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Self-focusing of an intense optical beam in a plasma is studied, including the nonlinear effects of 
both the relativistic electron mass and the ponderomotive potential due to the electromagnetic 
wave. An exact steady-state asymptotic solution of beam propagation in a localized solitary 
waveform is obtained in slab geometry. Amplitude-width scaling relations are obtained, which im­
ply that the width is limited to be less than the square root of three collisionless skin depths. In the 
weakly relativistic limit our solution reduces to the solution obtained by Schmidt and Horton 
[Comm. Plasma Phys. Controlled Fusion E 9,85(985)]. Solutions where the beam profile is of os­
cillatory nature, which correspond to the presence of the steady-state solution of a multiple-beamlet 
profile, are also presented. Finally, the asymptotic nature of the solitary wave is tested using a re­
cently developed numerical particle simulation code. 

I. INTRODUCTION 

The nonlinear self-focusing of intense electromagnetic 
radiation in a dielectric medium has been studied for well 
over 20 years. I The development of powerful lasers and 
their various applications has prompted a considerable 
interest in self-focusing processes in plasma. In particu­
lar, the concepts of laser-ignited fusion and laser-plasma 
particle accelerators such as the beat-wave accelerator2 

and the plasma-fiber accelerator,3 require transport of the 
laser beam with minimal loss in intensity over a consider­
able distance. A mechanism that allows for such a trans­
port of the beam, without significant depletion, is dis­
cussed here. 

Optical communication via laser pulses is another area 
in which transport of an optical beam has been con­
sidered. Hasegawa et al. 4•5 have considered shaping of 
laser pulses into a soliton in order to increase the packing 
density of information and to reduce loss. Mima et al. 6 

considered a triple soliton profile of a laser pulse to avoid 
the laser-pulse depletion in a plasma. These methods rely 
on shaping the longitudinal profile of optical beams. In 
the present paper, however, we focus our discussion on 
the transverse profile of optical beams in a plasma. 

As an intense laser beam enters plasma, an initial tran­
sient phase is expected. The interesting question is, what 
kind of a stationary state will the system assume after the 
initial transient. In particular, what is the asymptotic or 
steady form of the beam profile as it traverses through 
the plasma. Solitonlike or solitary-wave profiles (either 
single or mUltiple) have emerged from several stud~es. 
An asymptotic profile of solitary nature would indeed be 
welcome for the above-mentioned applications l - 3 (partic­
ularly for the plasma-fiber accelerator3) because for such 
a profile the beam propagates without transverse spread­
ing and thus, without losing its intensity or profile in this 
way. 

In this paper we obtain asymptotic profiles for short 
laser pulses propagating in a cool plasma. The advantage 
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of using a short laser pulse is that the ions, being massive, 
do not have time to respond and thus can be taken to be 
immobile. Therefore the laser-plasma system should be 
free of the parametric instabilities associated with the ion 
motion. The self-focusing process for a quasineutral plas­
ma7 is absent due to the short time scale. Since we are 
studying a cool plasma, only ponderomotive and relativ­
istic effects are considered: the thermal self-focusing8 

effect should be negligible. 
In Sec. II we present the basic evolution equations for 

the laser-plasma system. In Sec. III we look for an 
asymptotic profile of the laser beam by taking an ansatz 
which makes the evolution equations separable. The 
equations are solved analytically in slab approximation. 
Comparisons to earlier work on the subject are made. In 
Sec. IV the asymptotic profile obtained analytically is 
tested using a particle simulation program. In Sec. V the 
results derived are summarized. 

II. EVOLUTION EQUATIONS 
FOR LASER INTENSITY PROFILE 

The basic set of equations describing the laser-plasma 
system consists of Maxwell's equations and the equation 
of motion for relativistic electrons. The electron pressure 
gradient is neglected in comparison with the ponderomo­
tive force and the electrons are treated as cold. The as­
sumption of immobile ions, justified as previously men­
tioned by the shortness of the laser pulse, allows us to 
write the charge density and plasma current in terms of 
the equilibrium density no and the electron density per­
turbation Bne: 

~ ejnj = -eBne , 

j 

J=-e(no+Bne)v. 

Expressing the electromagnetic fields in terms of the po­
tentials we obtain 
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a2 A -C2V2 A+cV act> =41TcJ 
at 2 at' (2) 

where the Coulomb gauge, V· A=O, is chosen because it 
allows for a clear separation of the slowly and rapidly 
varying components of the electric field. 

