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Abstract The behavior of a short laser pulse with periodically peaked 
transverse intensity profile is importa.nt for the study of laser acceler­
ation of particles. For a specific relation between the amplitudes and 
the separation of the peaks, this profile should remain un distorted while 
propagating in plasma. Carrying out numerical particle simulation runs 
in which a deviation from this relation is present, we have observed the 
system to exhibit a kind of bistability. 

INTRODUCTION 

Motivated by the need of laser beam transport with minimal loss in intensity 

over considerable distances, for such new concepts as laser-plasma particle 

accelerators and laser ignited fusion, the asymptotic form of an optical beam 

travelling in a plasma is of great interest. In the case of a short intense laser 

pulse, when the ions can be taken to be immobile and the dominant forces on 

the electrons are the laser ponderomotive force and the electrostatic force, 

Kurki-Suonio, Morrison, and Tajima1 found that the asymptotic solutions 

come in two kinds: one kind has a solitary-type transverse profile, and 

the other has a periodically peaked profile. Also an analytic solution for 

the solitary-type profile was obtained and tested with a recently developed 

particle simulation code2 appropriate for transport of op,tical beams in plas­

mas. No further analysis of the multi-peaked profile was carried out. Here 

we present some preliminary numerical results on the multi-peaked profiles 

using the above mentioned particle simulation code. 

ASYMPTOTIC SOLUTIONS 

Expressing the electromagnetic fields in terms of the potentials, the follow­

ing wave equation has been derived.1 
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where t/J and a are real normalized phase and amplitude functions respec­

tively, ko and Wo are the laser wavenumber and frequency respectively, and 

..\C = c/wp. The quantity Ne is the electron density including the pondero­

motive perturbation, 
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We look for an asymptotic intensity profile, independent of z, for the laser 

beam. Equation (1) is separable under the following ansatz: 

a(r, z) = a(r) , 

t/J(r, z) = J(z) + g(r) 

where we have allowed for phase modulation in z. 

If we further assume a slab approximation (r ..... :z:) we obtain an equa­

tion that was analyzed in detail in Ref. 1. There it was concluded that 

the bound physical solutions come in two kinds: one is a solitary solution, 

and the other is a multi-beamlet type. An exact analytical solution was 

obtained for the solitary solution, and the asymptotic nature of this solu­

tion was confirmed by a numerical particle simulation. Multi-peaked profiles 

were analyzed by exploiting the analogy of a particle in a classical potential. 

The energy-like integral is given by 

1 (da)2 e = 2 g(a) d:z: + V(a) , (2) 

where g(a) = l';a'J is the metric of the system, and V(a) = ~ ~-A1~­
~ Cl a2 is the potential. An approximate form of a multi-peaked profile can 

be obtained by integrating Eq. (2) with respect to the amplitude a in the 

neighborhood of the minimum of the potential V(a): 

l
a2 dci ..\, = . 

al y'e - V(a) 
(3) 

Here al and a2 correspond to the same total energy, e = -~";1 + a;­

~ Cl a;, i = 1, 2. The solitary profile has e = :xt thus fixing al at the ori-
e 

gin. Equation (3) gives an approximate wavelength .,\. between the peaks 

in the profile corresponding to the specific amplitudes al and a2 (see Fig. 1). 
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FIGURE 1: A periodically peaked amplitude profile 

DYNAMICS OF A PERIODICALLY-PEAKED AMPLITUDE PROFILE 

The code used is a time-averaged particle simulation code developed recently 

for modeling transport of optical beams in plasmas.2 It uses periodic bound­

ary conditions, the width of the simulation box is chosen to be 25.6 ~c, and 

there are 100 electrons per grid cell. The number of grid points for the simu­

lations discussed below is 256 and the time step was chosen at dt = 0.1 w;e1 . 

