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Abstract 

The dipole vortex solutions of the Hasegawa-Mima drift wave or equivalently, 

thequasi-geostrophic Rossby wave equation are shown to be split up into long-lived 

monopole vortices (cyclones and anticyclones) in the presence of a small scalar, i.e. 

KdV type, nonlinearity. The lifetime of the dipole vortex varies inversely with the 

strength of the scalar nonlinearity. 
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I. Introd uction 

It is well known that the dipole vortex is an exact solitary wave solution to the dissipationless 

Hasegawa-Mirna drift wave equation, which in the fluid mechanics literature is referred to 

as the Rossby wave equation 

( 2) oc.p oc.p [ 2 1 1 - \7 fit + Vd oy - c.p, \7 c.p = 0 (1) 

where 

[c.p, \72 1 = Oc.p o\7
2

c.p _ oc.p o\7
2

c.p 
c.p ox oy oy ox 

is the Jacobian between the electrostatic potential c.p and the vorticity ( = \72 c.p. It is also 

known that Poisson-bracket or vector nonlinearity of Eq. (1) facilitates the formation of ro­

bust dipole vortices.! Recently, there have been numerous studies of this type of nonlinearity 

and vortex dynamics. 2,3 However, a more comprehensive theory includes the nonlinearity as 

given in Eq. (1), together with KdV or scalar type nonlinearity, which was first introduced 

by Petviashvili4 in the case of drift waves. Due to the presence of the scalar nonlinearity, 

the dipole vortex is no longer an exact solution. Here we investigate the question: How does 

this scalar nonlinearity affect the evolution of the dipole vortex? We will show numerically 

that even a small amount of scalar nonlinearity can have important consequences for the 

vortices. 

Hydrodynamic experiments of Soviet scientists5,6 have shown that there is a rather rapid 

transition from a dipole vortex pair to isolated monopole vortices. This transition we argue 

arises as a result of competition between the vector and scalar nonlinearities. From the 

analogy between the Coriolis force dynamics describing Rossby waves in rotating hydrody-

namics and the Lorentz force dynamics describing drift waves in a magnetized inhomogeneous 

plasma, we expect that the splitting process of the dipole vortex into monopoles should also 

occur in a plasma for drift solitary waves. It is, therefore, worthwhile to numerically sim-
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ulate the dynamics of dipole vortices incorporating a small scalar nonlinearity, and thus to 

investigate how the scalar nonlinearity splits up the dipole. 

This paper is organized as follows: in Sec. II, we give the equation of the simulation 

model and present its conservation laws. Exact monopole solutions are presented in Sec. III. 

In Sec. IV we describe how the dipole vortex splits up and give simulation results on the 

evolution when the dipole vortex pair is the initial state. In Sec. V we discuss the stability 

of the positive and negative monopoles that split off of the dipole vortex. Section VI gives 

a summary and the conclusions. 

II. Model Equation and Conservation Laws 

We consider a plasma in a uniform external magnetic field in the z-direction. The gradients 

in plasma density d.e;xno and the electron temperature "7~ = den Tel den ne are along the x­

axis, the diamagnetic drift velocity Vd = -( cTel eBo) d.e;xno is along the y-axis. To describe 

the dynamics of the potential drift waves in such a plasma, we consider the contribution of 

the electron, and ion polarization drifts to the density equation and we use the condition of 

quasineutrality of perturbations. We thus derive the following model equation 

( 2) 8<p 8<p 8<p [2 ] 
1 - \7 -8 + Vd-

8 
+ ex<P-8 + \7 <p,<p = 0 

t Y Y 
(2) 

where ex = Vd"7e = ...2..L , <p = ~T. ,<P is electric potential, Ps is the ion Larmor radius with 
TTe e 

electron temperature Te, rTe is the characteristic length of plasma inhomogeneity, space and 

time variables are normalized by Ps and the ion cyclotron frequency, respectively. 
I 

Rossby waves in rapidly rotating shallow neutral fluids also satisfy Eq. (2) with the scalar 

nonlinearity arising from variations in the depth of the fluid and [\72<p, <p] arising from the 

convective acceleration v . V'v of the fluid. 

