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THE FREE ENERGY PRINCIPLE, NEGATIVE

ENERGY MODES, AND STABILITY

P.J. Morrison and M. Kotschenreuther

Department of Physics and Institute for Fusion Studies
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I. INTRODUCTION
1.1. Overview
This paper is concerned with instability of equilibria of Hamiltonian, fluid and

plasma dynamical systems. Usually the dynamical equilibrium of interest is not the state
of thermodynamic equilibrium, and does not correspond to a free energy minimum. The

relaxation of this type of equilibrium is conventionally considered to be initiated by linear

instability. However, there are many cases where linear instability is not present, but the

equilibrium is nonlinearly unstable to arbitrarily small perturbations. This paper is about

general free energy expressions for determining the presence of linear or nonlinear
instabilities. These expressions are simple and practical; and can be obtained for all
equilibria of all ideal fluid and plasma models. By free energy, we mean the energy
change upon perturbations of the equilibrium that respect dynamical phase space
constraints. This quantity is measured by a self-adjoint quadratic form, called §2F. The
free energy can result in instability when 8F is indefinite; i.e. there exist accessible
perturbations that lower the free energy of the system.

A primary purpose of this paper is to tie together three manifestations of what
we will refer to as negative energy modes. The first is the conventional plasma physics
notion of negative energy mode that is based on the definition of the energy in a
homogeneous dielectric medium!-3, A negative energy mode is a normal mode of the
medium (plasma) that possesses negative dielectric energy. The second manifestation
occurs in finite degree-of-freedom Hamiltonian normal form theory*. The quadratic
part of a Hamiltonian in the vicinity of an equilibrium point, which possesses only
distinct oscillatory eigenvalues, has an invariant signature. Thus in cases where the
quadratice form is indefinite, it is natural to refer to the modes corresponding to the
negative signature as negative energy modes. The third, and most general, definition of
a negative energy modeS-? relies on the free energy functional that we have termed 82F.
An equilibrium has a negative energy mode if it is linearly stable and has indefinite §2F,
and further we require this to be true in all frames of reference. This later proviso is
required since energy is nota covariant quantity.

The definition of negative energy modes based on §2F is a generalization of the
dielectric definition in that it is applicable to arbitrary equilibria. It does not require
Fourier transformation in space or time, nor does it require the existence of a dielectric’
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function. The §2F expressions do not contain unknown frequency dependence and in

general are easier to use. The 82F definition obviously generalizes the normal form
definition since the systems of interest are generally partial differential equations. We
point out, however, that it includes the previous two. All three definitions are equivalent
for systems with a complete discrete spectrum and a notion of dielectric function, such as
the fluid description of the beam-plasma instability. _

A second primary purpose of this paper is to describe a conjecture that we refer
to as the free energy prinéiple, a principlc that yields criteria which are sufficient and, in

a sense, necessary for stability. When §2F is definite an equilibrium is stable. When §2F
is indefinite and we are in a reference frame where the equilibrium has minimum energy,
there are two possibilities: (1) the equilibrium possesses linear instability or (2) there is
linear stability with negative energy modes. Possibility (2) is a restatement of a
definition, but in this case there are two avenues for instability: (a) the equilibrium can be
unstable to an arbitrarily small perturbation because of nonlinearity or (b) the equilibrium
can be structurally unstable to the inclusion of dissipation in the dynamical model. There
are many examples that illustrate (a), in particular, a simple example due to Cherryl?
(which will surface in Sec. 3) and important calculations of nonlinear electrostatic
instabilities in homogeneous plasma11'15. Dlustrations of (b) include the well-known
Thompson-Tait theorem!6, and we point out an early plasma physics examplel”. It is

conjectured that (a) and (b) are generic; i.e. although there exist cases where 82F is
indefinite and the system is stable, and there exist special types of dissipation that do not
result in instability, these are conjectured to be exceptional. If we accept the conjecture

and ignore these possibilities because of their rarity, we obtain a sense in which §2F
provides a "necessary” and sufficient condition for stability. This is what is meant by
the free energy principle.

