poloidal
flux function %, a velocity stream function ¢, and pressure p. To allow for
compressible flows, we add parallel velocity. Previous Alfvénic normaliza-
tions are used[1]. FLR terms enter proportional to a parameter 6, defined
so that the normalized diamagnetic velocity (cT'/neB)Z x Vn / €v4 is equal
to 62 x Vp. We also define [@,Q2] = 2+ VQ, x V@2, VQ = F* — [%,Q)],
F=¢+kép, W=V2F, J=V2yp, with k=T,/T.. The conserved energy

is

H——/IV¢I+IVFI+< e LR O




150 KOTSCHENREUTHER et al.

We therefore write the four-field model with the terms needed for e, *

ergy conservation on the left, and higher order FLR terms needed to 4,
Hamiltonian on the right. ‘

W + [F,W]-6kV - [p, VF] + V. J + (1 + k)[h, ]
=(k8B/2){ - 26(1 + k)V? [h,p] — V2 V(v + 26J) '
-+ k6V23[p + 26h, W]} )

%+ VF = §(1+ k)Vp+ k626V W =0 3)

P+ [F,p) + BV (v +267) 238 [h, F = (1 -+ k)ép] = k6B[p + 26k, W] (4

b+ [F = kp,v] + %(1 + k)Y p = —ké [v,28h + k623V2 p — 265W]
1 .
+ EkéﬁV" W (5)

where h gives the effects of curvature; h is the normalized distance in the |
direction outward from the torus:

B. In modern tokamaks the collisional mean free path exceeds the device
size. Nonetheless, fluid equations can be rigorously derived to describe the
region near a rational surface. The calculation uses kinetic theory together
with a systematic two-scale expansion in the parallel gradients, and is simi.
lar in spirit to previous MHD analysis by Glasser et al. and Kotschenreuther ,
et al. For simplicity we use an aspect ratio expansion and plateau collisional-
ity. For maximum generality, we include FLR effects, parallel compressibility,
resistive flux diffusion in the inner layer, semicollisionality, rotation damping
of parallel velocity, nonlinear convection and nonlinear modifications of the
equilibrium field. A maximal ordering to systematically include all the ahove,
in which all quantities are ordered in terms of ¢, is: Ar ~ p,, pp/r ~ €,

" w~€*v;/R, B~ €% By/B ~¢€, V. R[ve ~ € \[/me/m; ~ ¢, where Ar, 1, v;,
and p, are the layer width, minor radius, ion thermal velocity and poloidal

gyroradius.
" The final fluid equations have non-dissipative and dissipative terms usu-

ally found in slab models, but also additional dissipative terms giving rota- .

tion damping, bootstrap currents, and the Ware pinch; similar effects were
previously found by Callen and Shaing[2]. The dissipation-free terms are,
in fact, the same as those on the left sides of Eqs. (2)-(5), but with h =10
(also, the terms on the right do not occur—they are higher order). The new
neoclassical terms in Eqgs. (2) and (5) are -

W+...

or \ Or

= _Uﬂ (@ + @v) - (6) |

For an axisymmet
g' = the ratio of |
non-circular non-s

The vorticity
at a rate 668'v ~ ¢
Jarger than the us
terms tend to equi
librium neoclassic:
the damping tern
damping terms te
tion in equilibriw
confined.

The Ohms’ L |
sical dissipative te

Ptz

Pt...:

For equilibrat¢
in agreement with
a ~ €V, / Rv..

2. ENERGY F

Here we present g
fluid and kinetic
Consider a n |
Functionals callec
motion. (For exa
J dz dvG(f)is co
‘and denote the H
for each Casimir’
where §/6f mea
perturbations é f

Clfo+ |




eded for en
eeded to be‘ J

267)
(2)

(3)

263 W

(3)

nce in the

the device
scribe the
" together
d is simi-
mnreuther
lisional-
sssibility,
damping
1s of the
e above,

’
r~e,

Py Ty Viy

oloidal !

18 usu-
] rota-
s were
\s are,
h=20 )
e new

(6)

IAEA-CN-47/E-I1-3-1

8F
z}+...=—-@v(-5;+9'v) (7)
for a0 axisymmetric tokamak with nearly circular surfaces,v = V7Biq, 6 =
§ = the ratio of poloidal to toroidal field. We have general expressions for
non-circular non-symmetric geometries, which are omitted due to space.

The vorticity is damnped at a rate v, and the parallel velocity is damped
o a rate 60'v ~ €*v. For moderate 3, the rotation damping term is much
Jarger than the usual inertial term in Eq. (2). For axisymmetry the damping
jerms tend to equilibrate both F' and v to satisfy v = —6~19F/8r, as in equi-
jibrium neoclassical theory. The toroidal angular momentum is conserved by .

