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Thermodynamic Constraints Applied to Tokamaks 

Using gyrokinetic equations, it is shown that, for collisionless plasmas, the largest 
source of kinetic free energy in tokamaks is expansion energy coming from the 
parallel temperature. Expansion energy is independent of the current, but colli­
sional flows may add current-dependent free-energy sources. Even so, an upper 
bound on drift-wave growth rates derived from free energy is independent of the 
current. 

Key Words: free energy, gyrokinetic equations, bounds on growth rates, fluctuations, 
tokamaks 

This paper applies the free-energy method to obtain nonlinear 
upper bounds on fluctuations and upper bounds on linear growth 
rates in tokamaks. 1 The ultimate goal is to obtain estimates of 
transport based on thermodynamic constraints rather than the ex­
plicit evolution of the system in time. Here we give a progress 
report citing a few new results and discuss the potential and lim­
itations of the method. 

Whereas Ref. 1 employed the full Maxwell-Vlasov equations, 
we have reformulated the method for gyro kinetic equations ap­
plicable to drift waves. For simplicity, we consider only electro­
static potential fluctuations, though the extension to the fully elec­
tromagnetic case is straightforward.2 

The nonlinear gyro kinetic Vlasov-Poisson equations and their 
associated invariant energy functional ~ have been derived pre­

{ viously.3 It is straightforward to show that these equations also 
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conserve the particle number .N and, in the absence of collisions, 
the entropy::t. Using these results, we can construct the gyro kinetic 
Gibbs free energy, of the form '& - T::t - T.N, that is an exact 
invariant of these equations. An approximate form of this invariant 
sufficient for our purposes is given by 

== ~C[F] + CP, (1) 

where cP is the electrostatic energy term on the right and ~( denotes 
the remainder. The distribution F(X, E, /-L, t) is a function of the 
gyrocenter particle energy E, the gyrocenter magnetic moment /-L, 
and the guiding-center position X; dSZ = , dEd/-Ld 3X, where' 
= (21T B/m2 ) [2( E - /-LB)/m] -112 and B is the magnetic field; C 
and T are constants to be determined; and <I> is the electrostatic 
potential fluctuation (we neglect <1>0) which satisfies 

- V.L· Eo V.L <I> (X, t) = 41T L e f ,dEd/-LF(X, E, /-L, t), (2) 
cr 

where Icr sums over particle species and (T = ± 1 depending on 
the sign of the parallel velocity component. 

To obtain these simple results from the complex expressions in 
Refs. 3 and 4, we have taken advantage of the fact that F is never 
far away from a Maxwellian state and replaced F by F M = 
C exp( - E/T) in terms multiplied by <1>, since e<l>/T « 1 in gyro­
kinetics. Also, we have expanded <I>(r) and the gyrokinetic Jaco­
bian , in powers of the gyroradius vector p = r - X, keeping 
only lowest-order terms. Omitted terms are order p/L, where L is 
the shear length, curvature radius, plasma minor radius, etc. Note 
the explicit appearance of a dielectric constant Eo, where (EO - 1) 
represents E x B motion (EO = 1 + c2/V7t, with the Alfven velocity 
VA evaluated at X). 
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We are now in a position to obtain an upper bound on the 
fluctuation energy, <I>(t), valid for all time. Initially let F = Fa + 
j, where Fa is the equilibrium distribution and j is an infinitesimal 
perturbation, and <1>(0) == O. Since dlgy is conserved, at a later time 
<I>(t) - <1>(0) == <I>(t) = ~L[Fa] - 'J{(t) + O(f). Following Ref. 1, 
we obtain a bound by replacing ~[(t) by its minimum value for any 
state conserving Jf and :1', which occurs for the Maxwellian dis­
tribution FM = eM exp( -eITM) with Lagrange multipliers (eM, 
TM) chosen so that Fa and FM have the same Jf and:1'. Then <I>(t) 
::::; ~L[Fa] - ~L[FM], now discarding terms O(f). Using Eq. (1) this 
becomes 

The first expression (just the change in kinetic energy) equals 
~L[ Fa] - ~L[ F M] exactly since Jf and :1' are held constant. The 
second expression is obtained by expanding ~[[Fa] in powers of 
tlF = Fa - F M, assumed small since Fa cannot be far from a 
Maxwellian in a device with good confinement. 