From here on we will use ~normalized vector poten­
tial: A_ An ==e Almc 2 ==Vln. To single out the rapid 
laser variations, we take a trial function of the form 

(3) 

where we have chosen the coordinate system so that the z 
axis coincides with the direction of propagation, an (r, t) 
and t/J(r,t) are real functions of space and time, and ka 
and wa are the (constant) wave number and frequency of 
the laser wave in uniform, unperturbed plasma. The 
wave is taken to have circular polarization. 

I aan I Tz «kaa, 

I aan I --at «waa, 

l¥z I «ka , 

l¥r I «wa· 

The electron velocity is approximately given by 

v=~=~ A 
my mCVI+ln 

and the plasma current can be written as 

w~ Ne 
]=-en v=--- A, 

e 41TC VI +In 
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(4) 

(5) 

(6) 

Next we apply the slowly varying envelope approxima­
tion: the characteristic spatial length of the structure in 
our system is assumed much greater than the wavelength 
of the wave and the characteristic time period involved is 
assumed to be much longer than the laser oscillation 
period: 

where Ne == 1+ Bne Ina and only electrons contribute to 
the current. The wave equation thus becomes 

[ 1 {I [a2an [ a·l• ] aan 1 [ a·l• ] 2 a2• 1• } 1 [ 2 aan l - -- ---2i w +~ - - w +~ -i~ -- Va +2ik ---2i(Va HVt/J) 
c 2 an at 2 a at at a at at 2 an n a az n 

where Ac==clwp is the collisionless skin depth, and V T is the transverse part of the gradient, v=VT+(a/az)z. The 
right-hand side of Eq. (7) represents all the relevant nonlinearities, i.e., the effect of the pondermotive force [acting 
through the normalized electron density Ne as will be given below by Eq. (11)] and the relativistic electron mass effects 
(appearing as the inverse square-root factor). 

According to the slowly varying envelope approximation no significant development takes place in the time scale of 
the rapid laser oscillations. For this approximation to be reasonable, the plasma has to be sufficiently underdense; i.e., 
wp I (J)a «1. We then average the wave equation, multiplied by the complex conjugate of the vector potential, over the 
laser oscillation period T a = 21T I Wa and arrive at the following equation that describes the slow evolution of the beam 
envelope: 

(8) 

where the scalar potential, being a slowly varying quantity, disappears in the averaging when multiplied by A *. The 
real terms of Eq. (8) yield an equation describing the evolution of the amplitude, 

(9) 
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while the imaginary terms of (8) yield an equation for the 
phase shift, 

a [ 2~]_ aa; 2 aa; at an at - -W0Tt-C koTz 

+c 2(Va;HVt/JHc 2a;V2t/J. (10) 

We shall look for a stationary state, assuming that the 
outward laser ponderomotive force exerted on the elec­
trons is balanced by the electrostatic field produced by 
the charge separation when the electrons are driven out­
ward: 

Fp-eEo=O, 

where Fp = -mc 2VV 1 +a; is the ponderomotive force. 
Taking the divergence of the force balance equation and 
using Gauss' law, we obtain the following expression for 
the electron density perturbation, 

Bne 2 [I a a a2 ]. ~ N =1+-=I+A --r-+- v 1+1., (11) 
e no C r ar ar az2 n 

where we have also assumed axial symmetry, a/ao=o. 
It is important to notice that this particular model does 
not have a mechanism for preventing negative-and thus 
unphysical-values for electron density. Therefore, once 
a solution is obtained using this model, it is necessary to 
check if the solution corresponds to physically meaning­
ful values of electron density. For the stationary state de­
scribed, the field equations become 

Ne [W6 2]-2 + -c2 -ko -0, 
Ac VI +a 2 

(12) 

and 

(13) 

Here (and henceforth) we have dropped the subscript n 
for convenience. 

