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The linear theory of the resistive tearing mode instability in slab geometry, has been recently 
extended by introducing the effect of equilibrium shear flow and viscosity [ Phys. Fluids 29, 
2563 (1986); Phys. Fluids B 1,2224 (1989); ibid. 2,495 (1990); ibid. 2,2575 (1990) 1. In the 
present analysis, numerical solutions of the time-dependent resistive equations are generalized 
to this problem and growth rate scaling is obtained. The results of the computations are 
compared to previous work, and the computed growth rate scalings agree with analytical 
predictions. Namely, the “constant-$” growth rate scales as S - i’2 and the “nonconstant+” 
growth rate scales as S - “3, where S is the magnetic Reynolds number. The Furth-Killeen- 
Rosenbluth (FKR) scaling of S - 3’5 is reproduced for small values of shear flow. The 
presence of flow introduces a new peak in the eigenfunction, which is outside of the peak that 
occurs in the case without flow. The introduction of viscosity and small shear alters the growth 
rate scaling to S - “3(S,/S) IF6 where S is the ratio of the viscous time to the Alfvitn time. 
When the shear flow is large, the grow& rate behaves in a more complex way, and Kelvin- 
Helmholtz instability effects are present. 

I. INTRODUCTION 

Magnetic reconnection was first suggested by Dungey’ 
to explain energy release in solar flares and other astrophys- 
ical phenomena, and since then the topic has been studied 
extensively. Furth, Killeen, and Rosenbluth’ (hereafter 
FKR) developed an analytic boundary-layer theory of resis- 
tive magnetic tearing, and numerical techniques have subse- 
quently been applied to the problem.3 

FKR theory has been widely used and applied to labora- 
tory plasmas and fusion experiments in various geometries. 
Numerical computations of linear tearing mode instability 
have been performed by many, in various subvolumes of pa- 
rameter space (see, for example, Steinolfson and Van Ho- 
ven4 ), usually without equilibrium shear flow or viscosity 
effects. The importance of flow and viscosity in the evolution 
of tearing instability growth rate scaling has been recently 
shown using both analytica15-9 and numerica11~‘2 analyses. 
Nonhomogeneous flows are commonly observed in various 
phenomena believed to involve reconnection, such as solar 
coronal loops, magnetopause boundary, solar wind, extraga- 
lactic jets, and fusion experiments. 13*14 

We solve the time-dependent equations numerically 
throughout the entire physical region of instability, in con- 
trast to the boundary-layer approach in which solutions of 
two physically different regions must be matched. This ap- 
proach enables us to avoid some significant assumptions re- 
quired by the boundary-layer theory, such as “constant-$” 
or conditions on the growth rate y (Refs. 5 and 6) (see Sec. 
III). Thus, we can test the validity of these assumptions and 
corroborate various scaling laws predicted analytically. 

Using a finite difference method for the time-dependent 

problem, we are able to show the spatial and temporal evolu- 
tion of the perturbed quantities and the dependence on the 
physical parameters of the problem. Some relevant param- 
eters examined in our study are the normalized wave number 
Q, the magnetic Reynolds number S, the shear parameter R, 
the fluid velocity Y (normalized to Alfven velocity), and the 
ratio between viscous and AlfvCn time scales S,. 

In Refs. 10 and 11 the authors solve Eqs. (9) and ( 10) 
using a different approach. A system of algebraic equations 
resulting from the finite difference equations is solved as an 
eigenvalue problem. In order to obtain a nontrivial solution 
the determinant of the coefficients of the system must van- 
ish. The value of the growth rate y that makes the determi- 
nant vanish is the eigenfrequency of the mode. The difficulty 
of this method, as stated by the authors, is the need to search 
for zeros in the complex plane and identifying the eigenfre- 
quency being sought, In the time-dependent approach of the 
present paper, the correct growth rate emerges “naturally” 
from the solution of the initial value problem. The numerical 
value of y is obtained rather easily with a well-known fast 
Fourier transform (FFT) technique. By retaining the time 
dependence, we are able to study cases on a relatively short 
time scale, such as may be necessary when more than one 
overstable mode is present in the solutions. This is particu- 
larly significant for the nonlinear simulations in which sever- 
al modes can interact. i5 