For weakly inhomogeneous plasma, pslrTe is small compared to unity and thus the scalar 

nonlinearity, i.e. the ex term is typically neglected, whereupon Eq. (2) reduces to Eq. (1). 
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If we keep the scalar nonlinearity, then the dipole vortex is no longer an exact solution. As 

mentioned above (and shown below) this term splits the dipole vortex into two monopoles 

of opposite sign. 

Consider now the conservation laws of Eq. (2) after the scalar nonlinearity is added. 

1. Equation (2) can be rewritten as 

(3) 

Equation (3) represents the conservation of mass in the two-dimensional system. 

2. Multiplying Eq. (2) by !..p, we derive the following equation 

ac [( 1 2 1 3) ~ a!..p 2 (~ !..p2) 1 - + \7. -Vd!..p + -O!.!..p Y - !..p\7- - \7!..p Z X \7- = 0 at 2 3 at 2 
(4) 

where 

is the local energy density. Equation (4) gives the energy conservation law. 

3. Multiplying Eq. (2) by x, we get another constant of motion, 

(5) 

giving the conservation law for the x coordinate for the center of mass. 

The above three constants of motion are used in our simulation to observe the accuracy 

of the numerical integration of Eq. (2). 

We also notice that the potential entrophy U = ((\7!..p)2 + (\72!..p?) is not conserved for 
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III. Exact Monopole Solutions 

In order to interpret our results we first present exact monopole solutions to Eq. (2). As­

suming a travelling steady state solution cP = cp(x, y - ut), Eq. (2) becomes 

(6) 

For axisymmetric monopoles, cp(r,B) ---+ cp(r) and [cp(r), \72(cp(r)] = 0, leaving 

1 d ( dCP) 2 a 2 -- r- = 4k cp - -cp 
r dr dr 2u 

(7) 

where 

k
2 = ~ (1- ~) . (8) 

Defining cp = CPm'lj;(e), where e = kr, Eq. (7) becomes the following in terms of 'Ij;: 

(9) 

Here we have set 

(10) 

where I is a constant that remains to be determined. 

We compare Eq. (9) to the analogous equation for one-dimensional solitary drift waves 

that are solutions of the regularized long-wave equation,7,8 

(11) 

This equation is the one-dimensional restriction of Eq. (2). Inserting cP = CPm'lj; (k(y - ut)) 

yields 

(12) 

where e = k(y - ut), k2 = ~ (1 - vdlu) and cpm = 12uP la. For P > 0 Eq. (12) possesses 

the well-known solution 'Ij; = sech2e. 
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It is apparent that the monopole speed-width relation, Eq. (8), is identical with that for 

the one-dimensional case. But, the amplitude relation of Eq. (10) differs by the presence 

of 'Y, which also occurs in Eq. (9), the equation for the shape of the monopole. This later 

equation, together with the boundary conditions 

(13) 

and the condition 'ifJ(e = 0) = 1 defines a nonlinear eigenvalue problem for 'Y. Numerically 

we obtain 'Y = 1.5946; the shape of the eigenfunction defined by this procedure is shown in 

Fig. 1a. In our computations we set 'Y to unity and then vary the value of 'ifJ and d'ifJ / de at 

large values of e, consistent with the second equality of Eq. (13), until d'ifJ(e = 0)/ de = 0 is 

achieved. This yields 'ifJ(e = 0) = 'Y. Scaling by 'Y then gives the desired result. 

The above calculation is only valid for k2 > 0, which implies U > Vd or UVd < O. In:light 

of Eq. (10) positive velocity monopoles have 'Pm > O. These are referred to as anticyclones. 

The negative ('l.Wd < 0) velocity monopoles have negative 'Pm and are referred to as cyclones. 