The fluid and plasma literature contains a large numger of sufficient conditions
for the stability of ideal equilibria that depend upon the positive definiteness of some
quadratic form. These criteria are often obtained by ad hoc means and sometimes are
devoid of physical interpretation. Generally these conditions, unlike the magné-
tohydrodynamic (MHD) energy principle, are believed to yield no information when
indefinite. In fact a great deal of effort has been spent in the unsuccessful attempt to
obtain necessary and sufficient conditions for the stability of general equilibria. In all
cases known to the authors, definiteness of these forms amounts to definiteness of the

free energy. Thus the notion of §%F greatly clarifies the situation in that there is a
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framework for interpreting and constructing these criteria. Also it puts to rest the
question of necessary and sufficient conditions. The best to be hoped for in general is
the "necessary" condition described above, because in general, Hamiltonian systems do

not possess 8W type criteria.

In the remainder of the Introduction (Sec. 1.2) we discuss two descriptions of
equations that describe ideal plasma, the Lagrangian variable description, which
possesses an action principle!8-20, and the Eulerian variable description, which posseses
the noncanonical Hamiltonian structure?1-29. Both the Lagrangian® and
Hamiltonian>-7-29 formalisms have been used to obtain free energy expressions. We will
dwell somewhat on the later, but quote results obtained from the former. Section 3
contains-an example that typifies finite Larmour radius stabilization. Here we see in a
simple system of ordinary differential equations, how a system can be linearly stable, yet
unstable, and how the inclusion of dissipation can result in linear instability by shifting a
real frequency into the complex plane. In Sec. 4 the Vlasov-Poisson system is treated.
A general expression for the free energy of arbitrary equilibria is stated.

1.2 Review

In the Lagrangian variable description of continuous media, for example fluids;

the complete state of a system is determined by a continuum of "particle” positions,

X(xg.t), where Xg is the particle position at t =0. The Lagrangian variable description is
model independent in the sense that it arises in kinetic?0 as well as fluid systems!8-19

with a generality of force laws. In the case of fluid systems, X corresponds to the
position of a "fluid element”. This case differs from the usual description of a fluid in
terms of Eulerian variables, where the density and velocity fields are expressed as
functions of space and time. In contrast to the Eulerian variable description, when one
describes a fluid as a collection of particles, as in the Lagrangian variable description, it
is not surprising that the equations of motion possess the form of Newton's second law,
and therefore are derivable from Hamilton's principle of mechanics.

As an example consider the nonlinear equations of ideal magnetohydrodynamics
(MHD), which have the following form:

9%x _ _ 8WIX] , (M
ot? §X
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where the right hand side is the functional or variational derivative of a potential energy

functional, Wx]. The MHD energy principle exists because of the Hamiltonian form of
Eq. (1), for if we linearize by lettihg X=X(Xg)+ E(Xg,t), where X, satisfies

§WIxol/8% = 0, then £ satisfies

2E . ot

. : )
Jt2

where the linear operator O arises from the second variation of W[x],

1 . 82WIx.J. _lre.o-
82w = - J & és—a?e,[xe] £ & = [E-0& dx. 3)

From Eq. (3) it is evident that O is self-adjoint since it is the second variation of W. (The
quantity 82W is usually misleadingly referred to as §W.) This self-adjointness, with its
root traced back to the Hamiltonian form of the original nonlinear system, is the crucial
element that gives rise to the necessary and sufficient W energy criteria for static MHD
equilibria.

Consider now the Eulerian variable description. One thing that is immediately
evident is that there is a difference between the classes of Eulerian and Lagrangian
equilibria. For example, in ideal MHD the dynamical variables are the velocity field
v(x,t), the density p(x,t), the magnetic field B(x,t), and the entropy per unit mass
s(x,t). If we define equilibria by the vanishing of the first time derivative of the
dynamical variables, then Eulerian equilibria correspond to some (not all) functions of

space. In particular note that the equilibrium velocity field, v(x), need not be constant

nor vanish. This should be contrasted to Lagrangian equilibria where 8£,/3t = 0, which
implies that there is no equilibrium flow. Thus we see that Lagrangian equﬂibria are
static equilibria, while the class of Eulerian e_:qui]ibria includes stationary equilibria as
well.