III. ASYMPTOTIC FORM OF THE LASER PROFILE 

We look for a stationary and asymptotic intensity 
profile independent of z for the laser beam under the 
combined influence of the ponderomotive and relativistic 
effects. We choose the following ansatz for the amplitude 
and phase: 

a (r,z)=a (r) , 
(14) 

t/J(r,z) = f(zHg(r) , 

where we have still allowed for phase modulation in z. 
Equations (12) and (13) are separable under this ansatz. 
Equation (12) yields 

[ ]

2 
df 2 df _ 

-2k0dz -Ko+ dz -C1 

lid da =---r-
a r dr dr 

where K6=w5Ic2-k6, and C 1 is the separation constant. 
The phase equation (13) yields 

_ d 2f =C =.!.!Lr dg +_1 da 2 dg 
dz 2 2 r dr dr a 2 dr dr ' 

(16) 

where C 2 is the separation constant. 
Equation (16) requires the z-dependent part of the 

phase shift t/J to have the form 

f(z)= -tC2Z2+C3Z , (17) 

where the (arbitrary) constant phase shift has been 
dropped. Now substituting Eq. (17) into Eq. (15) implies 

C 2 =0, 
(18) 

C3 =ko±(q +K6+ C l )112 , 

and thus f(z) is given by the linear expression 

f(z)=koz± [ :~ +C1 r12z . (19) 

The assumption of slow modulations, lat/J/azl «ko, im­
plies that we have to choose the square root with the neg­
ative sign to retain consistency. Thus 

[ 
2 ]112 

f(z)=koz - :~ +C1 z , (20) 

where for consistency C 1 should be much less than k 6 in 
an underdense plasma. The constant C 1 can be interpret­
ed as a measure of the z dependence of the phase modula­
tion. The radial portions of Eqs. (15) and (16) can now be 
written as 

lid da [!lK ]2 Ne 
-;; -,: dr r dr - dr A~ (1 + a 2) 1 12 C 1 , 

.!.!Lrdg +_1_ da 2 dg =0. 
r dr dr a 2 dr dr 

(21) 

A. Slab approximation 

Equations (21) in the slab limit are 

(22) 

and 

a 2 dg =C 
dx 4 , 

(23) 

where the phase equation was integrated once over x, 
bringing about the integration coefficient C4 , which can 
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be interpreted to be a measure of the amplitude depen­
dent transverse phase modulation. Combining Eqs. (22) 
and (23) yields a differential equation for a only: 

1 d 2 C~ 1 Ne ---a---- =C 
a dx 2 a 4 A; (1 +a 2)1/2 I , 

with 

Ne = 1 +A; d 2
2 (1 +a 2)1/2 . 

dx 

Using Eq. (25), the amplitude equation becomes 

1 d 2 C~ 1 1 ---a----
a dx 2 a 4 A; (1 +a 2 )112 

(24) 

(25) 

d 2
2 (1 +a 2)1/2=C1 . (26) 

(1 +a 2 )112 dx 

An equation of the form of Eq. (26) can be derived 
from Hamilton's principle. Treating Eq. (26) as the 
"equation of motion" for the laser-plasma system with 
the coordinate x playing the role of time, we write the 
Lagrangian of the system in the form 

(a,)2 
L =g(a)-2--V(a) , (27) 

where g (a) is a metric and V (a) is the potential of the 
system, both yet to be determined, and where prime 
stands for the derivative with respect to the timelike vari­
able. Lagrange's equation then yields 

g(a)a"+1. dg (a,)2+ av =0. 
2 da aa (28) 

We find an integrating factor J1.(a) by requiring that Eq. 
(26) multiplied by J1.(a) should coincide with Eq. (28). We 
thus obtain 

J1.(a)=a , 

g (a)=_I_ 
1 +a 2 ' 

(29) 

and from Eq. (26) the potential is seen to be 

1 C 2 1 V(a)=-_4 --(1+a 2)1/2=l.C a 2 
2 a 2 A2 2 I • 

c 

(30) 

Applying Noether's theorem we can now write down the 
first integral of Eq. (26), 

aL (;=--a'-L(a a') aa' , 

Thus, 

B. Potential analysis 

(31) 

We shall now classify the possible solutions to Eq. (26). 
However, since the system has a nontrivial metric, the in-

terpretation of the potential as given by Eq. (30) is 
difficult. Therefore, we find a point transformation that 
will flatten the metric. Writing the coordinate a as a 
function of a new variable y, a = 1 (y), we require that 
al lay*O for all values of y so that the mapping is one to 
one. In terms of the new variable the Lagrangian of the 
system becomes 

We arrive at a coordinate system with a flat metric by re­
quiring that 

al 1 =1 
ay (1 + 12)2 ' 

(34) 

which, upon integration yields 

I(y)=sinh(y) , (35) 

where the integration constant has been chosen such that 
the origin of a and yare aligned. 

