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I. INTRODUCTION 

1.1. Overview 

This paper is concerned with instability of equilibria of Hamiltonian, fluid and 

plasma dynamical systems. Usually the dynamical equilibrium of interest is not the state 

of thermodYnamic equilibrium, and does not correspond to a free -energy minimum. The 

relaxation of this type of equilibrium is conventionally considered to be initiated by linear 

instability. However, there are many cases where linear instability is not present, but the 

equilibrium is nonlinearly unstable to arbitrarily small perturbations. This paper is about 

general free energy expressions for determining the presence of linear or nonlinear 

instabilities. These expressions are simple and practical, and can be obtained for all 

equilibria of all ideal fluid and plasma models. By free energy, we mean the energy 

change upon perturbations of the equilibrium that respect dynamical phase space 

constraints. This quantity is measured by a self-adjoint quadratic form, called !)2F. The 

free energy can result in instability when !)2F is indefinite; i.e. there exist accessible 

perturbations that lower the free energy of the system. 

A primary purpose of this paper is to tie together three manifestations of what 

we will refer to as negative energy modes. The flrst is the conventional plasma physics 

notion of negative energy mode that is based on the definition of the energy in a 

homogeneous dielectric mediuml -3. A negative energy mode is a normal mode of the 

medium (plasma) that possesses negative dielectric energy. The second manifestation 

occurs in flnite degree-of-freedom Hamiltonian normal form theory4,5. The quadratic 

part of a Hamiltonian in the vicinity of an equilibrium point, which possesses only 

distinct oscillatory eigenvalues, has an invariant signature. Thus in cases where the 

quadratice form isindeflnite, it is natural to refer to the modes corresponding to the 

negative signature as negative energy modes. The third, and most general, deflnition of 

a negative energy mode6-9 relies on the free energy functional that we have termed !)2F. 

An equilibrium has a negative energy mode if it is linearly stable and has indefinite !)2F, 

and further we require this to be true in all frames of reference. This later proviso is 

required since energy is not a covariant quantity. 

The defmition of negative energy modes based on !)2F is a generalization of the 

dielectric deflnition in that it is applicable to arbitrary equilibria. It does not require 

Fourier transformation in space or time, nor does it require the existence of a dielectric 
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function. The S2F expressions do not contain unknown frequency dependence and in 

general are easier to use. The S2F definition obviously generalizes the normal form 

definition since the systems of interest are generally partial differential equations. We 

point out, however, that it includes the previous two. All three definitions are equivalent 

for systems with a complete discrete spectrum and a notion of dielectric function, such as 

the fluid description of the beam-plasma instability. 

A second primary purpose of this paper is to describe a conjecture that we refer 

to as the free energy principle, a principle that yields criteria which are sufficient and, in 

a sense, necessary for stability. When S2F is definite an equilibrium is stable. When S2F 

is indefinite and we are in a reference frame where the equilibrium has minimum energy, 

there are two possibilities: (1) the equilibrium possesses linear instability or (2) there is 

linear stability with negative energy modes. Possibility (2) is a restatement of a 

definition, but in this case there are two avenues for instability: (a) the equilibrium can be 

unstable to an arbitrarily small perturbation because of nonlinearity or (b) the equilibrium 

can be structurally unstable to the inclusion of dissipation in the dynamical model. There 

are many examples that illustrate (a), in particular, a simple example due to CherrylO 

(which will surface in Sec. 3) and important calculations of nonlinear electrostatic 

instabilities in homogeneous plasmall-15. illustrations of (b) include the well-known 

Thompson-Tait theorem16, and we point out an early plasma physics example17. It is 

conjectured that (a) and (b) are generic; i.e. although there exist cases where S2F is 

indefinite and the system is stable, and there exist special types of dissipation that do not 

result in instability, these are conjectured to be exceptional. If we accept the conjecture 

and ignore these possibilities because of their rarity, we obtain a sense in which S2F 

provides a "necessary" and sufficient condition for stability. This is what is meant by 

the free energy principle. 