Another difference between the Eulerian and Lagrangian variable descriptions is
the apparent difference in the number of dynamical variables needed to specify the state
of the system. The map from Lagrangian to Eulerian variables is not a one-to-one
transformation, and evidently it is not a canonical transformation. In spite of the
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"pathology" of this map, the Hamiltonian structure survives, albeit in what we have

called the noncanonical Hamiltonian form.
For simplicity we discuss a finite degree-of-freedom Hamiltonian system, which

for ease in generalizing to the noncanonical description we write in. terms of the 2N

"dynamical variables Zl the first N of which are the canonical coordinates while the

second N are the conjugate momenta. Hamilton's canonical equations take the form

dzl _ [z jpoJgiioH .o B
dt " Ve 3z

where the Poisson bracket is defined by

[f.gl = —g—f—i JC}] %g-i (5)
Zz Z
with
. 0 1
(‘Jc”) = |: I ON} (6)
-1y ‘

which is a 2N x 2N matrix and Iy is the Nx N unit matrix. Here repeated indicies are to

be summed to 2N. The quantity (Jci_j) is a second order contravariant tensor that is

called the cosymplectic form.
Canonical transformations, by definition, preserve the form of the Poisson

bracket, or equivalently the form of the tensor (Jcij). This is not the case for the
transformation between Lagrangian and Eulerian variables, since this transformation is
noncanonical and moreover degenerate. For finite degree-of-freedom systems, the

noncanonical Hamiltonian form is the same as that of Egs. (4)-(6), except (JC”) is

replaced by a tensor (J11), which may be odd dimensional, have vanishing determinant
and depend upon the Z. However, in spite of these changes in the cosymplectic form,
the algebraic properties of bilinearity, antisymmetry and the Jacobi identity of the
Poisson bracket, are preserved. These properties are the essence of the Hamiltonian

description.



For MHD the Eulerian remnant of the form given by Eq. (1) is

dyt . JlsH o

ot syl ;
where the ¥ (i =1,...8) correspond to the field variables v, B, p and s; the Hamiltonian ’
H= [{pv2/2+B2/2 +pU(p,s)1d3x , where Uis the internal energy per unit mass; and the

cosymplectic operator, (JH), was given in Ref. [25].
A feature of noncanical Poisson brackets, not present in ordinarly Poisson
brackets, is the existence of special constants of motion called Casimir invariants. A

_phase space function C is a Casimir invariant if it commutes with the Hamiltonian as

well as with any function F of the dynamical variables Z' (i=1,..M) describing the

system, i.e.

[C,F(2)]=0 . (8)
A consequence of this definition of the Casimirs, using Eq. (5), is

9C JijoF . g (9)
3zt 9zl '

but F is arbitrary and therefore

Jii %Qj S0, Qs l..M. | (10)
. ,

Thus, the phase space gradient of a Casimir (8C/ 3zJ) is a null eigenvector of (Ji). In

fact, it can be shown?! that the null space of (Jil) is spanned by null eigenfunctions
that are gradients. Clearly, nontrivial Casimirs (i.e. not constants) exist only if

det(Ji) = 0 ' (11)

and the number of independent Casimirs is equal to the corank of (J1)). In the case that

(J11) is canonical, it has the structure given in Eq. (5) and the determinant is unity.
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Therefore in the canonical Hamiltonian formalism there are no nontrivial Casimirs.

When (J1) has null eigenvectors,fhe phase space can be described by hyperplanes, or
symplectic leaves, which are labeled by the Casimirs. A trajectory must remain in the
leaf of phase space as determined by the specification of the initial conditions. This
follows from the fact that the generalized Poisson bracket cannot generate flow, i.e.
trajectories in phase space in the direction of these null eigenvectors.

Hamiltonian systems possess a built-in sufficient condition for Liapunov
stability. This kind of stability is a stronger than conventional linear or spectral
stability. The most common example of nonlinear stability occurs inthe: case-where the-
Hamiltonian has the standard form: H=p2/2+V(q). Here it is well-known that
positivity of the curvature of V is sufficient (and under some mild conditions also
neccssarys) for stability of equilibria given by pl -0, 3V/3q'=0. This is the finite
degree-of--freedom analogue of the MHD energy principle.