Introducing the change of variable according to 
a =sinhy and using a dimensionless transverse coordinate 
S==x lAc, Eq. (32) becomes 

1. [dY ]2+ V( )=& (36) 
2 dS y , 

where & is the "total energy" of the system, and 

C~ C 1 
V(y)= . 2 -coshY--2 sinh2y 

2smh y 
(37) 

is the "potential" describing the behavior of the system. 
The bars above the integration constants indicate the fac­
tor of A; brought in by the normalization of the variable 
x: C1 =C1A;, and C4 =C4Ac. 

The qualitative nature of the solutions can be studied 
by finding the possible "humps" of the potential. Setting 
the first derivative of the potential equal to zero, the loca­
tion of the humps is given by 

(38) 

where X == coshy :::: 1. We study this for different values 
of the constants C I and C ~. 

1. C ~=O 

The possible roots are X = I and X = - 1 /2C I corre­
sponding to y =0 and y =arcosh( -1 IC I). Since X is re­
stricted by X:::: 1, the second root exists only for 
- 1 < C I < O. The potential for these cases is sketched in 
Fig. 1(a) (solid line). For -1 < C I < 0 a homoclinic orbit 
as well as oscillating solutions (depending on the value of 
&) are possible. For C I > 0 there are no bound solutions 
as indicated by the form of the potential in Fig. 1(b). Fig­
ure 1 (c) shows the potential for C I < - 1. Since the am­
plitude is not allowed to have negative values, this poten­
tial does not correspond to conventional oscillations. To 
make a clear distinction, we shall call the conventional 
oscillations introduced by the potential of Fig. Ha) type-I 
oscillations, whereas the oscillations exhibited by the po-
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tential of Fig. l(c) will be called type-II oscillations. The 
type-II oscillations corresponding to this parameter re­
gime will be discussed in more detail below. 

It should be noted that although in our slab approxi-

v 

y 2.0 

v 

o 

v (c) 

o y 

FIG. 1. (a) The characteristic potential V(y) (solid curve) of 
the laser-plasma system for C ~ =0, - 1 < C 1 < 0, and the density 
depletion curve (dotted curve). (b) The characteristic potential 
V(y) (solid curve) of the laser-plasma system for C ~=O, C1 > 0, 
and the density depletion curve (dotted curve). (c) The charac­
teristic potential V(y) (solid curve) of the laser-plasma system 
for C ~ = 0, C 1 < - I, and the density depletion curve (dotted 
curve). 

mation the total power associated with the oscillating 
solutions is infinite, these solutions cannot be dismissed as 
unphysical, as the relevant quantity is the total power per 
unit length (e.g., the wavelength of one oscillation). 

v 

y 2.0 

v (b) 

v (c) 

o y 

FIG. 2. (a) The characteristic potential V(y) (solid curve) of 
the laser-plasma system for C ~ =0, -1 < C 1 < 0, and the density 
depletion curve (dotted curve). (b) The characteristic potential 
V (y) (solid curve) of the laser-plasma system for C ~*O, C 1 > 0, 
and the density depletion curve (dotted curve). (c) The charac­
teristic potential V(y) (solid curve) of the laser-plasma system 
for C ~*O, C1 < -I, and the density depletion curve (dotted 
curve). 
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2. C ~>O 

Assume Ic4 1« 1, for otherwise vanishingly small 
values of the amplitude would dominate the behavior of 
the system. The extremum at y =0 found for C4 =0 is 
now replaced by a divergence, V(y =0) __ + 00. The 
form of the potential for - 1 < C 1 < 0 is plotted in Fig. 
2(a). The homoclinic orbit has disappeared and only the 
oscillating solutions survive. For C 1 > 0 the potential is 
plotted in Fig. 2(b). In principle the system could now 
have bound solutions for these values of C 1 as indicated 
by the dashed curve. This does not, however, seem to be 
the case. Since Ic4 1 «1 and X=1 is a root for C4 =0, 
we try to find the possible extrema necessary for bound 
solutions in the form X = 1 + B, 0 < B «1. Substituting 
this ansatz into Eq. (38) we obtain, keeping terms up to 
the second order in B, 

B= 1 [-C ±[C 2-8C (1 +2C )]I12j 
2(1+2C1 ) 4 4 4 1 

(39) 

But for C I' C 4> 0, and 1 C 41 « 1 the term in curly brack­
ets becomes a complex quantity, and thus the potential 
does not have this type of a root. Therefore the system 
seems to still lack bound solutions for these values of C I. 
Figure 2(c) shows the potential for C 1 < - 1. The pres­
ence of type-II oscillations is now clear due to the wall 
that has appeared at the origin. 