The paper is organized as follows. In Sec. II we present 
the basic equations. In Sec. III the main results of the linear 
boundary-layer theory are reviewed. In Sec. IV the method 
of solution is described. Section V is devoted to the results of 
numerical computations. Summary and discussion are pre- 
sented in Sec. VI. 
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II. BASIC EQUATIONS 
We assume that collisional magnetohydrodynamic 

(MHD) theoryi is applicable, that the plasma is incom- 
pressible with constant isotropic resistivity 17 and constant 
perpendicular viscosity’.” Y, and that gravitational effects 
are negligible. The basic equations in cgs units are 

> 
= -Vp+&(VxB)xB+vVfv, 

(1) 

(2) 

Vv = 0, V-B = 0, (3) 

where c is the speed of light, p is the plasma density, B is the 
magnetic field, and v is the velocity of the plasma. The pres- 
surep is eliminated from the calculations by taking a curl of 
Eq. (1). 

We use Cartesian geometry and choose an equilibrium 
magnetic field of the form 

B, (Y) = B, (y)e, + B, (y)e,. 
Similarly, the equilibrium plasma flow is assumed to be in 
the (x,z) plane, with the form 

v. (v) = uti (y)e, + ufi (yk. 
Equations ( 1 )-( 3) are linearized around the magnetic field 
and flow velocity equilibrium solutions assuming perturba- 
tions of the formf, (y,t) exp( ik,x + &,z). The normalized 
linearized time-dependent y components of the MHD equa- 
tions can be written as 

[$+iaG)(W”-a’W) -iaR2G”W 

i a4w =iaF(@“-a*$) -iaF”$+--, 
s, ap4 

(4) 

-&+iaG)$-iaFW=S-‘($“-a’$), (5) 

where the dimensionless variables are r = t /rH, y = y/a,, 
and the perturbed physical quantities $ = B,,,/B, 
W = V,,, /V,. Also, the dimensionless parameters are the 
magnetic Reynolds number S = r,/rH, a measure of viscos- 
ity S, = r,/rH, the shear parameter R = ah/au, and the nor- 
malized wave number a = ka,. 

The relevant time scales in these definitions are the resis- 
tive time rr, the Alfvtn time rH, and the viscous time r, 
given by 

p4 477-a: 
r,, = -, r, = -, 

C2’l 
7 

ab (47~~) v2 
HZ 

Y B ’ 

and in the above quantities ab is the magnetic length scale, a, 
is the velocity length scale, V, is the Alfvtn velocity, and B is 
a measure of the magnetic field. The equilibrium magnetic 
field and flow velocity are given by 

F= (k,B, + k,B,)/kB, 

G= (k,VH +k,V,)/kV,. 

Specifically we choose k, = 0 and the following forms of F 
and C: 

F= tanh,u, (6) 
G= Vtanh(R,u), (74 

or 
G = V [sech(Rp) - 11, (7b) 

where Vis the velocity parameter in units of V, and R is the 
shear parameter. Hereafter we refer to Eq. (7a) as the 
“tanh” velocity profile, where Eq. (7b) will be referred to as 
the “sech” profile. 

Equations (4) and (5) are solved numerically without 
any further approximations. They are subject to the bound- 
ary conditions that W, t/--+0 exponentially when p -, t co. 
For the numerical simulation limited to finite boundaries 
located at p, and,u2, the above boundary conditions become 

W’W1.2 ) = + awp,,2 1, 
~V(P~,~ 1 = * ati(h,, 1, 

(8) 

where primes denote the derivatives with respect to ,u taken 
at the left (p, ) and right (/.L~ ) boundaries of the physical 
region. 