The above curvature condition is a special case of a more general condition for
Hamiltonian systems. The topology of energy surfaces in the vicinity of an -
equilibrium point is determined by the curvature of the entire Hamiltonian:
32H/3z1dz1. If this quantity is either positive or negative definite thén the energy
surfaces near the equilibrium point are nested, closed and bounded surfaces. Since
trajectories are confined to the energy surface, those with initial conditions sufficiently
close to the equilibrium point will remain in an arbitrarily small neighborhood of the
equilibrium point. Evidently, for standard Hamiltonians, positive definiteness of H is
insured by that of V. ,

For noncanonical Hamiltonian systems there is an analogous sufficient
condition. To begin with, unlike conventional Hamiltonian systems, extremals of the
Hamiltonian are not the only possible equilibria. In fact these equilibria, which
correspond to the lowest possible energy states, are generally quite trivial. For
example, varying the MHD energy with respect to v, B, etc. yields an equilibrium with
zero flow, magnetic field, pressure and temperature. If one extremizes the
Hamiltonian subject to the constancy of certain of the Casimirs, then interesting
equilibria that are constrained away from the Jowest energy state arise. That these are

equilibria is evident from the Tollowing:

dz' [zl Wl =z, H . Cl= gl . ' (12)
dt oz}
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Thus vanishing of 3F/3z! implies that dz!/dt = 0. If we define

§2F =1
2 9z'dzl

then definiteness of the quadratic form §2F implies that surfaces of constant F near the '
equilibrium point are topologically spheres and thus we have stability. In the next
section we physically interpret this quantity in the noncanonical context.

The free energy functional 82F can also be obtained in the Lagrangian context®.
In fact, since all equilibria are not extremal points of §F=0 in the noncanonical
formalism, the most general expressions have been obtained by beginning with
Lagrangian action principles. Free energy expressions obtained in either way are
equivalent for equivalent equilibria.

2. THE FREE ENERGY - §%

Now consider the physical interpretation of 82F. Here we show that 8%F is the
energy change resulting from perturbations of the equilibrium that obey the dynamical

constraints. Further, we show that the use of 8% considerably simplifies the

computation of the energy change. Also we discuss the connection between 82F and the
dielectric definition of negative energy modes.
It is useful to consider the energy needed to create a small perturbation with the

constraint that the motion remain in a symplectic leaf. For small §z we have

AH = H(zg+ 82) - H(zy) =
OH syi, 1 %M 75z, ... (14)
B 9z! 2 dzlazl
AC = C(zg+ 82) - C(z) =
3C 571, 1 _9%C  sziszi, ..., Cas)
az! 2 dzlozl

where zg is an equilibrium given by oF/ dz'=0. For 8z such that AC=0, we can add

saiacito Eq. (14) in order to obtain the energy change at constant Casimir invariant,

fc
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AH[c = L82(H .z AICh) = 8%F . (16)

This AH | ¢ 1s second order in 82, as expected for a Hamiltonian near an

equilibrium point. Since AHJ ¢ 1s also a constant of motion it can serve as a Liapunov

functional. Moreover, AH [ ¢ has physical significance: it is the energy increment
contained in a perturbation which is accessible to the dynamics given the Casimir
constraints. Note that 82F depends on the equilibrium through the choice of Al so the
same 5z contains different accessible energies for each equilibrium. This is intuitively

satisifying since one would expect the energetic favorability of 6z to depend upon the
equilibrium. For example, in MHD the energetic favorability and stability of a kink
mode perturbation depends on the equilibrium current.

The expression 82 is a most convenient way to to compute AH IC- The reason
for this is that accessible perturbations, §z, must satisfy AC=0. To compute AH to
second order directly requires AC = 0 to second order. It is relatively easy (often trivial)

to find trial functions 82y that satisfy AC=0 to first order in 5z. In general a variation 6§z
satisifying AC =0 to higher order would require a calculation to obtain 8z = 8z «
0(8z¢2). This is usually difficult to satisfy for all Casimir invariants simultaneously.

However, AH I ¢ can be computed to second order accuracy by substituting §2; directly

into §2F. We do this for the Vlasvov equation in Sec. 4.