' “ihe damping terms for axisymmetry. In a stellarator, |6'| > [6]. Then the

damping terms tend to make hoth F and v vanish. This also is the condi-
iion in equilibrium neoclassical theory, where the ions are electrostatically

confined.
The Ohms’ Law and pressure evolution, Egs. {3} and (4}, have neoclas-

sical dissipative terms

aF

: . | 8 a '

1/'+...=17[J+&E(1+k)p—3(—a—r-+0'17)} (8)
8 8 8

;é+...=2ﬁan5 [J—i—a-a—r(l-%-k)p-—%(?a—?-kﬁv)] (9)

For equilibrated ion flows, these give a bootstrap current and Ware pinch
in agreement with equilibrium neoclassical theory. For plateau collisionality,
@~ €V, / Rv,. '

2. ENERGY PRINCIPLES FOR NONLINEAR STABILITY

Here we present generalizations of the ideal MHD energy principle, éW, for
fluid and kinetic models, that can handle equilibrium flow and FLR effects.

Consider a noncanonical Hamiltonian system with field variable f(z,t).
Functionals called Casimirs exist for such systems, which are constants of the
motion. (For example, in the Vlasov equation with distribution function f,
J dz dvG({) is constant for any function G.) Denote such a Casimir by C[f],
and denote the Hamiltonian by H{[f]. It has previously been shown(3,4] that

for each Casimir (', an equilibrium can be found by solving ﬂ;—fm = %ﬁ,

where §/6f means functional differentiation with respect to f. Consider
Perturbations §f away from fy. We have

Clfo+67] - Clfo) = f dzi—f;af

+1/d~(52—06f2+H' her order terms (10)
2] 552 '8
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Hlfo+68f] - H{fo] = / dz%?af
1 ) 2

8 H
+§ fd.z——&f2 + Higher order terms (11)

612

Now we can obtain the change in energy from a perturbation 6f. Since the
system is constrained by C(f) = constant, the only accessible perturbations

are those where the left side of Eq. (10) vanishes. Then by theé equilibriup, -

condition we have that the change in H# at constant Casimir C', AH 'C, is

1 62 (H-C o
AH|c =3 /dzJ—T-—)éfz + Higher order terms

6f

and we define F' = H — C to be the free energy for accessible perturbations, |

As expected, the perturbed énergy is second order in §f. Also note that the
energy released or absorbed to create an allowable perturbation éf depends
on the equilibrium through C.

If §2F is positive definite, then all accessible small perturbations & f in.
crease H. Since H is conserved, no small perturbation can grow indefinitely,
and we have both linear and nonlinear stability for small §f. (Technically
this only implies formal stability, but the step from formal to nonlinear sta-.
bility is usually straightforward(3,4].)

Note that we have not considered the linearized equations of motion to
come to this conclusion. The linearized equations depend on both H and
the Poisson bracket.  The latter can be quite complicated for noncanonical
systems.

If 62F is indefinite, then either there is a linear instability or a linearly
stable negative energy wave (or direction in function space). It is not possible
to determine which without considering the Poisson bracket. Nonetheless,
note that a linearly stable negative energy wave can lead to serious nonlinear
instabilities. For example, explosive instabilities are possible in Hamiltonian
systems with three interacting waves with resonant frequencies. More com-
plicated nonlinear phenomena are also possible in continuous media; these
are currently under investigation. The important point is that when §%F is
indefinite, an instability of some kind is likely.

Negative energy waves can also be found in simple cases by applying
the Brillouin-Laue condition wd¢/8w < 0. We can show that this condition

must agree with §2F. However, ¢ can only be easily defined in uniform |

homogeneous media. Dielectric response theory in non-homogeneous media
is very lengthy or intractable. The free energy functional §2F is far more
practical in such cases.

Thus, we believe that §2F is a better tool than linear spectral theory to
find the total instability potential of many configurations.

]
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example we consider reduced low 4 MHD with poloidal flow.

an
As we wish to consider stability of cylindrically symmetric equilibria

l suPPDturbationS with a given helicity. Let x be the relevant helical flux,

r?/2go. The Casimirs are JH(¢)dz and [UG(y), for arbitrary
H and G. The free energy F'is

r2

P=[lv (4 55)

quilibfia are given by V2 (x +12/8¢) = H'(x) + V2GGE', ¢ = G(x). To
ability, take the second variation and rearrange terms to get

10 per

' N = "l) -
funftions

2

+[Ve* + H(x) +UG(x)dz  (12)

£

cxamine sb

SF =/ (1v86 = vG'5xl +1vex? (1- 62)
+6¢° [G"V2G + H" + G'V - G"Vy] )da: (13)

\y instability or negative energy wave exists if §2F" can be made negative.
To minimize 62F, choose §¢ to make the first term vanish. The minimiz-

! ng X can be found by standard techniques, e.g., solve the relevant Eulers

equation, or for an approximate answer, insert trial functions and vary their
paramet-ers, etc.