The fluid and plasma literature contains a large numger of sufficient conditions 

for the stability of ideal equilibria that depend upon the positive defmiteness of some 

quadratic form. These criteria ·are often obtained by ad hoc means and sometimes are 

devoid of physical interpretation. Generally these conditions, unlike the magne­

tohydrodynamic (MHD) energy principle, are believed to yield no information 'when 

indefinite. In fact a great deal of effort has been spent in the unsuccessful attempt to 

obtain necessary and sufficient conditions for the stability of general equilibria. In all 

cases known to the authors, definiteness of these forms amounts to definiteness of the 

free energy. Thus the notion of S2F greatly clarifies the situation in that there is a 
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framework for interpreting and constructing these criteria. Also it puts to rest the 

question of necessary and sufficient conditions. The best to be hoped for in general is 

the "necessary" condition described above, because in general, Hamiltonian systems do 

not possess SW type criteria. 

In the remainder of the Introduction (Sec. 1.2) we discuss two descriptions of 

equations that describe ideal plasma, the Lagrangian variable description, which 

possesses an action principle18-20, and the Eulerian variable description, which posseses 

the noncanonical Hamiltonian structure21 -29 . Both the Lagrangian9 _ and _______ _ 

Hamiltonian5-7,29 formalisms have been used to obtain free energy expressions. We will 

dwell somewhat on the later, but quote results obtained from the former. Section 3 

contains,an example that typifies finite Larmour radius stabilization. Here we see in a 

simple system of ordinary differential equations, how a system can be linearly stable, yet 

unstable, and how the inclusion of dissipation can result in linear instability by shifting a 

real frequency into the complex plane. In Sec. 4 the Vlasov-Poisson system is treated. 

A general expression for the free energy of arbitrary equilibria is stated. 

1.2.Review 

In the Lagrangian variable description of continuous media, for example fluids; 

the complete state of a system is determined by a continuum of "particle" positions, 

X(Xo, t), where Xo is the particle position at t = O. The Lagrangian variable description is 

model independent in the sense that it arises in kinetic20 as well as fluid systems18,19 

with a generality of force laws. In the case of fluid systems, x corresponds to the 

position of a "fluid element". This case differs from the usual description of a fluid in 

terms of Eulerian variables, where the density and velocity fields are expressed as 

functions of space and time. In contrast to the Eulerian variable description, when one 

describes a fluid as a collection of particles, as in the Lagrangian variable description, it 

is not surprising that the equations of motion possess the form of Newton's second law, 

and therefore are derivable from Hamilton's principle of mechanics. 

As an example consider the nonlinear equations of ideal magnetohydrodynamics 

(MHD), which have the following form: 

_ oW[X] 

oX 
(1) 



914 

where the right hand side is the functional or variational derivative of a potential energy 

functional, W[xl. The MHD energy principle exists because of the Hamiltonian form of 

Eq. (1), for if we linearize by letting x=xe(xo)+E,(xo.t), where xe satisfies 

8W[xe]/8X = O. then E, satisfies 

(2) 

where the linear operator 0 arises from the second variation of W[X] , 

From Eq. (3) it is evident that 0 is self-adjoint since it is the second variation of W. (The 

quantity 82W is usually misleadingly referred to as 8W.) This self-adjointness, with its 

root traced back to the Hamiltonian form of the original nonlinear system, is the crucial 

element that gives rise to the necessary and sufficient 8Wenergy criteria for static MHD 

equilibria. 
Consider now the Eulerian variable description. One thing that is immediately 

evident is that there is a difference between the classes of Eulerian and Lagrangian 

equilibria. For example, in ideal MHD the dynamical variables are the velocity field 

v(x.t), the density p(x.t), the magnetic field B(x.t), and the entropy per unit mass 

s(x.t). If we define equilibria by the vanishing of the first time derivative of the 

dynamical variables, then Eulerian equilibria correspond to some (not all) functions of 

space. In particular note that the equilibrium velocity field, ve(x). need not be constant 

nor vanish. This should be contrasted to Lagrangian equilibria where aE,1 at = 0, which 

implies that there is no equilibrium flow: Thus we see that Lagrangian equilibria are 

static equilibria, while the class of Eulerian equilibria includes stationary equilibria as 

well. 
Another difference between the Eulerian and Lagrangian variable descriptions is 

the apparent difference in the number of dynamical variables needed to specify the state 

of the system. The map from Lagrangian to Eulerian variables is not a one-to-one 

transformation, and evidently it is not a canonical transformation. In spite of the 
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"pathology" of this map, the Hamiltonian structure survives, albeit in what we have 

called the noncanonical Hamiltonian form. 
For simplicity we discuss a fInite degree-of-freedom Hamiltonian system, which 

for ease in generalizing to the noncanonical description we write in terms of the 2N 

dynamical variables zi, the fIrst N of which are the canonical coordinates while the 

second N are the conjugate momenta. Hamilton's canonical equations take the form 

dzi = 
dt 

[Zi, H] = J ii dH 
c dzi 

where the Poisson bracket is defmed by 

with 

(4) 