It is easy to show that 8°F is the Hamiltonian for the linearized equations of
motion?-%, but more importantly one can show that the work performed by an external

agent, which observes the constraints while creating a linear perturbation, is 82F. This is
the usual definition of the energy content of a wave in dielectric theory. Suppose an

external source is applied to the system which adds a transient term Hg,; to the

Hamiltonian for times between 0 and tg. The Ji s unchanged by this; thus the Casimir

invariants (which depend only on JUIy remain constant. For linear perturbations the new
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Hamiltonian is
H' = 82F + Heyt -
il A convenient form for Hgyy is zl Sj(t), the explicit time dependence appearing only in
|

the source functions S i Standard Hamiltonian mechanics yields

| | dH'_ OH _ i 8S; (7

Integrating Eq. (17) in time from t =0 to t=tg yields, upon integration by parts on the
f; right, and the assumption that $ =0 for t<0 and t>to, _ !
| ty _
| 82F - - [ (dzl/dt)sldt. (18)

i 0

] The right side is the usual expression for the work done on a system, i.e. the integrated ‘

g P y 2T
w input power, by an external agent. i
‘fM As an example, consider the one-dimensional Vlasov-Poisson equation. The

i o . . . .
i external agent in this case is an externally imposed potential Qg+ and the external portion

‘\H of the Hamiliton is

ig\H Hogt = J T Payrdxdv.

! Here f(x,v,t) is the phase space density. In this case we have for the power

| | (dZI/dt) ST = [(O7/3t) Payr dX AV = J (3p/3t) PayrdX
= [JV Peyp X (19)

‘]ﬁ The last equality of Eq. (19) follows by making use of the continuity equation,
| | dp/dt+V-J =0, and integrating by parts. ‘This expression is the standard one for the
! power input from an external field. Thus 82F is indeed the energy needed to create a

perturbation §f.
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In dielectric theory the energy content!-3 in a linear wave is defined by the work
performed by an external agent in producing the wave. The energy content is found to

be [d(we)/dw] l Ex Iz, where  is the wave frequency, k is the mode number, e(k,w)

is the dielectric functibn, and = is the electric field amplitude for mode k. This brings us
to the important topic of positive and negative energy waves; in dielectric theory these

have d(we)/dw >0 and 3(we)/dw <0 respectively. As noted in the Introduction,
negative energy waves have the property that they are spectrally stable, but their presence-

decreases the energy of the medium. If both types of waves exist in the medium then §2F
is positive for some perturbations, §z, and negative for others, and is thus indefinite.

Now suppose that §2F is indefinite. What conclusions can be drawn about the
spectral properties of the system? For finite degree-of-freedom systems there are two
possibilities: either there is spectral instability or the system has a mixture of positive and
negative energy waves. '

For the case of canonical Hamiltonian systems it is straight forward to show this

assertion. The theory of normal forms by.now is well understoodS. In this case 8§%F is .
the linearized Hamiltonian, i.e. the second variation of the full Hamiltonian. It is a

quadratic form in 8q; and 8p;. We will consider the case where H has the following
form:
H=3 o(8p;)2 + Bi(8q;)2 . : (20)
i

If the H of Eq. (20) is indefinite, then for a least one degree-of-freedom one of the

following holds: (i) o has a different sign than 8;, which corresponds to instability, or

(ii) the pair of o4 and B; has a different sign from other pairs. The latter case

corresponds to a mixture of positive and negative energy waves. It is evident from the
discussion of Sec. 1.2 that the same results apply for finite noncanonical Hamiltonian
systems. _

It is clear from the above that there is no such thing as a spectrally unstable

negative energy mode. One might think this would correspond to a negative o and a

positive ,Bi, but since g~ -p; and Pi G is a canonical transformation we see that there




is no distinction between this case and that of instability.

However, we have conjectured that a system with both positive and negative
energy waves is nonlinearly unstable in the general case. This can arise because there is
a low order resonance in the system, which results in explosive instability, i.e.
divergence in finite time (c.f. Sec. 3), as occurs in the well-known three-wave
interaction. For two degree-of-freedom systems where no low order resonance exists,
the KAM theorem indicates stability. For systems of more than two degrees-
of-freedom, instability can still be present by the slow mechanism known as Arnold

diffusion. For infinite degree-of-freedom systems with continuous spectra, there may be

additional avenues for nonlinear instability.
There are many continuum systems for which the concept of a dielectric function
is not well defined, or if defined in principle, is very difficult to calculate in practice.

However, §2F can be easily computed for such systems. Thus §2F provides a practical
generalized definition of the concept of a negative energy wave.- It can easily be
generalized to the concept of non-wave-like phenomena.

» Before closing this section, let us consider a general bifurcation property
concerning negative energy modes. Suppose we have a sequence of noncanonical

Hamiltonian equilibria parameterized by a continuous variable 1. Assume that §2F is

positive definite for 1y <7 g, but indefinite for n > 11, because a positive energy mode
becomes a negative energy mode (the system being spectrally stable on both sides of the
 threshold). We now show that the frequency of such a mode must go through zero at

T = Mg, at least for finite dimensional systems.