III. LINEAR THEORY 

The growth rates of the instability can be found from the 
time-Fourier-transformed equations (4) and (5), using the 
boundary-layer approach.2*5-9 Assuming perturbations of 
the formf, (y) exp( iwt + ik,x), these equations become 
(y+iaG)(W”--a2W) -iaR*G”W 

i a4w 
=iaF($” -a*$) -iaF”tC,+--, 

s, ap4 
(9) 

(Y+iaG)$-iaFW=S-‘(111” -a*$), (10) 

where y = yR + ir, = iwrH is the complex growth rate and 
the subscripts R and I denote real and imaginary parts, re- 
spectively. 

The physical region is divided in two regions, namely, 
an inner region in which (F ( < 1 and resistivity cannot be 
neglected [e.g., nearp = 0, for F(p) as in (6) 1, and an outer 
region in which the resistivity can be neglected in Ohm’s law. 
In the inner singular layer, one can substitute 
F’(p) = F’(O), F”(p) = F”(O), G’(p) = G’(O), G”(,u) 
= G”(O), and F(p) =pF’(O). 

The solutions in the outer and inner regions are matched 
continuously through a matching parameter 

A’ = (ICI;/& 1 - C$;4, 1, 
where the subscripts 1 and 2 denote values at the boundaries 
of the inner singular layer of width E, respectively. An impor- 
tant result obtained by analytical means in Ref. 5 is that flow 
in the outer region can drastically change the matching 
quantity A’. In fact, alteration of the external flow profile can 
effect the transition from constant-$ to nonconstant-$ tear- 
ing. A numerical estimate of A’ is discussed in Sec. V. 

The FKR result, without shear flow or viscosity, is 
yR -s - 3/5. (11) 

This scaling can be used as a benchmark for comparison with 
new numerical results. 

The growth rates and their scalings are found by match- 
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ing the resistive and ideal solutions, under the following lim- 
its of the parameters that emerge from the inner layer equa- 
tions: 

slow growth ly/aF’(O)ef g 1, 
fast growth ly/aF’(O)E/- 1, 
small shear [G’(O)/F’(O)l& 1, 
comparable shear IG’(O)/F’(O)I- 1, 

(12a) 
(12b) 
(12c) 
(12d) 

where E is the width of the inner layer [hereafter we drop the 
. zeros in (12a)-( 12d)]. 

The results for the inviscid case, as obtained in Ref. 5, 
are summarized in Table I. The following is a list of growth 
rates for both inviscid and viscous tearing modes with flow 
that were obtained analytically in Refs. 5 and 6 and calculat- 
ed numerically in the present work. 

For the nonconstant+ tearing mode and small or com- 
parable shear ( 12~) and ( 12d), the growth rate scaling is 

yR ,a2/3S - ‘j3. (13a) 

In the case of the constant-$ tearing mode when the velocity 
shear is comparable to the magnetic shear, (12d), the 
growth rate scales as 

yRwa 
1/2s - l/2* (1%) 

When viscosity is present and the condition [G ‘/F’I < 1 is 
satisfied, ( 13b) is modified to 

YR -s (13c) 

whereQ=cC[ 1 - (G’2/F’Z)].A~~G’/F’~-+1,thegrowth 
rate approaches zero as Q I” . When [G’/F’l > 1, the tearing 
mode disappears, and Kelvin-Helmholtz (K-H) instability 
effects are present. When the shear is very small ( 12c), the 
growth rate scaling ( 11) becomes 

YR - (d’) 1’3s - 2’3(s,/s) l/6+ (13d) 

The dependence of the growth rate on S, S,,, and tG ‘/F’[ in 
Eqs. ( 13a)-( 13d) has been verified numerically. These re- 
sults will be presented in Sec. V. 