Still following Ref. 1, we apply the bound locally. That is, we 
restrict attention to a shell of average thickness equal to the max­
imum perpendicular wavelength of interest (denoted by k -1) cen­
tered on a particular flux surface. In taking dlgy constant, we neglect 
free-energy flows into or out of this shell. Let Fa = Fa(1 + a), 
where Fa is a spatially uniform Maxwellian with density fi and 
temperature ta averaged over the shell, and N = f d3 X n(X) 
within the shell. Then, to conserve particles and entropy, we re­
quire 

( )

3/2 

eM = 2:ta (1 + a) 

and 

(4) 

to lowest order in' a and a. The overbar denotes a phase-space 
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average with weighting factor N -1 exp( - EITo). Substituting these 
expressions into either form of Eq. (3) gives the bound 

We first apply the bound to collisionless equilibria in the toroidal 
rest frame, taking Fa oc (nln/2) exp( -EITo), where n and To are 
functions of X. Let x be the displacement about the chosen flux 
surface. Expanding in x gives 

[
n' T'(E 3)J a(E, x) = x n + t: to - 2: ' (6) 

and substituting this into Eq. (5) gives, for T; = Teo 

(7) 

whereTJ = LnlLTandLn = inln'i,LT = iToIT~i,inusualnotation. 
This is the familiar expansion energy1 released when the initially 
nonuniform plasma expands to fill the shell uniformly (like ex­
pansion cooling of a gas). 

Two new features of the gyro kinetic formulation are the explicit 
appearance in <I> of the dielectric constant EO, as already noted, 
and a demonstration that the largest reservoir of free energy avail­
able to drive drift waves is the parallel temperature, both being 
consequences of gyrocenter magnetic moment conservation. The 
second point is obvious in a uniform magnetic field, since the 
perpendicular kinetic energy cannot change (6.'J{1. = 0). However, 
the parallel energy can change even though the pressure is initially 
uniform along field lines. Physically, if kll =1= 0, radial E x B 
motion is spatially varying in sign along field lines, which creates 
parallel pressure gradients that release parallel energy by expan­
sion along the field lines. 

For a tokamak plasma, 6.'J{ 1. oc n' B' is smaller than the expansion 
energy (oc n'2) by an aspect ratio, so again most of the energy must 
come from the change in parallel kinetic energy 6.~]{II. Moreover, 

266 



contrary to a conjecture made in Ref. 1, even a very large change 
in A'J{J. cannot overcome the expansion energy allowed by the 
conservation of entropy. Rather, A'J{II is allowed to compensate 
for A'J{J.. This can be seen directly by rewriting Eq. (1) using A'J{ 
from Eq. (5) in the form f d/LNfJ-To(a - (i)~, where the /L-inte­
gration has not yet been carried out (so that NfJ- and a may still 
depend on fL). In other words, A'J{ is the sum of expansion free 
energy separately for each value of fL. But since entropy and par­
ticle number are conserved separately for each value of fL, this can 
only be true if (A'J{II)fJ- = (Expansion)fJ- - (A'J{J.)fJ-. This can be 
verified directly by carrying out the variation of sigy before inte­
grating over fL, whereby CM and T M can depend on fL, and cal­
culating (A'J{II)fJ- with CM and T M expanded to higher order 
in a. 

We turn now to bounds on the linear growth rates, derived from 
the time derivative of the quadratic expression obtained by ex­
panding sigy in powers of the perturbation f = F - Fa, given by 

(8) 

While the kinetic term is formally similar to Eq. (3), note that Eq. 
(3), expanded about the extremal final state FM , gives fully non­
linear results, while si2 , expanded about the initial state Fa, will 
give linearized growth rates. Regardingfasfl in a formal expansion 
F = Fa + fl + f2 + . . . , the sum of si2 and the corresponding 
second-order functional off2 would be conserved to second order,2 
but si2 alone is not conserved by the linearized equations, as fol­
lows. 

Using the linearized gyrokinetic Vlasov-Poisson equations, we 
can show that 

dsi2 (t) - ~ J 5 • dt - ~ e d Zf(X, E, fL, t)V'.L<p(X, t) uJ.(X, E, fL), (9) 

where u is the unperturbed fluid velocity (including diamagnetic 
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drift, parallel flows, etc.). For a in Eq. (6), we find to lowest order 
in a and p, 

U = cToaa = cTo [nl + ~b (~ - ~)J (10) 
1. eB ax eB Ii To To 2 ' 

where we only retain the component perpendicular to the equilib­
rium magnetic field, since for the low-frequency drift waves, ulIEIl 
« U1.E1.' although in tokamaks ull > U1.(uIIEIl1u1.E1. = O(pILn». 
Note that all effects due to magnetic-field nonuniformity (i.e., 
gradient, curvature, or shear) have dropped out as they are smaller 
by O(pIL). 