The tensor 32F/3z182) is symmetric, and for m <m positive definiteness
implies it has all positive eigenvalues. At least one eigenvalue becomes negative for

T >T, and thus traverses zero at M =T, The associated eigenvector, SZgi, is also a
_zero frequency .eigenvector for the dynamical system; i.e. the existence of a zero

eigenvalue of 32F/dz'8z] implies the existence of a zero frequency mode. This follows

from linearization of Eq. (12) about an equilibrium z,,

9%
dzidzk

iﬁ)SZOi = JIJ SZOK =0 ' (21)

where Jii and 32F/32182K are evaluated at Z.

L
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Note that this result can also be derived from the definition of wave energy
density, which as noted above has its sign determined by the factor 8(we)/dw. Since
the wave frequéncy satisifies €= 0 this factor becomes ‘coas/ dw. Thus as the wave
energy goes from positive to negative at T = 1, we have two possibilities: either ® goes
through zero or 8e/dw does. The latter possibility can be excluded by showing it leads

to a contradiction. Assume € =0 and 9e/3w =0 at w=wy =z 0. Taylor expanding €
about this point yields :

68
+ (|| - l )
0 E

had n n
e:Z {o - @) Je + e (22)

n! awn
n=2

Since d&e/dw is assumed to change sign at 1 =my, one can show that the first

‘nonvanishing term on the Taylor series must have even n. One can also show that if

de/am =0, then the cross terms neglected in Eq. (22) are asymptotically negligible
compared with those kept when @ = wg and 1 = .

The condition €=0 allows us to solve for the mode frequency near w, by
keeping the first nonvanishing term in the series; hence

, ) (9e/91)
(0 - we)" = NN - M) e/own (23)

Since nis even, this implies that instabilities must exist for either n <4 or n >Ny,
depending on the signs of the € patial derivatives.

Thus, as equilibrium parameters are varied, equilibria with only positive energy
modes can only acquire negative energy modes (which are by definition stable) when the

mode frequency passes through zero. Furthermore, the §2F and dielectric definitions of

energy agree on the value of n for which this occurs.
3. AMODEL OF FLR STABILIZATION

We consider a model that has a general form that occurs in models of finite
Larmor radius stabilization. This model is canonical in nature and displays the form of

negative energy modes discussed in Sec. 2 for finite degree-of-freedom systems. The
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Lagrangian for a particle in a uniform magnetic field B in the z-direction, subject to a £
potential which to leading order is harmonic and inverted, is ' }
: : eB, . ' K ' <
L= rg(x2 + y?) +2—c(gx - XY) + §(x2 +y2) - V3, (29 z
where k >0 and V;is an anharmonic contribution to the potential that is a cubic in x and é
y. The inverted harmonic potential could arise because of MHD equilibrium16 or one )
could be interested in the motion of particles in a uniformly charged cylindrical column. :
Upon Legendre transforming (21) and writing the resulting Hamiltonian in i
terms of the following canonical variables:
q1.:x/\/m q2:g/\/m
Py =m3/2(x - w y) pp =m3/2(§ + W X)  (25)
yields ‘
1 1
Hz 5 (pr?+ P22) + @ (qaPq - q1P2) 5
1 : z
+ E(sz - C002)(Q12 + q22) + Vz, (26) |

" where @ is the Larmor frequency, eB/2mc, and g is the natural frequency of the

harmonic potential, /k/m. :
Consider now the spectrum of the equilibrium point q1=qp=py1=p2=0. ]

Neglecting V3 and supposing that the dynamical variables vary as exp(iwt), we obtain a
fourth-order characteristic polynomial that has the roots

o = +wol/n-1T /M1, ’ 27)

where 1 = @ 2/wg?. Equation (24) displays the symmetries of the spectrum of a
Hamiltonian system; ie. 'pure real and pure imaginary frequencies appear in pairs, while
in general frequencies occur in quartets of the form +a+ib.