IV. METHOD OF SOLUTION 
We solve Eqs. (4) and (5) using an implicit finite differ- 

ence scheme3*4 with a variable spatial grid. The following 
system of equations in the complex plane, generalized to ac- 
commodate flow and viscosity, is solved numerically: 

TABLE I. Summary of the effects of equilibrium shear flow on the tearing mode. (From Chen and Morrison.$) 

I-I 
G’(O) 41 
F’(O) 

Constant-$ tearing mode 

(a) The growth rate and scale 
length of the resistive region 
are, respectively, 
y-az’5h’4/5,J - f/5, 
E--(as) -2’5A”‘5(1 

(b) The constant-$ 
approximation is valid if 
+‘I 4 1 

(c) Small Row shear G’(0) 
destabilizes the constant-$ 
tearing mode 

Nonconstant-l tearing mode 

(a) The growth rate and scale 
length of the resistive region 
are, respectively, 
yc-at’“~ - 10, 
c- (as) - ““4 1 

(b) In this limit, we have 
dA’lipl> 
1 - G’(0)*,‘F’(O)“+O 

(c) Small flow shear G’(O) 
stabilizes the nonconstant-@ 
tearing mode with sufficiently 

I-1 
G’(O) <1 
F’(O) 

(a) The growth rate and scale 
length of the resistive region 
are, respectively, 
y- (a[A’l)“*S - “*, 
E-((aS)-““<l 

(b) If G’(O)G”(O) - F’(O)F”(O) #O, 
A’ > 0 instability criterion is 
removed 

(c) The constant-$ 

large A’ 
(d) There exists a transition to 

ideal instability when A 
becomes negative through 
A’ = m (which is made 
possible by the flow on the 
external region) 

approximation is valid if 
[J[ 1 - G’(0)Z/F’(O)ZIA’el 41 

stabilized stabilized 
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ia $;V’l-& Z;;,‘+(&+$G,+ ’ 
u J t S”&- 4u, 

)Z;+’ 

-2A~j~-~*~~~-~~W;~‘=d;, (15) 

z?+ ’ - 1 
J 

‘Pj4u + 
w;:,’ -I- 

4b2k J 

wn+’ 

- &,h _ W,“l+,’ = q;, (16) 

where APj= @j-+1 -Pj-l)/2, 
A,u _ 

A/+. =pj+i -pj, 
= ,Uj - /Lj _ , . The variable grid spacing Apj expands 

from a minimum Of A~,in = IO- ’ near the singular surface 
to 44n*x = 0.5 near the computational boundaries accord- 
ing to the prescription 

A/Lj = A/L,,, (A,U,i”/A,U,,, )(J--j)‘(J- ‘), 
where J denotes the boundary grid point. Up to 240 grid 
points were used. 

The purpose of Eq. ( 16), which is a finite difference 
form of Z( t,,u ) - W’ (t,,u) = 0, is to enable the numerical 
calculation of the fourth-order viscous term 
S ; ’ (a 4 W/dp4) in Eq. (4), while maintaining the tridia- 
gonal form of the finite difference equations: 

-AjU;=,‘+BjU;+‘-CjUnt’=pr, 
J--1 (17) 

where A, B, and C are 3 X 3 matrices and U and Pare three- 
dimensional vectors. Equation ( 17) is solved for U by using 
Gaussian elimination. 

The time step AT was selected so that AT 
<min ( l/y,, l/5 y1 ) , and the simulation was evolved for N 
time steps until only the fastest growing mode was present in 
the solutions. Usually the number of time steps satisfied 
50<N<500. 

From the complex solutions W( t,,u) and $( ty ), which 
are symmetric or antisymmetric relative to,u = 0 [the sym- 
metries are determined by the functions P’(p) and G(p) in 
Eqs. (4) and (5) 1, the growth rates were obtained in two 
steps (see Fig. I ). First, the real part of the growth rate yR is 
found by fitting a straight line to the logarithm of W( t,,u, ) 
(where p0 is an arbitrary point in the domain). Next, the 
exponential trend is removed from the solutions and a fast 
Fourier transform is performed on the remaining oscillatory 
part of W( t,,uo ), which thereby determines the imaginary 
part of the growth rate y,. If more than one overstable mode 
is present at the same time, the result of the FFT will show a 
corresponding number of well-defined peaks, indicating the 
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values of the yr. This occurs when the real parts of the two 
modes have very close values: 

exp(y,,L) exp( -yYR2fm)-1, 

where t, = NAr. 