(5) 

(6) 

which is a 2N x 2N matrix and IN is the N x N unit matrix. Here repeated indicies are to 

be summed to 2N. The quantity (Jcij) is a second order contravariant tensor that is 

called the co symplectic form. 
Canonical transformations, by definition, preserve the form of the Poisson 

bracket, or equivalently the form of the tensor (Jcii). This is not the case for the 

transformation between Lagrangian and Eulerian variables, since this transformation is 

noncanonical and moreover degenerate. For finite degree-of-freedom systems, the 

noncanonical Hamiltonian form is the same as that of Eqs. (4)-(6), except (Jcii) is 

replaced by a tensor (Ji i), which may be odd dimensional, have vanishing determinant 

and depend upon the zi. However, in spite of these changes in the co symplectic form, 

the algebraic properties of bilinearity, antisymmetry and the Jacobi identity of the 

Poisson bracket, are preserved. These properties are the essence of the Hamiltonian 

description. 
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For MHO the Eulerian remnant of the fonn given by Eq. (1) is 

where the ':/Ii (i = 1 •... 8) correspond to the field variables v. B. p and s; the Hamiltonian 

H = f[pv 2/2 + B2/2 +pU(p.s)] d3x , where U is the internal energy per unit mass; and the 

co symplectic operator, (Jii), was given in Ref. [25]. 

A feature of noncanical Poisson brackets, not present in ordinarly Poisson 

brackets, is the existence of special constants of motion called Casimir invariants. A 

phase space function C is a Casimir invariant if it commutes with the Hamiltonian as 

well as with ~ function F of the dynamical variables zi (i = 1 •... M) describing the 

system, i.e. 

[c. F(z)] = 0 

A consequence of this definition of the Casimirs, using Eq. (5), is 

but F is arbitrary and therefore 

J ij de = 0 • 
dzi 

= 1, ... ,M. 

(8) 

(9) 

(10) 

Thus, the phase space gradient of a Casimir (dC/dzi ) is a null eigenvector of (Jii). In 

fact, it can be shown21 that the null space of (Jii) is spanned by null eigenfunctions 

that are gradients. Clearly, nontrivial Casimirs (i.e. not constants) exist only if 

det(Jii)=O (11) 

and the number of independent Casimirs is equal to the corank of (J i i). In the case that 

(Jii) is canonical, it has the structure given in Eq. (5) and the determinant is unity. 
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Therefore in the canonical Hamiltonian formalism there are no nontrivial Casimirs. 

When (Jii) has null eigenvectors,the phase space can be described by hyperplanes, or 

symplectic leaves, which are labeled by the Casimirs. A trajectory must remain in the 

leaf of phase space as determined by the specification of the initial conditions. This 

follows from the fact that the generalized Poisson bracket cannot generate flow, i.e. 

trajectories in phase space in the direction of these null eigenvectors. 

Hamiltonian systems possess a built-in sufficient condition for Liapunov 

stability. This kind of stability is a stronger than conventional linear or spectral 

stability. The most common example of nonlinear stability occurs in-the-case-where-the-~----j,1 

Hamiltonian has the standard form: H =p2/2 + V(q). Here it is well-known that 

positivity of the curvature of V is sufficient (and under some mild conditions also 

necessary5) for stability of equilibria given by pi=' O. dV I dqi= O. This is the finite 

degree-of--freedom analogue of the :MHD energy principle. 

The above curvature condition is a special case of a more general condition for 

Hamiltonian systems. The topology of energy surfaces in the vicinity of an 

equilibrium point is determined by the curvature of the entire Hamiltonian: 

a2H/dziazi. If this quantity is either positive or negative definite then the energy 

surfaces near the equilibrium point are nested, closed and bounded surfaces. Since 

trajectories are confined to the energy surface, those with initial conditions sufficiently 

close to the equilibrium point will remain in an arbitrarily small neighborhood of the 

equilibrium point. Evidently, for standard Hamiltonians, positive definiteness of H is 

insured by that of V. 
For noncanonical Hamiltonian systems there is an analogous sufficient 

condition. To begin with, unlike conventional Hamiltonian systems, extremals of the 