Let us trace the frequencies in the complex w-plane as we increase the magnetic
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field away from zero. At =0 we have two doubly degenerate pure imaginary roots,
®=2%1wyg. Itisnot surprising that there is instability in this case since the particle is free
to fall off the hill. Upon increasing 1 the degenerate eigenvalues split and move
respectively clockwise and counterclockwise on a circle of radius @, toward the w,
axis. When T = 1, @ = +@q and the eigenvalues again become doubly degenerate and

experience a Krein crash (See Refs. [4] and [5]), with one pair of real eigenvalues
approaching the origin and one pair receeding. ~After the Krein crash theeigenvalues

have magnitude
W1 = -+ W “- (.L)ET
Wy = W + \ W -—(—1_)-0—2_ (28)

Observe that 0 <w; < and w, >, . Subsequently we will see that w4, the smaller

frequency, is a negative energy mode. It has negative signature while w, has positive
signature, as required by Krein's-theorem.
Consider now the canonical transformation generated by the following mixed

. variable generating function:

FZ(q1vq2vP1-P2) = }1(CI1 P1 +Q2P2) + P1Py + }12q1 q2/2, (29)

~where y=[4(w2- w21 /4. In terms of the new canonical variables Py, Py, Q, and Q,

the Hamiltonian becomes

1 1
H - —5 W1 (P12+Q12) +—2(1)2(P22+022) + V3, (30)
where V3 is now a cubic function of the new coordinates and momenta. We see from
Eq. (27) that this Hamiltonian has the standard form for a negative energy mode.
Let us now see what happens to the spectrum when we add negative definite

dissipation to this system; i.e. dissipation that removes energy. This will happen if we

dissipate the negative energy mode. Since V3 does not effect the spectrum we can
consider the negative energy oscillator independently. With the inclusion of dissipation
this oscillator is governed by




O1 = —(.01P1
F.’1 = Wq1Qq + 2UP . (31)

To see that the term involving v corresponds to dissipation note that, for v >0,

dH/dt = -2w, v P12<0. The eigenfrequency corresponding to this oscillator becomes
W = -iv & Jwq2-v2, ’ (32)

which corresponds to exponential growth for v >0. Thus dissipation destabilizes the
negative energy modes.
Now consider the other way that negative energy modes lead to instability; i.e.

nonlinear destabilization. In the case where there is a resonance this phenomenon is

tractable. Let us suppose an order three resonance condition: 24 = w,. This occurs
when 3wg=2+/2w . The important terms of V3 are those that drive the resonance.

These can be obtained by the standard Hamiltonian perturbation method of averaging.
This procedure yields

= ;— W1 (P12 + Q12) - (1.)1(P22 + 022)
. i;i [Q,(Q12-P42) - 2Q;P{P,]1 .  (33)

where « is a constant. We have reversed the sign of time in order to show that the
Hamiltonian of Eq. (33) is that due to Cherry!4, who observed that a two-parameter
solution set is given by '

01 = —L Sin((x)1t+ Z)

ot (Wt -€)

n

P4 i—>COS((D1t+ %)

o {wt-€

= W)SI'D(2®1 t+?)

-1
- o(((mt_E)cos(2<o1’t+2>’), | ' 54
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where € and ¥ are determined by the initial conditions. The interesting thing about this
solution is that any neighborhood of the origin contains initial conditions of solutions
that divérge in finite time. Thus this system is spectrally stable, but in reality unstable.
The nonlinearity diverts energy from the negative energy mode to the positive energy
mode.

In the case where there is no resonance and the system possesses a general cubic
term with explicit time dependence the system is most likely unstable by the mechanism

of Arnold diffusion. Preliminary numerical calculations show that the system Arnold
diffuses until a separatrix is reached, at which point the growth is rapid.

4. VLASOV EQUILIBRIA

In this section we discuss the free energy for the Vlasov equation. We begin by
reviewing in some detail the noncanonical Hamiltonian formalism for the
one-dimensional Vlasov Poisson system>0 and its associated variational principle for
equilibria. From this 8%F is obtained, but within this formalism only monotonic and
isotropic equilibria are obtained as extremals of the variational principle, and only
sufficient conditions for the stability of this limited class of equilibria are obtained. In
recent work expressions for ‘§2F that generalize to arbitrary equilibria, have been
obtained. The result for the Vlasov-Poisson equation is stated here; the reader is referred
to the references for its derivation, along with the general Maxwell-Vlasov result.