In Fig. 3 we have sketched the different possible solu­
tions. Figure 3(a) shows the solution corresponding to 
the homoclinic orbit, and Fig. 3(b) shows type-I oscillat­
ing solutions. Since C4 =0, the phase is constant in the 
transverse direction in both cases. In Fig. 3(c) we show 
the type-II oscillations together with the nontrivial phase 
profile in the transverse direction. The solutions corre­
sponding to the potential of Fig. 1(c) (dashed line) are 
seen to be an extreme case of the type-II oscillations in 
which the phase becomes discontinuous and the ampli­
tude exhibits a cycloid-type pattern. 

As mentioned when introducing the model for electron 
density, Eq. (11), it is necessary to check if these solutions 
correspond to physically meaningful values of electron 
density. From Eq. (11) the electron density perturbation 
Bne Ina can be rewritten in terms of the variable y (S") as 

Bne --= y" sinhy + (y' )2 coshy 
no 

(40) 

From the Hamiltonian formalism the y derivatives can be 
expressed in terms of the potential V(y) and the total en­
ergy of the system (; as 

,,_ av 
y --ay' 
y'=2({;-V) , 

yielding 

Bne - 2 
-- = 2 {; coshy + 2C 1 sinh y coshy 
no 

(41) 

(42) 

(a) a 

x 

a 
(b) 

x 

(c) a 

x 

9 

x 

FIG. 3. (a) Solitary profile corresponding to the homocIinic 
orbit. (b) Multiple beamlet profile type solutions corresponding 
to type-I oscillatory orbits. (c) Multiple beamlet profile type 
solutions corresponding to type-II oscillatory orbits. 
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Type-n 
oscillatory 

solutions 

Type·l I 
I oscillatory I 

solutions 

I I 
I I 

Type·l 
oscillatory 
solutions 

sOlitary and 

Unbounded 

solutions 

Type-l oscillatory solutions 

FIG. 4. The parameter space (C I 'C4 ) with the appropriate 
solutions listed in each region. 

an equation independent of C4 • The critical case, corre­
sponding to a total depletion of the electrons, is given by 
8n e Ina = -1. This case is specified by the electron de­
pletion curve given by Eq. (42) evaluated at 8ne Ina = -1: 

(43) 

The electron depletion curves as given by Eq. (43) are 
plotted in Figs. 1 and 2 on top of the potential curves 
(dotted curves). The physically meaningful solutions lie 
above the electron depletion curve corresponding to posi­
tive values of the electron density. 

We conclude that bound physical solutions come in 
only two kinds. One is a solitary-wave solution, corre­
sponding to the homoclinic orbit, the other is a multiple 
beam let type, which corresponds to the type-I and type-II 
oscillatory solutions. The existence of these solutions is 
summarized in Fig. 4. 

c. Exact solutions 

Seeking analytical solutions of Eq. (32) with finite total 
power we impose the boundary conditions: a, a' _0 as 
x _ 00 • This requires that the energy 0 and the 
coefficient C4 have the following values: 

C 4 =0, 

0= -I/A~ 
(44) 

Recalling the classification of the solutions done above, 
this implies that we are looking for a solitary type profile 
sketched in Fig. 1(c). The amplitude equation now be­
comes 

+ ~(1 +a 2 )3/2 • 

Ac 
(45) 

If we let s=x lAc (as before) and change variables ac­
cording to 

Eq. (45) takes on an elementary form, which has the solu­
tion 

y= E 2=t=4E(2K2-1)+4 ' 

where E=exp[-2K(s+Cg )] and K2=A~CI+1. 
eling the change of variable leads to 

I =a2= ±32(E±2)2K2E 
[(E±2)2=t= 8K2Ef 

(46) 

Unrav-

(47) 

Since the intensity is positive, the upper sign in the ex­
pression (47) is relevant. The integration constant C g em­
bedded within E corresponds to merely a shift of the 
solution along the x axis. From Eq. (47) the profile cen­
tered at 5=0 is 

a = 2Ksech(Ks) (48) 
l-K2sech2(Ks) 

The parameter K is now seen to be related to the inverse 
width of the profile in units of A-; I. Furthermore, K is 
directly related to both the peak intensity of the profile at 
5=0, and to the total power of the beam: 

2K 
am =a(S=0)=--2. (49) 

l-K 

The total power of the laser beam in dimensionless vari­
ables is given by 

P = f + 00 I (5)d 5 
~ 00 

=4 [~2 + arctan(KI;~ ]. (50) 
l-K (l-K) 

Equation (50) is a scaling relation between the width 
and the power of the laser profile. The presence of a rela­
tion between the amplitude and the width is typical of 
solitonlike structures, although the relation (49) is not 
linear and is thus different from the Korteweg-de Vries 
(KdV) soliton. 