Hamiltonian are not the only possible eqUilibria. In fact these equilibria, which 

correspond to the lowest possible energy states, are generally quite trivial. For 

example, varying the:MHD energy with respect to Y, B, etc. yields an equilibrium with 

zero flow, magnetic field, pressure and temperature. If one extremizes the 

Hamiltonian subject to the constancy of certain of the Casimirs, then interesting 

equilibria that are constrained away from the lowest energy state arise. That these are 

equilibria is evident from the following: 

dzi = 
dt 

[Zi. H] = [Zi, H + C] = J ii of 
azi 

(12) 
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Thus vanishing of dF/dzi implies that dzi/dt = o. If we defme 

(13) 

then definiteness of the quadratic fonn S2F implies that surfaces of constant F near the 

equilibrium point are topologically spheres and thus we have stability. In the next 

section we physically interpret this quantity in the noncanonical context. 

The free energy functional S2F can also be obtained in the Lagrangian context9. 

In fact, since all equilibria are not extremal points of SF = 0 in the noncanonical 

fonnalism, the most general expressions have been obtained by beginning with 

Lagrangian action principles. Free energy expressions obtained in either way are 

equivalent for equivalent equilibria. 

2. THE FREE ENERGY - S2F 

Now consider the physical interpretation of S2F. Here we show that S2F is the 

energy change resulting from perturbations of the equilibrium that obey the dynamical 

constraints. Further, we show that the use of S2F considerably simplifies the 

computation of the energy change. Also we discuss the connection between S2F and the 

dielectric defmition of negative energy modes. 

It is useful to consider the energy needed to create a small perturbation with the 

constraint that the motion remain in a symplectic leaf. For small Sz we have 

,,0.H == H(ze+ &z) - H(ze) = 
aH &zi + 1 ~ &zi&zi 
azi 2 aziazi 

+ ••• (14) 

,,0.C == C(ze+ &z) - C(ze) = 
ac &zi + 1 a2c &zi&zi 
azi 2 aziazi 

+ .•• , (15) 

where ze is an equilibrium given by dF I dzi= O. For Sz such that llC = O. we can add 

~Aillci to Eq. (14) in order to obtain the energy change at constant Casimir invariant, 
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.6.H I c· Thus 

(16) 

This .6.H I c is second order in Sz, as expected for a Hamiltonian near an 

equilibrium point. Since.6.H ~ c is also a constant of motion it can serve as a Liapunov 

functional. Moreover,.6.H I c has physical significance: it is the energy increment 

contained in a perturbation which is accessible to the dynamics given the Casimir 

constraints. Note that S2F depends on the equilibrium through the choice of Ai, so the 

same Sz contains different accessible energies for each equilibrium. This is intuitively 

satisifying since one would expect the energetic favorability of Sz to depend upon the 

equilibrium. For example, in M.HD the energetic favorability and stability of a kink 

mode perturbation depends on the equilibrium current. 

The expression S2F is a most convenient way to to compute .6.H I c. The reason 

for this is that accessible perturbations, Sz, must satisfy .6.C = O. To compute .6.H to 

second order directly requires .6.C = 0 to second order. It is relatively easy (often trivial) 

to find trial functions SZT that satisfy .6.C = 0 to first order in Sz. In general a variation 5z 

satisifying .6.C = 0 to higher order would require a calculation to obtain Sz = SZT + 

O(szT2). This is usually difficult to satisfy for all Casimir invariants simultaneously. 

However, .6.H I c can be computed to second order accuracy by substituting SZT directly 

into S2F. We do this for the Vlasvov equation in Sec. 4. 

It is easy to show that S2F is the Hamiltonian for the linearized equations of 

motion29,6, but more importantly one can show that the work performed by an external 

agent, which observes the constraints while creating a linear perturbation, is S2F. This is 

the usual definition of the energy content of a wave in dielectric theory. Suppose an 

external source is applied to the system which adds a transient term H ext to the 

Hamiltonian for times between 0 and to. The Jii is unchanged by this; thus the Casinlir 

invariants (which depend only on Jii) remain constant For linear perturbations the new 
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Hamiltonian is 

A convenient form for Hext is zi Sj(t), the explicit time dependence appearing only in 

the source functions Sj. Standard Hamiltonian mechanics yields 

dH'= aH = zi aS i 
dt at at 

(17) 