The Vlasov-Poisson equation is

of(z,t) . of e d9(x:f) of

3t *Vax*maox  ov’ (35)

where, as usual, f(z,t) is the phase space density at the phase space point z=(x,v) for a

charged species of particles with charge e and mass m. Now we consider only a single

" species, but the results are readily generalizable. The electrostatic potential ¢ is to be

viewed as a functional of f determined-via Poisson's equation ¢,,= -effdz; thus

P(x;f) =ef V(2,2) 1(Z) dZ, where V(x,X) is the single particle potential (assumed spatially




HIf] = IT(Z) t(z) dz « ngjv(z,f).f(z)f(f) dZdz. (36)

where T(z) =mv2/2 is the particle kinetic energy. This system possesses the following

noncanonical Poisson bracket:

(F.6} =~ jf(z) [£. 2] e, @

. where the inner bracket []is defined by [k.h]l=kyh,, - Kyhy- Note that SH/5f =T +e@=E,
where E is the total particle energy. Evidently,

%.It.‘ = {f,H} = -[f,E] ) (38)

where -[f,E]is equivalent to the right hand side of Eq. (35).
As discussed in Sec. 1.2 stationary points of the free energy F=H+C are

equilibria. In the case of the Vlasov-Poisson equation, H is given by Eq. (36) and C is
the well-known Liouville constraint, which is given by the following:

CIf] = jc(f) dz , (39)

where c(f) is and arbitrary function. Upon varying F we obtain

SFLf:5f] = I(E . 3¢/of) 8% dz

- f(mv2/2 .69 .+ c/3f)sTdz . (40)

Thus equilibria (f) are given by

E.+dc(f)/af=0. (41)

There are two things to notice about these equilibria that are obtained as extremals of F:

firstly, in order to solve for f,(E), the quantity dc/df must be monotonic and therefore

its
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its inverse must also be monotonic. This gives
fo = To(E) . (42)

where f (E) is a monotonic function of E, and we see that there is a one-to-one
correspondence between an equilibrium and a choice for the function c. Secondly, since

fo is a-function of E , only velocity symmetric distributions [f4(v) = fo(-V)] are obtained.

Evidently, extremals of F only make up a subclass of equilibria-of the Vlasov=Poisson
equation, since this system is known to possess nonmonotonic and velocity asymmetric
(for untrapped particles) equilibria.

For the above restricted class of equilibria we .can obtain a criterion for

stability31-34 by taking the second variation of F; viz,
527r = 5 (o2 [ [ Vz2)s1@)51@) oz oz (43)

+j62c/6f2 (57)2 dz).

Observe that the first term of Eq. (43) is positive definite (it corresponds to the second
variation of the electrostatic energy which goes as the square of the electric field), while

the second term will be positive definite provided 32¢/372> 0. For stability this must be
true over the entire domain of integration when f is set equal to fg , since we can make
82F negative by choosing §f such that the first term of Eq. (43) vanishes and such that §f
is localized where 32c/3f2<0 . This statement translates into a statement about fo:

upon differentiating Eq. (41) with respect to E we obtain
dfo/IE = - [d%c(f)/9f21-1. (44)

Therefore we have stability if f, is any monotonic decreasing function of the energy.
Note that if we attempted to apply the formula of Eq. (43) to nonmonotonic

equilibria then 82F diverges unless §f vanishes at places where df,/0E=0. If we

restrict 8 to the Casimir surfaces then this problem is avoided. In the notation of Sec. 2
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the 8z is given by

8f = [fo.g] = (37,/3E)IE.g] , (45)

where g is an arbitrary function. One can show that 87 as given by Eq. (45) preserves
the Casimir constraint to first order. Inserting Eq. (45) into Eq. (43), upon making use
of Eq. (44), yields ‘

82F[f] = ;— (eZII V(z,2) 81(z) §f(2) d3Z d3z

[ grEgdz). (46)

Observe that the monotonicity condition for stability is replaced by positivity of the
second integrand, for all g. When this integrand is not positive definite, and cannot be
made so by a frame change, then there exist negative energy modes when there is linear
stability. The result of Eq. (46) was derived, within the Lagrangian variable context, in
Refs. [9]. It is applicable to arbitrary Vlasov-Poisson equilibria. The use of Lagrangian
variables formally circumvents the limitation associated with the Eulerian description.
Also in Refs. [9] the free energy expression for arbitrary Maxwell-Vlasov equilibria is
given.
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