In the case P < 0 neither the two-dimensional Eq. (9) nor the one-dimensional equation 

Eq. (12) possess exponentially localized solutions. When k2 < 0, the wave structure propa­

gates with 0 < U < Vd, and, in two dimensions, is a weakly localized oscillatory (radiation) 

solution where the amplitude decays as e-1/ 2 • 

In Fig. 1b we plot solutions to Eq. (9). All ofthese solutions have d'ifJ(e = O)/de = O. For 

'ifJ(e = 0) > 'Y, the solution diverges to -(X). Solutions with 0 < 'ifJ(e = 0) ;S 'Yare homo clinic 

to 'Ij; = 2/3. These nonlinear oscillatory solutions are the radiation solutions mentioned 

above and describe finite amplitude cylindrically symmetric waves propagating with speed 

U such that 0 < U < Vd. Mathematically, these wave solutions can be "pulled down" by the 

following symmetry relation: 
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compactly displays both the solitary wave and radiation solutions. 

Additional symmetries of Eqs. (1) and (2) are as follows. For every solution of Eq. (1) 

<p(x,y,t) there is a solution -<p(-x,y,t) (i.e., Eq. (1) has the symmetry <p(x,y,t) -t 

-<p( -x, y, t).) This symmetry is lost when the scalar nonlinearity is added to the equa­

tion, Eq. (2). This antisymmetry in x is the symmetry property possessed by the dipole 

vortex solution given in Eq. (14). When the scalar nonlinearity is added there is no symme-

try for a given a, but for the two different equations with a and -a there is the symmetry 

relation 

<p(-a;x,y,t) = -<p(a,-x,y,t). 

Thus a small, finite a lifts a degeneracy in the a = 0 equation. 

IV. Dipole Vortex Splitting into Monopoles 

The dipole vortex solution possessed in the absence of scalar nonlinearity is given by 

<p= (14) 

(1" > 1"0) 

where 1"2 = x 2 + (y - ut)2, U = vd/(l - k2), x = rcose, and y = 1" sine. The parameters p 

and k are related by 
1 J{2(krO) 

kro J{l (kro) 
1 J2(pro) 

- pro J1 (pta) , 

which follows from continuity of the flow velocity v = z x \l<p across 1" = 1"0' 

Previous simulation studies of Eq. (2) by Mikhailovskaya,9 with Eq. (14) as the initial 

state, indicate that when a is large enough, the dipole vortex rapidly separates into pieces 

moving in opposite directions away from their initial positions~ The radius of anticyclones 

7 

f 
' .. 



(<p > 0) increases slightly, but the amplitude decreases and approaches a circular shape. 

Cyclones (<p < 0), are observed to gradually decay into small vortices that finally disappear. 

We find a somewhat different result. From our calculations and simulations, we conclude 

that the dipole vortex pair splits into botl1 the anticyclone and the cyclone monopoles, which 

maintain their integrity. 

In order to interpret our results and to understand the discrepancy with Mikhailovskaya 

we use the amplitude and width-speed relations of Sec. III. From Eqs. (8) and (10) we obtain 

the following speed for anticyclones: 

al<Pml 
U=Vd+--, 

3, 
(15) 

while for cyclones, <Pm < 0, and the speed is given by 

(16) 

where exponential localization requires al<Pm I > 3,. The anticyclone and cyclone propagate 

with different speeds, the relative speed is U+ - u_ = al<p~I/(3,) + al<p;;;,I/(3,). This result 

explains why the initial dipole vortex pair will split apart into two isolated monopoles with 

opposite signs. The time scale for the breakup of the dipole vortex can be estimated from 

(17) 

This relation is observed by our simulations. 