Integrating Eq. (17) in time from t:: 0 to t:: to yields, upon integration by parts on the 

right, and the assumption that s::o for t~O and t~to, 

to 
82F = - f (dzj/dt) sidt (18) 

The right side is the usual expression for the work done on a system, i.e. the integrated 

input power, by an external agent. 
As an example, consider the one-dimensional Vlasov-Poisson equation. The 

external agent in this case is an externally imposed potential cP ext and the external portion 

of the Hamiliton is 

Herei(x,v_,t)js_tbepbasespace density. In this case we have for the power 

(dzi/dt)Si = f(af/at) (j)ext dxdv = f(ap/at) (j)ext dX 

= f J . V (j) ext dx 0 

(1 g) 

The last equality of Eq. (19) follows by making use of the continuity equation, 

ap I at + 'i7 oj :: 0, and integrating by parts. This expression is the standard one for the 

power input from an external field. Thus S2F is indeed the energy needed to create a 

perturbation Sf. 
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In dielectric theory the energy contentl -3 in a linear wave is defmed by the work 

performed by .an external agent in producing the wave. The energy content is found to 

be [a(wE)/dwll Ek 1
2
, where w is the wave frequency, k is the mode number, E(k,w) 

is the dielectric function, and Ek is the electric field amplitude for mode k. This brings us 

to the important topic of positive and negative energy waves; in dielectric theory these 

have d(w e;)/ aU) > 0 and d(w E)/ aw < 0 respectively. As noted in the Introduction, 

negative energy waves have the property that they are spectrally stable; but their pre:serlce------II 

decreases the energy of the medium. If both types of waves exist in the medium then S2F 

is positive for some perturbations, Sz, and negative for others, and is thus indefmite. 

Now suppose that S2F is indefinite. What conclusions can be drawn about the 

spectral properties of the system? For fmite degree-of-freedom systems there are two 

possibilities: either there is spectral instability or the system has a mixture of positive and 

negative energy waves. 

For the case of canonical Hamiltonian systems it is straight forward to show this 

assertion. The theory of normal forms by now is well understood5. In this case S2F is 

the linearized Hamiltonian, i.e. the second variation of the full Hamiltonian. It is a 

quadratic form in Sqj and SPj' We will consider the case where H has the following 

form: 

(20) 

If the H of Eq. (20) is indefinite, then for a least one degree-of-freedom one of the 

following holds: (i) elj has a different sign than :l3j' which corresponds to instability, or 

(ii) the pair of elj and :13 j has a different sign from other pairs. The latter case 

corresponds to a mixture of positive and negative energy waves. It is evident from the 

discussion of Sec. 1.2 that the same results apply for finite noncanonical Hamiltonian 

systems. 

It is clear from the above that there is no such thing as a spectrally unstable 

negative energy mode. One might think this would correspond to a negative elj and a 

positive :l3 j , but since qj ... - Pj and Pj ... qj is a canonical transformation we see that there 
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is no distinction between this case and that of instability. 

However, we have conjectured that a system with both positive and negative 

energy waves is nonlinearly unstable in the general case. This can arise because there is 

a low order resonance in the system, which results in explosive instability, i.e. 

divergence in finite time (c.f. Sec. 3), as occurs in the well-known three-wave 

interaction. For two degree-of-freedom systems where no low order resonance exists, 

the KAM theorem indicates stability. For systems of more than two degrees­

of-freedom, instability can still be present by the slow mechanism known as Arnold 

diffusion. For infmite degree-of-freedom systems with continuous spectra, there may be 

additional avenues for nonlinear instability. 

There are many continuum systems for which the concept of a dielectric function 

is not well defined, or if defined in principle, is very difficult to calculate in practice. 

However, S2F can be easily computed for such systems. Thus S2F provides a practical 

generalized definition of the concept of a negative energy wave. It can easily be 

generalized to the concept of non-wave-like phenomena. 

Before closing this section, let us consider a general bifurcation property 

concerning negative energy modes. Suppose we have a sequence of noncanonical 

Hamiltonian equilibria parameterized by a continuous variable 11.. Assume that S2F is 

positive defmite for 11. < 11. 0, but indefinite for 11. > 11. 0, because a positive energy mode 

becomes a neg~tive energy mode (the system being spectrally stable on both sides of the 

threshold). We now show that the frequency of such a mode must go through zero at 

11. = 11.0, at least for finite dimensional systems. 