Again following Ref. 1, 'Y is bounded by the logarithmic time 
derivative of .5il2 , maximized for any perturbation: 

(11) 

where E is defined below and AD is the Debye length. As in Eq. 
(10), UJ. may contain several terms UJ.l with IluJ.1I = klllu1.111, where 
lIuJ./11 == [(ufI)max] 112 is the rms velocity average of U1.l (with overbar 
as previously defined) and here max refers to extreme values at 
any position x within the integration volume. Using Eq. (9) to 
calculate dd12ldt yields Eq. (11) after applying successive Schwarz 
inequalities as described in Ref. 1. 

The perturbations f and <I> appear only through the dielectric 
constant E, defined by 

EO 
E = R (R2 + 1), (12) 

where R == 'JC2/cJ>2' A similar expression was found in Ref. 1 without 
the factor Eo (i.e., the full Vlasov case), and it was noted that the 
minimum value is Emin = 4. For the gyrokinetic case, we have Emin 

= 4Eo » 4. In Table I, we identify these minima in E with high­
frequency drift-cyclotron waves5 for the full Vlasov system (recall 
that we dropped ulI)' and MHD interchange for the gyro kinetic 
case (WD - (aIR)1I2w* is the curvature drift frequency). We now 
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TABLE I 

Comparison of bounds and actual values for electrostatic growth rates 

Modes e 'Y Bound Actual 'Y 

Drift-cyclotron (kpi« 1) -1 -w*lkAD -(kpi) -1I2W*kAD 
Interchange -eo -w*lkpi -(W*WD) l12lkpi 
Drift waves -(k2Ab) -1 -w. -w* 

show that E also has a finite maximum, which we shall identify 
with drift waves. 

Using Poisson's equation to relate 1 and <1>, we rewrite 4>2 = Yz 
l f el <I> and vary E with respect to I. Then 3E ex: (1 - R -2)3R 
indicates a minimum at R = 1 (as noted above), while setting 3R 
= 0 gives 

3R = 0 = 1.- 2: J d5 Z31 (I To - e<l>R) , (13) 
<P2 (J" Fa 

from which extrema occur if 

(14) 

Substituting this 1 in Poisson's equation gives 

(15) 

This is an eigenvalue problem in R that selects out different classes 
of perturbations (different wavenumbers, k). In the local approx­
imation, Vi -7 -k2 (although exact expressions are attainable). 
Then for Ti = Te , we find R = (k2A.'b/2) Eo, from Eq. (15), which 
gives by Eq. (12) a minimum Emin = 4Eo at R = 1 (kpi - 1) and 

. a maximum at R « 1 (kA.D « kPi « 1), 

(16) 
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That this is indeed a maximum can be shown by evaluating S2E 

directly; the critical step is to show, by Schwarz inequality on the 
double sum ~ J, that R(4'lTk-2) (~J Sf)2 :5 ~ J Sf-(TIFo) at SR 
= O. 

Note that Eq. (16) and the corresponding bound on ",{, by Eq. 
(11), are identical with corresponding results for the full Vlasov 
case, discussed in detail in Ref. 6. This is true because Eqs. (9)­
(16), correct to O(pIL) for gyrokinetics, become the corresponding 
exact equations for the full Vlasov-Poisson system if we simply 
set Eo = 1 whenever i appears. Thus Emax is the same for both 
theories. 

Identifying Emax with drift waves is conjectural but reasonable. 
Note that substituting an exact solutionfinto.1i2 in Eq. (11) would 
give 'Y exactly. Our extremal f, Eq. (14), is in fact the leading 
adiabatic term valid if w « klllJ, as is true of electrons in drift 
waves and marginally so for the ions. (For MHD, with w > klllJ, 

the adiabatic term cancels.) Making this conjecture, Eq. (11) gives, 
for a in Eq. (6) and T; = Te , 

where w* = ckToleBLn , and the subscript DW denotes electro­
static instabilities to which the gyrokinetic ordering applies (e.g., 
drift waves, trapped-particle modes, etc.). 

