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Abstract 

A model that incorporates both the effects of temperature gradients and magnetic 

shear on the drift wave monopole solutions is analyzed. In the case where the former 

effect is treated improperly and the latter is neglected, it was shown in Ref. 1 that ther.e 

exist exact monopole solutions, which can further be shown [Ref. 4] to be equivalent to 

the existence of a point spectrum for a n~nlinear eigenvalue problem. When both the 

effects are included, this spectrum becomes a banded continuous spectrum. An eigen-

value of this spectrum is associated with a lpcalized vortex structure that undulates in 

space about a fixed level, eventually matching to a radiative ion acoustic tail. A novel 

separatrix crossing technique is used to investigate this problem. 

y q 



over the scale length L lI • Including both the sheared field and temperature gradient effects, 

the perpendicular a.nd parallel momentum equations are 

(
1 ~2) o<p ---v -

r(x) ot 
O<p r'( x) O<p 2 OV{I 

+ Vd By + r2(x) <p oy - [<p, 'iJ <p] + Sx By = 0 (1) 

OV{I i o<p 
ot + [<P,vlI] + 5x By = 0 (2) 

where the normalized electron temperature T( x) = Te (x) /To, the spatial coordinates are 

scaled by PiO = (TO/miw;i)1/2 with Wei = eBo/cmi, time is scaled by Wei and as usual <p 

is made dimensionless by a factor e/To. The parallel velocity is scaled by PiO Wei = CsO = 

JTo/mi' and the drift velocity is also scaled by CsO. The quantity 5 = PiO/ Ls is a measure 

of the magnetic shear. 

For small parallel speed, we take the ion acoustic dynamics as linear. Equation (2) then 

becomes 
OV{I o<p 
-=-5x-Bt oy . 

Combining Eqs. (1) and (3), we get the following model equation: 

(
1 2) o<p o<p 7' o<p [ 2] 2 2lat 02<p - - 'iJ - + Vd - + - <p - - <p, 'iJ <p - 5 x - dt = 0 . 
7 ot oy 7 2 .By.. 0 oy2 

(3) 

(4) 

In the limit of 5 -+- 0 and in the inconsistent limit.!. -+- 1 while 7'/72 -+- constant we obtain 
. 7 

the incomplete Petviashvili model. In this "limit" the monopole solution is obtained upon 

substituting <p = <po(r) where r = [x? + (y - ut)2J1/2 into (4). One obtains the following 

equation: 

1 d ( d<Po) 2 a 2 - - r - - 4k <Po + - <Po = 0 
r dr dr 2u 

(5) 

where k2 = - 1 - -1 ( Vd) 
. 4 u 

and a = 7'/72. Note that the presence of shear and temperature 

gradient removes the radial symmetry ofthis equation. Assuming <p(x, y-ut) Eq. (4) reduces 

exactly to 
1 52 x3 

'iJ2<p - - <p - fnno(x) + -- = F(<p - ux) T(X) 3u 
(6) 



together with Eq. (8), define a nonlinear eigenvalue problem for,. In the limit s --j. a the 

solution of the model Eq. (7) is -y(s = 0) = ,0 = 1 with the homo clinic orbit <Po = sech2t 

where Vd, u and ex/ S are restricted to k2 > O. 

Equation (8) can be written in the form of Hamilton's equation for an effective particle 

with coordinate q = 'IjJ, time t, momentum p = ~~ and effective potential V( 'IjJ, t) = _2'IjJ2 + 

2-y'IjJ3 + s:t2 'ljJ2. The Hamiltonian is 

(10) 

and the dynamical equations are 

8 (2 3 s2t
2 2) 2 2 2 P - - 8'IjJ - 2'IjJ + 2,'IjJ + -2- 'IjJ = 4'IjJ - 6,'IjJ - s t cp 

'IjJ = p. (li) 

As noted above, the effect of shear is to couple the vortex solution to the ion wave by 

changing the potential energy V('lj1, t) with time. The critical time for particles passing from 

the solitary wave potential into ion acoustic wave potential is to = ~. At the critical time, 
s 

the potential can no longer contain trapped particles (see dashed line in Fig. 1 (b)). For 

t > to trapped particle orbits exist in the nieghborhood of the origin; i.e. in the ion acoustic 

potential. 