The tensor a2F / aziazi is symmetric, and for 11. < 11. ° positive definiteness 

implies it has all positive eigenvalues. At least one eigenvalue becomes negative for 

11. > 11. 0, and thus traverses zero at 11. = 11. o. The associated eigenvector, SZo i, is also a 

;1

1

,---- .zero frequency eigenvector for the dynamical system; i.e. the existence of a zero 

eigenvalue of a2F / az iazi implies the existence of a zero frequency mode. This follows 

from linearization ofEq. (12) about an equilibrium ze' 

(21) 

where Jii and a2F / aziazk are evaluated at ze. 
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Note that this result can also be derived from the definition of wave energy 

density, which as noted above has its sign determined by the factor a( U) E)/ aU). Since 

the wave frequency satisifies E = 0 this factor becomes U)aE/aU). Thus as the wave 

energy goes from positive to negative at 11. = 11.0 we have two possibilities: either U) goes 

through zero or aE / aU) does. The latter possibility can be excluded by showing it leads 

to a contradiction. Assume E = 0 and aE/ aU) = 0 at U) = U)o '" O. Taylor expanding E 

about this point yields 

00 n n 
(W - Wo) ~ 

+ (22) 
n! aWn 

Since aE/aU) is assumed to change sign at 11. =11.0' one can show that the first 

non vanishing term on the Taylor series must have even n. One can also show that if 

aEi 011. '" 0, then the cross terms neglected in Eq. (22) are asymptotically negligible 

compared with those kept when U) ::: U)o and 11. ::: 11. o· 

The condition E = 0 allows us to solve for the mode frequency near U)o by 

keeping the first nonvanishing term in the series; hence 

(23) 

Since n is even, this implies that instabilities must exist for either 11. < 11. 0 or 11. > 11. 0, 

depending on the signs of the E patial derivatives. 

Thus, as equilibrium parameters are varied, equilibria with only positive energy 

modes can only acquire negative energy modes (which are by defmition stable) when the 

mode frequency passes through zero. Furthermore, the S2F and dielectric definitions of 

energy agree on the value of 11. for which this occurs. 

3. A MODEL OF FLR STABll.JZATION 

We consider a model that has a general form that occurs in models of finite 

Larmor radius stabilization. This model is canonical in nature and displays the form of 

negative energy modes discussed in Sec. 2 for finite degree-of-freedom systems. The 
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Lagrangian for a particle in a uniform magnetic field B in the z-direction, subject to a 

potential which to leading order is harmonic and inverted, is 

L = Q}(x2 
2 

'2 e8, k 
+ y) +-(yx - xy) + -2(x2 + y2) - V3 • 

2c 
(24) 

where k > 0 and V 3 is an anharmonic contribution to the potential that is a cubic in x and 

y. The inverted harmonic potential could arise because of MHD equilibrium16 or one 

could be interested in the motion of particles in a uniformly charged cylindrical column. 

Upon Legendre transforming (21) and writing the resulting Hamiltonian in 

terms of the following canonical variables: 

q, = X /.[m q2 = Y /.[m 
p, = m3/ 2(x - WLY) P2 = m3/ 2(y + W~ X) (25) 

yields 

1 
H = 2 (p,2 + P22) + WL(q2P, -q,P2) 

1 
+ 2" (WL2 - (02)(q,2 + q22) + V3 • (26) 

. where cuL is the Larmor frequency, eB/2mc, and CUo is the natural frequency of the 

harmonic potential, y'k/m. 

Consider now the spectrum of the equilibrium point q, = q2 = p, = P2 = O. 

Neglecting V3 and supposing that the dynamical variables vary as exp(lcut), we obtain a 

---·-fourth-order characteristic polynomial that has the roots 

(27) 

where 11 = CUL2/cuo2. Equation (24) displays the symmetries of the spectrum of a 

Hamiltonian system; i.e. pure real and pure imaginary frequencies appear in pairs, while 

in general frequencies occur in quartets of the form ±a ±i b. 