The condition that was obtained for the existence of 
bound solutions while doing the classification of the solu­
tions, - 1 < C 1 < 0, translates into a physically reasonable 
condition for K2: 

(51) 

The lower limit excludes trivial solutions with zero am­
plitudes, and the upper limit keeps the peak amplitude 
finite. In Fig. 5(a) we have plotted profiles for various 
values of maximum amplitude am. In Fig. 5(b) are the 
corresponding potentials. 

Another restriction on the possible values of K2 can be 
found by requiring that the solution correspond to physi­
cal values of the electron density given by Eq. (11). The 
critical case for the homoclinic orbit corresponds to the 
situation when the intersection of the depletion curve and 
the potential takes place at the maximum amplitude of 
the homoclinic orbit. Setting the potential given by Eq. 
(37) equal to the depletion curve given by Eq. (43) we ob­
tain 



40 SELF-FOCUSING OF AN OPTICAL BEAM IN A PLASMA 3237 

(52) 

For the homoc1inic orbit the energy is, according to Eq. 
(44), (; = -I/A~. Equation (43) yields 

coshy*=2. (53) 

Substituting this value for y * back to Eq. (52) we obtain 

C 1 = - t or equivalently K2 < t . (54) 

For values satisfying the condition (54), the potential lies 

a (a) 

6.0 

1<=0.7 

4.0 

2.0 

-5.0 0.0 5.0 

v 

-2.0 -1.0 0.0 1.0 2.0 a 

FIG. 5. (a) The asymptotic intensity profile for various values 
of the beam width parameter K. The normalized peak ampli­
tude, ao=eEolmcwo, is then given by Io=2K/1-K2: (1) 
K=O.3, ao=O.66, (2) K=O.5, ao=1.33, (3) K=O.6, ao=1.88, (4) 
K=O.7, ao =2.75. (b) The characteristic potential of the system 
V(a) describing the beam profile plotted for the same values of 
K as in (a). 

above the depletion curve corresponding to physically 
meaningful values of electron density. Therefore, within 
the framework of the model for electron density as given 
by Eq. (11), the self-consistent solitary profiles are given 
by Eq. (48) while the width of the profile is restricted by 

(55) 

1. NonrelatilJistic solutions 

It is interesting to compare the results yielded by the 
present approach to work done earlier on the subject.9 - 12 

Schmidt and Horton 12 studied purely relativistic self­
focusing for nonrelativistic field amplitudes, a 2 < 1. In­
tegrating Eq. (24) once, keeping the electron density con­
stant (Ne == 1), and expanding for a 2 < 1 we obtain 

[ 1 1 1 1 (a,)2= C +- a 2---a4 +O(a 6 ). 
1 1.2 4 1.2 

c c 

(56) 

Recalling the shorthand notation K2==A~CI +1, Eq. (45) 
reduces to 

....!!...a =+(K2a 2 -.!.a 4 )1/2 dg - 4 ' 
(57) 

which yields the following expression for the intensity: 

C e±2KS _ 2 6 
I(x)- -16K +2 S 2 

(1-C6e- K ) 

(58) 

For the solution to remain finite for all values of g, 
C 6 == - C 7 < O. The profile is found to have one (and only 
one) extremum when C 7 > 0, a condition that coincides 
with the one already established above for the finiteness 
of the solution. The extremum, x m' is given by 

InC7 
x m =-2;- , (59) 

and the intensity profile centered at g=O is 

I(g)=4K2 1 
cosh2(Kg) 

(60) 

The complete solution obtained by Schmidt and Hor­
ton l2 is 

_ 2 _ 1 
I(g)= An(g)-IO 2 ~ / ,asH=Fo 

cosh ( v aSHg) 

cp=( 1!c)[w2 +(wp )2(Fo -1 )]1/2Z -wt , 
(61) 

while the complete solution obtained by us is 

1 
I(g)=IO 2 ,K2=Fo 

cosh (Kg) 

cp(g)=( l/C)[W6+(Wp )2Q.fo -1 )]I12z -wot 
(62) 

For a given frequency w=wo, our solution coincides 
(within a factor of 2) with the one obtained by Schmidt 
and Horton. The factor of 2 difference arises from the 
different choice for the polarization of the laser field: 
Schmidt and Horton assumed a linearly polarized wave 
for which the time averaging process produces a factor of 
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-to whereas in this work we have used circular polariza­
tion for which the time averaging does not introduce any 
numerical factors. Taking this difference into account, it 
is seen that the profiles are consistent. 