From numerical integration of the model Eqs. (8) and (9), we obtain the spectrum of 

eigenvalues 'n(s). This is done by choosing a zero momentum initial condition and inte::­

grating beyond tc to determine if there is trapping for all time in the ion acoustic potential. 

We are interested in the critical value of the amplitude for such trapping. Physically the 

trapping implies the radi~tive tailing at large t-values. See. Fig. 2. A detailed study of the 

numerical spectrum yielded the -Yn(s) curve shown in Fig. 3. The curve shows the amplitude 

at t = 0 (r) for eigenfunctions 'lj1(t) that are bounded as t --j. 00, versus the shear parameters, 

s. Observe that the upper and lower boundaries of the "bounded region" oscillate as s --j. 0 
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Boltzmann distribution ne = N(x)exp(e~/Te) = N(l + cp) used in deriving Eq. (4) breaks 

down. The potential has depleted the electron density to the unphysical point where ne 

becomes negative. 

With s =1= 0, however, the potential V, depth Vm of the potential well, and position ~m 

of its bottom change with time. The potential well becomes shallower and shallower with 

increasing t until Vm = 0 ,and ~m = 0 when t = to( s) = ~ as shown by dashed line in . s 

Fig. l(b). When t > ~, the potential well changes its shape into that shown by the solid line 
S 

in Fig. l(b). Therefore, the question of whether the ball becomes eventually trapped in the 

well shown by the solid line in Fig. l(b), or it goes into the "Hell" as t ~ 00, is determined 

not only by the initial potential energy (the initial position 'Ij; of the ball) but also by the 

magnitude of s. The shear parameter s serves as an inverse characteristic time for the change 

of the well. It is also obvious that the number of oscillations that the ball performs around 

the bottom of the potential well within t < ~ is determined by value ~. The first formula 
' .. ::. 2 . s s. 

(for f > 3') of Eq. (12) or the upper branch of Fig. 3 corresponds to dropping the ball from 

. the right side()f the bottom of the potential well at t = 0, while the second one (for f < ~) 
of Eq; (12), or the lower branch of Fig; 3, from the left side of the bottom. 

Although Eqs. (12) have not be~Ii proven, we understand that coupling of the waves at 

large t to the vortex at t = 0 results in a spectrum of vortices with an increasing number of 

oscillations of ~ in the nonlinear trapping region. Thus, the inho'mogeneity acts to split up 

the vortex point spectrum into continuous bands given by fn(S). The shear inhomogeneity 

is a defocusing effect. 

By introducing the action-angle variables 

J = 2.. f pdq = 2. f J2(H - V) dcp 
21r 21r 

and separatrix crossing theory we can relate the action at t = 0 for the homoclinic orbit 

(14) . 
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t < ~ satisfies n = ! and when s is small (s < .25), the eigenvalue In (s) satisfy the recursion 
s s 

. relations of Eq. (12). 

Even though the present formulation is an oversimplified model, it exhibits the main 

physical features of coupling the integrable solitary wave to the ion acoustic wave due to the 

presence of the magnetic shear. The study of a more comprehensive model which involves 

the two fields, c.p and Vz , will be presented elsewhere. 
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Figure Captions 

1. Effective 'potential for nonlinear drift waves. 

(a) Behavior of effective potential near the center of the drift wave structure: t = O. 

(b) Behavior of effective potential far from the center of the drift wave structure: 

t > 2/ s. 

2.' (a) Nonlinear eigenfunction for s = ~ showing monopole vortex and wave solutions 

2 
for 1 > 3' (upper bound). 

(b) Nonlinear eigenfunction for s = ~ showing monopole vortex and wave solutions for 
2 7 

1 < 3' (lower bound). 

3. Spectrum of critical amplitude 1 versus shear s showing vortex branches In(S) and 

nonlinear wave solutions. 

4. Comparison of I(S) from separatrix crossing theory with that from numerical integra­

tion rsults of Eq. (7). The solid lines represent the analytical results and the dashed 

lines, numerical results. 
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