Let us trace the frequencies in the complex cu-plane as we increase the magnetic 
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field away from zero. At Tt = 0 we have two doubly degenerate pure imaginary roots, 

w = ± iwo. It is not surprising that there is instability in this case since the particle is free 

to falloff the hill. Upon increasing Tt the degenerate eigenvalues split and move 

respectively clockwise and counterclockwise on a circle of radius Wo toward the wr 

axis. When Tt = 1, w = ± Wo and the eigenvalues again become doubly degenerate and 

experience a Krein crash (See Refs. [4J and [5]), with one pair of real eigenvalues 

approaching the origin and one pair receeding.---A:fterthe-Krein-crashLhe-eigenvalues:---­

have magnitude 

(28) 

Observe that 0 < w, ~wL and W2 ~wL' Subsequently we will see that w" the smaller 

frequency, is a negative energy mode. It has negative signature while W2 has positive 

signature, as required by Krein's theorem. 

Consider now the canonical transformation generated by the following mixed 

variable generating function: 

where }l = [4(WL 
2 - (0 2 )]' / 4 . In terms of the new canonical variables P" P2, Q, and Q2, 

the Hamiltonian becomes 

where V3 is now a cubic function of the new coordinates and momenta. We see from 

Eq. (27) that this Hamiltonian has the standard form for a negative energy mode. 

Let us now see what happens to the spectrum when we add negative definite 

dissipation to this system; i.e. dissipation that removes energy. This will happen if we 

dissipate the negative energy mode. Since V3 does not effect the spectrum we can 

consider the negative energy oscillator independently. With the inclusion of dissipation 

this oscillator is governed by 
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Q,=-6.),p, 

P, = 6.),0, + 2vP,. (31) 

To see that the tenn involving v corresponds to dissipation note that, for v> 0, 

dH/ dt = - 2Ul, V p,2 ~ O. The eigenfrequency corresponding to this oscillator becomes 

6.) = -iv ± ~~. (32) 

which corresponds to exponential growth for v> O. Thus dissipation destabilizes the 

negative energy modes. 

Now consider the other way that negative energy modes lead to instability; i.e. 

nonlinear destabilization. In the case where there is a resonance this phenomenon is 

tractable. Let us suppose an order three resonance condition: 2 Ul, = Ul2' This occurs 

when 3UlO = 2y12UlL' The important tenns of V3 are those that drive the resonance. 

These can be obtained by the standard Hamiltonian perturbation method of averaging. 

This procedure yields 

1 
H = 2" 6.), (p,2 + 0,2) - 6.), (P22 + 022) 

+ ~ [02(0,2_p,2) - 20,P,P2] • 2 _ (33) 

where eX is a constant. We have reversed the sign of time in order to show that the 

Hamiltonian of Eq. (33) is that due to Cherry14, who observed that a two-parameter 

solution set is given by 

0, = fZ t )sin( 6.), h ?f) 
. ___ ~_~L.-:-E. _. __ .,i ___ ~_ 

I 

P, -v0f ) = ( t )COS( 6.), t + ?f 
0{ 6.), - E 

O2 = 0{ (~, t _ E )sin( 26.), t + ?f) 

il P2 (
1 

t f OS ( 26.), t + ?f) = 
0{ 6.), - E (34) 
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where E and 7f are determined by the initial conditions. The interesting thing about this 

solution is that IDlY neighborhood of the origin contains initial conditions of solutions 

that diverge in finite time. Thus this system is spectrally stable, but in reality unstable. 

The nonlinearity diverts energy from the negative energy mode to the positive energy 

mode. 

In the case where there is no resonance and the system possesses a general cubic 

term with explicit time dependence the system is most likely unstable by the mechanism 

of Arnold diffusion. Preliminary numerical caiciiliitionsshow that the system -A.:rTtold'---­

diffuses until a separatrix is reached, at which point the growth is rapid. 

4. VLASOV EQUILIBRIA 

In this section we discuss the free energy for the Vlasov equation. We begin by 

reviewing in some detail the noncanonical Hamiltonian formalism for the 

one-dimensional Vlasov Poisson system30 and its associated variational principle for 

equilibria. From this g2F is obtained, but within this formalism only monotonic and 

isotropic equilibria are obtained as extremals of the variational principle, and only 

sufficient conditions for the stability of this limited class of equilibria are obtained. In 

recent work expressions for ·82F that generalize to arbitrary equilibria, have been 

obtained. The result for the Vlasov-Poisson equation is stated here; the reader is referred 

to the references for its derivation, along with the general Maxwell-Vlasov result. 