We ran several computed simulation runs with various parameter values 

for the multi-peaked amplitude profile. Since the exact form of the multi­

peaked solution is not known, none of the runs corresponded to the exact 

solution for the asymptotic equation, and the profiles were not expected to 

remain undistorted. The locations of the peaks and troughs of the profile 

were seen to alternate so that for half of the time the peak would be located 

at the point where the trough was originally, and vice versa. Furthermore, 

the,phase shift Q was observed to exhibit similar behavior but with a f­
phase shift. In Fig. 2 this behavior of the field quantities is illustrated for a 
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run with ~. = 5.12 ~c, a1 = 0.02, a2 = 0.05 . 
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FIGURE 2: The flip-flopping of the states observed for field quan­
tities. Zero corresponds to the original location of a peak, and 11' 

corresponds to the switched location 

To gain insight on the observed process - a~d to make sure that what 

was seen was not a numerical artifact - we studied the relevant field equa­

tions at very early times when the process can be taken to be linear. Rewrit­

ing Eq. (1) in terms of 1= a2 and linearizing around an initial state given 

by 1= 10(x), ,p = 0, we get 

8tPI 1 { 1 (810)2 1 (1 1) 8210} 
8z = 2ko 415 ax - '2 10 - 1 + '210 8x2 ' 

(4) 

where we have assumed 11 « 10 < 1, and we have neglected all the terms 

involving It compared to terms containing 10 only on the right-hand side. 
2 

Also, the dispersion relation w6 = J:+lo + c2 k6 was used. According to 

Eq. (4) the phase shift ,p should be driven by the gradients of the initial 

amplitude profile. In the simulation code the initial profile is given as 

ao(x) = Ct - pcos(k. x) , (5) 

where a = ~ (a1 +a2) and P = ~ (a2 -ad. Therefore, at the locations where 

the amplitude peaks (cos(k" x) = -1), the phase shift should start according 

to 

(6) 
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Accordingly, at the trough locations (cos(k. x) = +1), the phase shift should 

be given by 

8t/>1 1 k~ {3 
8z ::::: - 2ko -;;;- . (7) 

We ran a few cases varying the separation parameter k. = ~ for the 

amplitude profile but keeping the amplitude values fixed at al = 0.02 and 

a2 = 0.05. The simulation results together with the theoretical predictions 

are summarized in Fig. 3. 

(a) 

-¥,t ~ 

(UU r 0.10 

(1.06 i (b) 0.00 

1 ! ! 
0.02 0.02 

5.1 6.~ 8.5 )../).. 5.1 6.4 8.5 )../)., 

FIGURE 3: Simulation Results. The observed growth rate of the 
phase shift (dot) together with the theoretical value (cross). (a) At 
the location of a trough, and (b) at the location of a peak of the 
initial amplitude profile. 

Figure 3(a) shows the behavior of the phase shift at the minimum ampli­

tude location, and Fig. 3(b) shows corresponding result for the maximum 

amplitude location. The scaling in the simulation results is observed to fol­

low that of the theory, and even the numerical values are surprisingly close 

considering the crudeness of the model. 

Phenomenologically, what is taking place here seems to be the follow­

ing: The optical beam has initially a flat phase front and a multi-humped 
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amplitude profile as indicated in Fig. 4 . 
• 

amplitude proSle ampUtude prolile 
at t=O at bO 

ph..., front at t=O ph ... front at t)O 

(a) (b) 
FIGURE 4: The interplay of the amplitude and phase. A multi­
humped amplitude profile distorts an originally flat phase front. The 
curved phase front acts back on the amplitude causing periodical 
structure of self-focusing and defocusing regions. 

The spatial gradients of the amplitude profile drive a deformation of the 

phase front in such a way that the phase front curvature will be reminiscent 

of the amplitude profile, i.e., a maximum on the phase front will form where 

the amplitude peaks etc. (see Fig. 4(b». The curvature of the phase front 

will ,:lOW drive the dynamics of the amplitude profile (as indicated by the 

arrows in Fig. 4(b» so that the profile flattens out and eventually new peaks 

are formed at the locations of the former minima. The new amplitude peaks 

act back on the phase, and the cycle continues. The system thus flip-flops 

between two states exhibiting a kind of bistability or breathing. 

As mentioned, these results are very preliminary and simplistic. The 

flip-flop behavior between two states that the amplitude exhibits could be 

of enormous importance to optical switching: the bistability could lead to 

an optical analog of an electronic transistor. Therefore, this phenomenon 

deserves a careful and detailed theoretical analysis. 
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