To solve Eq. (2), we use a uniform grid over kx and ky in 85 x 85 k-space with 3612 

complex <Pk(t) modes using the 128 x 128 FFT. The equations are solved using high order 

Runge-Kutta time stepping and the Fourier transformation (x,y) +-+ (kx, ky) at each time 

step. The constants of motion in Sec. II are used to monitor the accuracy of the numerical 

integration of Eq. (2). They, in fact, remain constant within the fraction 10-3 during the 

simulation experiments. The initial perturbation <p( x, y, 0) is taken to be the dipole vortex 
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given in Eq. (14) with 'ro = 6(ps), u = 2Vd and Vd = csPs/'rn. Typical simulations use 20 

minutes CPU on the CRAY-II for I:lt = 100rn / Cs • 

We studied two cases with a = 0.01 and a = 0.1, and observed the same results, except 

that the time scale of breakup for a = 0.01 is about 10 times larger than that for a = O.l. 

Figure 2 shows the streamlines <p(x, y, t) = canst. at times tCs/'rn = 0, 2, 10, and 100. 

Observe that at tCs/'rn = 10, the initial dipole vortex splits into the two completely isolated 

monopoles and the two monopoles approach circular shape. We also observed that the 

amplitudes of the vortices increases slightly, but the radius of both the vortices does not 

change much until t ~ 30. The observed speed of the anticyclone is u ~ 2.0Vd and that of 

the cyclone is u ~ -0.3Vd. 

Moreover, when we turn off the vector nonlinearity and redo the same experiment, we 

observed that the radius of the cyclone decreases significantly very rapidly and its amplitude 

increases a significant amount and then forms a very localized monopole vortex or solitary 

wave while the radius of the anticyclone doesn't change much and its amplitude increases 

slightly. The evolution of the processes are illustrated by Fig. 3. In the case of an anticyclone, 

this result appears to be in accordance with the simulation studies of Eq. (2) made in Ref. 10 

in the long wavelength limit. 

Now we consider whether the anticyclone and cyclones can naturally evolve from the 

one-dimensional solitary waves described by Eq. (12). 

For kx ~ 0, we know that Eq. (2) has the solitary wave solution given by PetviashvilV 

Meiss and Horton 7 and Morrison et al. 8 

3 2[1( Vd)1/2 1 <p = a(u -vd)sech 2" 1- -;; (y -ut) , (18) 

where u, as before, is the speed. 

However, the one-dimensional solitary wave is unstable to a finite kx filamentation insta-

bility shown as follows. Taking Eq. (18) as the initial condition, we find that the computer 
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solution of Eq. (2) evolves into the two-dimensional, nearly circularly symmetric monopole 

vortices. The results are shown in Fig. 4. 

The solution (18) is possible only when u > Vd or VdU < O. For U > Vd, we find that 

the positive solitary wave eventually evolves into two-dimensional anticyclones, as shown in 

Fig. 4. For U < 0, we also find that the negative solitary wave, 

(19) 

evolves into two-dimensional cyclones with kx rv kyo From Eq. (16), we can see that !.pm < 0 

occur for a I !.pm 1/3, > Vd where U < O. With Eq. (19) as initial data, we find that cyclones 

evolve out of the one-dimensional negative solitary wave. 

v. Stability of Cyclone and Anticyclone 

As noted in Sec. IV, Mikhailovskaya9 did some simulation studies of Eq. (2). Her results 

indicate that when a is large enough, that is, the scalar nonlinearity is dominant, the dipole 

vortex rapidly separates with monopoles moving in opposite directions away from their initial 

positions. The radius of anticyclones (!.p > 0) increase slightly. The amplitude decreases and 

it approaches a circular shape, but cyclones (!.p > 0), she finds, gradually decay into small 

vortices and finally disappear. In general, we find a different result, both theoretically and 

numerically. 

Now we ask if the cyclone will disappear eventually; in other words, if the cyclone can 

be the solution of Eq. (2). 

From Sec. III the solitary wave solution (7) of Eq. (2) does exist, from (8) and (10) with 

(20) 

and r = [x 2 + (y - ut )2J1/2. SO for u > Vd, we get a solitary solution for positive amplitude. 

For u < 0 we get for negative amplitude, and positive k 2 provided a I !.pm I > 3,Vd' 
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This means that both the cyclones and anticyclones can exist and stay stable in the 

system after the initial dipole vortex pair breaks up if the amplitude rpm of the dipole pair 

is large enough so that alrpm I > 3,Vd' This condition requires a substantial amplitude and 

energy for the solitary wave to form the cyclone. 