The Vlasov-Poisson equation is 

or(Z,t) 
at 

af e ~ (X;f) or 
= - v dx + IT, dx dv (35) 

where, as usual, f(z,tris the phase space density at the phase space point Z = (x,v) for a 

charged species of particles with charge e and mass m. Now we consider only a single 

. species, but the results are readily generalizable. The electrostatic potential tP is to be 

viewed as a functional of f determined~via Poisson's equation tPxx= -eJfdz; thus 

tP(x;f) = eJ V(z,z) fez) dz, where V(x,x) is the single particle potential (assumed spatially 

invariant). The Hamiltonian for this system is the energy functional 
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H [f] = f T(z) Hz) dz + ~2 f f V(z.z) Hz) Hz) dz dz. (36) 

where T(z) = mv2/2 is the particle kinetic energy. This system possesses the following 

non canonical Poisson bracket: 

1 f [&F &G ] {F.G} = ~ Hz) Sf' Sf dz. (37) 

"where the inner bracket [,] is defmed by [k.t1]:k xhv-kvhx. Note that SH/Sf = T +etj)=E. 

where E is the total particle energy. Evidently, 

of at = {f.H} = - [f,E] • (38) 

where - [f, E] is equivalent to the right hand side of Eq. (35). 

As discussed in Sec. 1.2 stationary points of the free energy F = H + C are 

equilibria. In the case of the Vlasov-Poisson equation, H is given by Eq. (36) and C is 

the well-known Liouville constraint, which is given by the following: 

em = f c(o dz , (39) 

where c( f) is and arbitrary function. Upon varying F we obtain 

&F[fj&f] = f (E + oc/or) &f dz 

= f (mv2/2 + e<J) + oc/or)&f dz (40) 

Thus equilibria (f e) are given by 

(41) 

There are two things to notice about these equilibria that are obtained as extremals of F: 

fIrstly, in order to solve for fetE). the quantity oc/df must be monotonic and therefore 

its 
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its inverse must also be monotonic. This gives 

(42) 

where fe(E) is a monotonic function of E, and we see that there is a one-to-one 

correspondence between an equilibrium and a choice for the function c. Secondly, since 

fe is afunction of E, only velocity symmetric distributions [f e(v): f e(-v)] are obtained. 

Evidently, extremals of F only make up a subclass of equilibria-of-the Vlasov=Poisson---­

equation, since this system is known to possess nonmonotonic and velocity asymmetric 

(for untrapped particles) equilibria. 

For the above restricted class of equilibria we ·can obtain a criterion for 

stability31-34 by taking the second variation of F; viz, 

82F[f] = ~ ( e2 f f V(z,z) 8Hz) 8Hz) dz dz 

+ f o2c/of2 (8f)2 dZ). 

(43) 

Observe that the first term ofEq. (43) is positive definite (it corresponds to the second 

variation of the electrostatic energy which goes as the square of the electric field), while 

the second term will be positive definite provided (j2c/ or2 > O. For stability this must be 

true over the entire domain of integration when f is set equal to fe ' since we can make 

S2F negative by choosing Sf such that the frrst term ofEq. (43) vanishes and such that Sf 

is localized where d2C/ or2 < O. This statement translates into a statement about fe: 

upon differentiating Eq. (41) with respect to E we obtain 

(44) 

Therefore we have stability if fe is.lillY. monotonic decreasing function of the energy. 

Note that if we attempted to apply the formula of Eq. (43) to nonmonotonic 

equilibria then S2F diverges unless Sf vanishes at places where df/dE = O. If we 

restrict Sf to the Casimir surfaces then this problem is avoided. In the notation of Sec. 2 
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the 8zT is given by 

(45) 

where g is an arbitrary function. One can show that Sf as given by Eq. (45) preserves 

the Casimir constraint to first order. Inserting Eq. (45) into Eq. (43), upon making use 

ofEq. (44), yields 

82F[f] = ~ ( e2 J J v(z,z) 8f(z) 8f(z) d3z d3z 

+ J [g,fe][E,g] d3Z) . (46) 

Observe that the monotonicity condition for stability is replaced by positivity of the 

second integrand, for all g. When this integrand is not positive definite, and cannot be 

made so by a frame change, then there exist negative energy modes when there is linear 

stability. The result of Eq. (46) was derived, within the Lagrangian variable context, in 

Refs. [9]. It is applicable to arbitrary Vlasov-Poisson equilibria. The use of Lagrangian 

variables formally circumvents the limitation associated with the Eulerian description. 

Also in Refs. [9] the free energy expression for arbitrary Maxwell-Vlasov equilibria is 

given. 
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