For equilibria without flow, G = 0, the Eulers equation is equivalent to -
\be small aspect ratio éw result for ideal kinks; the second term gives the
(tabilizing influence of line bending, and the H'' term gives the destabilizing
influence of current gradients. We see that the nonlinear stability with flow
can be found by a similar Eulers equation; no qualitatively new features arise
in the mathematical analysis given Eq. (13). '

3. APPLICATIONS

A. Large self-consistent plasma currents can arise in magnetic stochastic-
ity and islands when the neoclassical transport is not intrinsically ambipo-
lar. Here we consider only steady-state stochasticity (from non-axisymmetric
equilibrium Pfirsch-Schliiter currents or coils).

Let us estimate the size of the self-consistent parallel currents and fields
from radial electron diffusion in stochasticity. Resonant magnetic pertur-
bations 6B, = 6Bi,q + 8§Bex: arise on an integrable background field B,
due to both an external agent (i.e. field coils or Pfirsch-Schliiter currents)
and the induced plasma response. The flux average radial electron current
from parallel motion in the stochasticity is (j¢) = (65;6B./B). Breaking
this into the various helicities, which we label by perpendicular wavenumber
k, (¢) = >k <6j“‘k63,'f/B>. The motion of electrons in a stochastic field

is only correlated with the resonant harmonic near its respective rational
surface; call the distance Az.. Thus, at a given radius, only terms from
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nearly rational surfaces contribute. Denote the typical spacing between the
rational surfaces by A; then Az./) harmonics contribute at a given Poing
and if all resonant harmonics have roughly the same amplitude we hav;
(&) ~ (Az./X) 6B"/B6j”—”. The induced magnetic perturbation can p,
simply computed using the “constant 1" approximation, which here Implie
(A'/k)§Bk , = (4m/c) [ dzbjf ~ (4m/c)8jf Az,. Self-consistency is impoy,
tant when 8§Bjng £ 6B,, which gives the criterion )

§B*\? 4w A(j¢) ky
(‘E‘) T B & (1)

A neoclassical ion current arises because the magnetic stochasticity
changes the radial electric field. Equal radial electron and ion current occurs,
For typical reactor parameters and ion transport levels consistent with the
Lawson criterion, self-consistency is important for §B/B ~ 102, which ca,
cause very large overlapping islands.

More detailed analysis of hoth the single helicity and multihelicity cases
reveals that the self-consistent currents cause the resonant perturbation tq

(
[

4

Le slijelded out, and thus islands and stochasticity are “healed” in steady staf,

if the inequality in (13) is satisfied.

B. The bootstrap current term in Ohm's Law can cause magnetic islands
to grow in the Rutherford regime. For sufficiently large islands, the vorticity
equation.implies V|| J = 0, and J is a flux function, so as in previous analysis
the current can he found by taking the flux average of Ohin’s Law. Also,
the pressure becomes a flux function because of parallel convection by sound
waves. The pressure profile is found as in Appendix A of Ref. 6.

We obtain the following evolution equation for Az, the island width

K,dAx S'a dp
— = A by =
n di tie Az dx

where K; ~ 1.6. k; ~ 6, and S' = ¢?/r(dg/dr). For small islauds the
bootstrap current term dominates and the island grows. For A’ < 0, the

~ steady-state island width is given by Az = b-’—igfﬂﬂ.

This is similar to previous results for unstable interchanges(5,6]. Thus,
as in that case, island overlap always occurs if islands up to sufficiently high
mode numbers are considered[6]. For typical parameters and /3 ~ 1%, island
overlap occurs for islands with m ~ 5 — 10.

One must keep in mind that the above calculation is only valid for
single helicity islands; the dynamics may change considerably as overlap is
approached. If islands significantly overlap, the stochastic diffusion can be
crudely estimated from the quasilinear formula; for 8 < 1%,the confinement
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joration is significant for current and future devices and rapidly worsens
J de'er

with increasing .

We find that the shear Alfvén resonant mode is destabilized by gradients
o the equilibrium w,.-profile. Significantly, its growth rate dominates the
W~ mode for either large w. or low shear and depends only weakly on
'einrnijst.ivity, ~4 « n'/4. Thus, it should predominate in reactors. The

15 stability is independent of A'.
mode ;

Numerical studies of the m = 1 tearing mode show that it continues
x. onential growth well into the nonlinear regime. We have an analytic
lehforv explaining this. Space does not allow a full discussion of this, but the
n‘me;ry reason for the rapid growth of the m = 1 mode is that its island size
depends linearly on the magnetic flux perturbation.
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