We, therefore, think that the disappearance of cyclone observed in the experiments5,6 

and in the numerical simulation9 is probably due to too small of an amplitude so that 

alrpm I < 3,Vd for which it follows that 0 < U < Vd. This is a regime of radial outgoing wave 

solitons which dissipate away the cyclone. This type of radiation damping is important for 

drift waves in plasmas with magnetic shear which we now briefly discuss. In the rotating fluid 

experiments the radiation damping would appear as a wake of Rossby waves that disperse 

the energy in the vortex core. 

The most important inhomogeneity in a plasma is typically the magnetic shear S = rn/ L8 , 

which can cause the monopoles to decay.2 The drift wave vortex has local kll = 0, but due 

to the magnetic shear away from the core kll = ky(x/ L8)' Taking into account the coupling 

to the parallel ion acceleration vII = -(e/mi)b. \7<J? leads to the shear induced ion acoustic 

term in Eq. (6) 

2 orp orp S2X2 orp orp 2 
. - u(l- \7 )- + Vd- + --+ arp- + [\7 rp,rp] = 0 . 

oy oy U oy oy 
(21) 

In the small amplitude region exterior to the vortex core the wave field is given by 

(22) 

with 

For UVd < 0 or U > Vd, Eq. (22) has turning points at x = ±XT where x} = u2 (1 + k; -
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Vd/ U) / S2. The wave spectrum for X2 > x6 is 

X> XT 
(23) 

Xo < x < XT 

where Q(x). = S2X2/U2 - k2 - k; and Xo is the vortex core at kxo ~ 1. We note that 

l x 
Ql/2(X')dx' ~ Sx/2u2 for x ~ XT describing the outgoing radiation and that l x 

(_Q)1/2dx' 
XT rXT rXT xT 2 

~ - J
o 

(_Q?/2dx'+(k2+k;)1/2X, where the tunneling phase is J
o 

(_Q)1/2dx = (7ru/4S)(k + 

k;) for x < XT. 

The branch in Eq. (23) is chosen to satisfy outgoing energy boundary conditions with 

w = kyu and the stationary phase condition 0/ow(Skyx2/2w + wt) = 0, given the group 

velocity X2 = 2w2t/(kyS) = (2kyu2/ S)t. In the presence of shear, the exterior vortex (e ~ 1) 

solution 

(24) 

connects to the wave field (23) determining its amplitude A(ky ). Taking the Fourier trans­

form of (24), we obtain 

A(ky) = B(27r)1/2(k
2 + k;)1/2 ei11"/4-W(k2+k~) . 

k 
(25) 

The outgoing wave propagation given by the connection of Eq. (24) to Eq. (23) leads to 

the decay of the total vortex energy Ev. Integrating the energy balance Eq. (4) over f: dy 

1+L 
and dx and using Eq. (23) to evaluate the outgoing wave energy flux gives the rate of 

-L . 

decay of vortex energy 

dEv 

dt 1
+

L 
1+00 06 1+

00 
[ * * ] 

-L dx -00 dy ot = u -00 dky i ky 'Pky (X)Ox'Pky (x) - 'Pky(X)Ox'Pk/X) 

rv -us 100 

dkykylAky 12 . 

Using formula (25) for Aky we obtain the shear induced vortex decay rate 

dEv 47r S B2 (-7r lu 1 k2) 
dt k3 exp 2S 

12 
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valid for k2 > o. Thus the shear damping is exponentially small provided the speed u is not 

too close to the wave propagation domain 0 :::; u ::::; Vd. In Eq. (27) B ~ 3.1, computed from 

the unperturbed solitary vortex. 