IV. NUMERICAL RESULTS 

In this section we compare the theoretical results de­
rived in the preceding sections with a recently developed 
computer simulation. 13 The reason for this is twofold. 
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On the one hand, exact results are useful as test cases for 
verifying the correctness of a computer code, and on the 
other hand, computer codes can give evidence for stabili­
ty of solutions. Although the solutions we have present­
ed here are exact, their occurrence depends critically 
upon stability. In general, proving stability of solitonlike 
solutions is a difficult task, so the computer is a useful 
tool in this respect. 

The code used is a time averaged particle simulation 
code developed for modeling transport of optical beams 

a/an 
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FIG. 6. (a) The peak amplitude of the different profiles as a function of time. The vertical axis gives the ratio of the observed am­
plitude a to the original amplitude ao. The Gaussian beam self-focuses as indicated by the rapidly growing amplitude, whereas the 
solitonlike profile propagates practically unaltered. The time is expressed in the units of w; 1. (b) The beam profile of an originally 
Guassian beam plotted at t =0 and SOw; 1. The form of the profile gets severed. (c) The beam profile of a solitonlike beam plotted at 
t =0 and SOw; 1. The beam is seen to retain its shape. 
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in plasmas. 13 The code operates on the same principles as 
any standard electromagnetic particle simulation code, 
except that it uses the wave equation, which is phase 
averaged over the rapid laser oscillations. Similarly, the 
equation of motion for the relativistic electrons is aver­
aged, thus yielding the laser contribution in the form of 
the ponderomotive force. We have here used a version of 
the code that is formally one dimensional but which in 
fact portrays a two-dimensional situation-the code 
"time" representing the direction of propagation for a 
stationary state. The code uses periodic boundary condi­
tions, the width of the simulation box is chosen to be 
51. 2Ac and there are 100 electrons per grid cell. The 
number of grid points for the simulations discussed below 
was 256 and the time step was chosen at dt = O. lw; I. 

In the first case we set up a Gaussian intensity profile 
with normalized intensity (quivering velocity) 1=0.16 
and beam waist Wb = 8Ac' and the laser frequency was 
chosen to be wo=5wp, although Wo can be much greater 
than this choice without an increase of cost in our code. 
For these parameters the beam should self-focus (see 
Refs. 8 and 9), and it is indeed observed to focus as indi­
cated by the increasing peak amplitude in Fig. 6(a). We 
then replace the Gaussian intensity profile by the sech2 

profile derived above for the asymptotic profile. The 
profile should then remain practically unaltered while 
propagating in plasma, as it is a steady-state solution. 
This turns out to be the case, as evidenced in Fig. 6(a), 
which shows that the fluctuations in the peak amplitude 
do remain within 1 %. Also, the form the beam retains 
its sech2 profile, whereas in the case of the Gaussian 
profile quite strong deviation from the original form is 
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observed [see Figs. 6(b) and 6(c)]. Thus we conclude that 
the sech2 profile is a realistic physical candidate for the 
asymptotic shape of a self-focused laser beam. 

V. DISCUSSION 

We have addressed here the question of a possible 
asymptotic transverse profile for a short, self-focused 
laser pulse propagating in plasma. Using a stationary­
state model for the electron density, we arrived at a soli­
tary wave shape and a multiple beam let shape for the 
asymptotic profile. In the nonrelativistic limit for the 
field intensity, keeping only relativistic electron effects, 
the result reduces to the one obtained earlier by Schmidt 
and Horton. 12 The general profile (including ponderomo­
tive effects) agrees well with computation proving to be 
stable and stationary in the numerical particle simulation 
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The existence of a stable asymptotic profile of a self­
focused laser beam may have important applications in, 
e.g., laser fusion as well as in plasma based accelerators, 
where it is necessary to have the laser beam traverse con­
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