With this interpretation, Table I shows that both our bound and 
the actual growth rates form a hierarchy in which growth rates 
decrease as E increases. The drift waves are the lowest-lying family 
of "'{'s in this hierarchy, corresponding to the maximum, adiabatic 
dielectric constant. 

We have applied our bound on ",{, Eq. (17), to calculate a mixing­
length estimate of transport coefficients, of the form X = 'Ylk2. 
Recent calculations have demonstrated fair agreement between 
global energy confinement times in tokamaks and estimates based 
on radial averages of XVT, with X of the above form and approx­
imate formulas for 'Y for ion temperature gradient (ITG) modes 
and dissipative trapped-electron (DTE) modes.7 For the same k, 
our bound on 'Y gives approximately the same results as these 
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growth rates, and therefore similar estimates of the global energy 
confinement time. We have compared our X = "IIF, taking "I from 
Eq. (17), with the corresponding quantity, X = (5/2k2) (2"1DTE + 
"I ITG /2), found to fit the experimental data on confinement times 
in Ref. 7 (the factors 2 and 112 having been adjusted to provide a 
best fit). We find close agreement at all radii (perhaps fortuitously), 
our X being about 25% higher. However, our method cannot yet 
determine the worst k, for which we took kpi = %, approximately 
the value used in Ref. 7. 

Our nonlinear bound on fluctuations supports the mixing-length 
estimate in that 8E allowed by Eq. (7) (8E :5 (kp;)-1(TleL,,» is 
more than sufficient to flatten the profile in one cycle (w- 1 8EIB 
;::: k -1 if w = w* and kpi < 1). In fact 8E at saturation would be 
just that needed to flatten the profile if, instead of EO, the dielectric 
constant were replaced by E ~ (k2Ab)-1 as suggested by the linear 
theory, Eq. (16). Then 8E ~ TieL" and W;1 8EIB = k -1. 

That our method does not yet determine the worst k (or mixing 
length) is a serious defect. Further progress requires constraints 
not included in the free energy functional, which is not sensitive 
to shear or other subtleties of magnetic geometry, and does not 
exhibit Landau damping (in which 'J{ increases as <P decreases). 
Earlier efforts to incorporate such effects did not succeed.! How­
ever, the fact that more recent experimental evidence, such as that 
cited above, generally supports the thermodynamic estimate of X 
now encourages us to try again. In some sense, we have disected 
X into three parts: u, E, and k. Two of these parts, u and E, appear 
to be determined mainly by global thermodynamic constraints. It 
remains to isolate the constraints that fix k. 

Like other drift-wave calculations, our mixing-length estimate 
and also our nonlinear bound on fluctuations fail to exhibit the 
strong dependence on current that characterizes empirically de­
termined energy confinement times in tokamaks.7 Nor is it obvious 
that further refinements of the present calculations (flux surface 
averages, etc.) would disclose a current dependence. Perhaps free­
energy sources other than expansion are involved. 

Our formulation is easily extended to include other free-energy 
sources in Fo, all such effects representing small departures from 
a Maxwellian that contributes additively to a. Again bounds on <P 
and "I can be calculated by substituting the new a into Eqs. (5) 
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and (17). Examples are parallel collisional flows, arising in neo­
classical MHD theory, which do depend on the current and which 
dominate over the expansion energy in the bound on <I> for wave­
lengths typical of drift waves.8 However, these effects do not sig­
nificantly alter aexlax and hence they do not affect our bound on 
'Y. In that case, the mixing-length estimate tying saturation to 'Y 
may be questionable. A different estimate is 'TE ~ f d 3 X nTIPv , 
where Pv is the transient flow of free energy across the chosen 
flux surface. Following Ref. 1 (Section IV), we estimate Pv ~ 
'Y6.'J{, yielding 

f d 3X nTo 2 
'TE ~ 'Y6.'J{ 'Y(ex - &)2· (18) 

For expansion energy (ex ~ (k 2 L~) -1) this again yields the mixing­
length estimate. For collisional flows, ex ~ 6.xILT , where 6.x ~ 
qp/(aIR)1I2 (with safety factor q oc Ell and current I) is the banana 
width.8 Then 'TE ~ 2L~h6.x2. This is smaller than 'TE from the 
mixing-length estimate if k6.x > 1 (true for kpi ~ % as assumed 
above and typical q ~ 3) and happens to scale as 'TE ~ 12, as does 
the empirical law 'TE ~ IIy'P with P = f d 3 X ntOI'TE. 
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