The theory for the effect of inhomogeneity due to magnetic shear in Eqs. (21 )-(27) is based 

on the assumption that for strong vortices, the inhomogeneity causes a leakage of wave energy 

from the vortex core, but does not strongly alter the interior solution. At some stronger 

level of inhomogeneity the core of the vortex is perturbed, and non-perturbative solutions 

of the effect of inhomogeneity are required. Work is in progress for such nonperturbative 

nonlinear vortex solutions. Recent simulation studies by Carnevale et al. ll for the effect 

of topography on monopole and dipole vortices show perturbative as well as destructive 

effects from inhomogeneities. Carnevale et al. presents simulations with topography (linear 

inhomogeneities) causing the dipole to split up into monopole vortices. 

VI. Summary and Conclusions 

Analytical and numerical studies on the effect of scalar nonlinearity on the evolution of dipole 

vortex . solutions of the nonlinear drift wave-Rossby wave equation are reported. The study 

shows that the lifetime of the dipole drift vortices depends not only on the viscosity, but 

also on the magnitude of the scalar nonlinearity. For plasmas, the magnitude of the scalar 

nonlinearity is associated with a gradient of the plasma temperature,4 '17e, in the field of a 

drift wave and is described by the parameter a = '17ePs/rn. In the Rossby waves, the scalar 

nonlinearity arises from the variation of the depth of the fluid with wave amplitude, as in the 

classical KdV equation for shallow water waves. The dipole lifetime scale is estimated from 

T rv ra/ a!.pm, where !.pm is a measure of vortex amplitude. We show that both the anticyclone 

(!.p > 0) and cyclone (!.p < 0) exist and do not disappear after the dipole vortex pair breaks 

up, in apparent contrast to the report of Mikhailovskaya,9 who argues that the cyclone vortex 

disappears. We note, however, that there is a critical amplitude for the formation of the 
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cyclone which is probably not satisfied in her simulation. 

The question of the existence of the cyclone solution is important for the interpretation 

of the rotating water tank experiments. In the early experiments of Antipov et al. ,5,6 only 

anticyclones were reported to be long-lived vortices. In the work of Antonova et al. 12 with 

a larger tank, it is reported that both cyclones and anticyclones are formed. We suggest 

that cyclones, although requiring sufficient amplitude to form, are a natural solution of the 

nonlinear drift wave-Rossby wave equation. The cyclones may be especially important for 

anomalous transport because of their low propagation velocity. 
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Figure Captions 

1. (a) Plot ofthe solitary wave solution of Eq. (9). (b) Solutions of Eq. (9) with 7f'(O) = o. 

Curve 1 has 7f(0) = 1.85. Curve 2 has 7f(0) = , (as in l(a)); it is homo clinic to zero: 

7f(r = (0) = O. Curves 3 and 4 have 7f(0) = 1.3 and 7f(0) = 0.1, respectively. These, 

like all solutions with, > 7f(0) > 0, are homoclinic to 2/3. When lowered by 2/3 these 

represent wave-like or radiation solutions. Curve 5 has 7f(0) = -0.1. 

2. Splitting drift wave dipole vortex into monopoles with dipole radius ra = 6ps, amplitude 

of scalar nonlinearity a = 0.1 ('I]ePs/rn), drift wave velocity u = 2Vd (Vd = 1). At t = 0, 

(a) shows the contours for the exact dipole vortex solution to the Hasegawa-Mima-

Rossby wave equation. The solid lines represent positive value of potential I.{), and the 

dashed lines, negative value. The contours for I.{) have contour interval .6.1.{) = 4.0. 

3. Splitting dipole vortex without vector nonlinearity with everything the same as in 

Fig. 2,. except that the vector nonlinear term in Eq. (2) is dropped out. 

4. One-dimensional solitary wave traveling along the y-axis tears with finite kx; and forms 

two-dimensional solitary waves. (a) shows the contours for the initial 1-D solitary 

wave solution with kx; = O. (b )-( c) show the reconnect ion of the flow lines to form four 

strong, nearly circular vortices. Here a = 0.1 and u = 2Vd for the initial 1-D solitary 

wave, Eq. (18). 
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