(18) 

If the modes are purely growing (no time-dependent 
oscillations are present), then only the first step in the above 
method is performed. 

V. NUMERICAL RESULTS 

The method of finding the complex growth rate (Sec. 
IV) is clarified in Fig. 1. In Figs. 2-10 we present the results 
of computer simulations of tearing mode instability. In Figs. 
2--1 the spatial behavior of the complex solutions W( t, ,p) 
and $( t,,,p), normalized to their respective peak values, is 
presented. In what follows, we have used the normalizations 

$ = By, /By, max and W= - iVyl/Vy, max; 

the absolute maximal values are given in Table II. Figures 5 
and 7-9 show the various scalings of the growth rate, as in 
Eqs. (13a)-( 13d). In Fig. 6, the dependence of the growth 
rate y on the shear parameter R, for sech and tanh flow 
profiles is shown. 

In Figs. 2 and 3 the constant-$ solutions are shown. This 
is clearly seen from the fact that the tearing layer, defined by 
the inner peak of W,, is located in a region where z++~ is 
constant. The presence of flow introduces the imaginary 
parts of the perturbed quantities and the outer peak in W,, 
as compared to FKR-type solutions (see, for example, Ref. 
4). The inviscid solutions in Figs. 2(a) and 3 (a) agree with 
Ref. 10. The figures of the eigenfunctions in Ref. 10 are 
drawn with a linear scale in they direction, rather than the 
logarithmic scale used in this paper. In Fig. 2(a) the equilib- 
rium magnetic field was (6)) the flow profile was tanh (7a), 
and the velocity shear, determined by V = 1 and R = 0.73, 
was comparable to the magnetic field shear. The antisymme- 
tric solutions, namely, W, (short-dashed line) and $1 
(long-dashed line), for the positive and negative values ofp 
are plotted on the positive logarithmic p axis. The solutions 
in Fig. 2 (b) are for the same parameters as in Fig. 2 (a), but 
they include viscosity comparable to resistivity 
S = S, = 106. Its effect is to reduce W, and tjl relative to tjR 
(see Table II) and therefore, reduce the reconnecting fields 
and the growth rate. Figs. 3 (a) and 3 (b) show the behavior 
for a sech equilibrium flow. In Fig. 3 (b) the antisymmetric 
solutions are W, and W, (dashed line). The solid line is qR 
and in this case it merges with the normalized Jt, that has 
similar shape. The effect of viscosity on this solution is 
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shown in Fig. 3(b). The inner peak of W, has practically 
disappeared, and the growth rate is smaller than in Fig. 3 (a). 
In Figs. 4(a) and 4(b) a “nonconstant-@” tearing mode is 
shown. In other words, most of the spatial variation of the 
perturbed flow W, is confined to the region of the maximal 
variations of $R. Viscosity, in Fig. 4(b) adds additional fea- 
tures to the eigenfunctions, slightly reducing the growth 
rate. The more complex dependence of the solutions on ,u is 
due to the mixing of Kelvin-Helmholtz and tearing instabili- 
ties. 

The scaling of the growth rates for the inviscid case is 
presented in Fig. 5. The lower line represents the analytical 
scaling and has a slope of - 1 on a log-log scale. It fits very 
well to the calculated points, which were obtained from the 
type of solutions shown in Fig. 2 (a), having values of resis- 

tivityS = 103-lo’, and it agrees with the analytical results in 
Table I for the constant-$ case. The lower the resistivity 
(higher S) the closer the inner peaks of W, and $, are to the 
singular surfacep = 0, while WI and qR remain almost un- 
affected. This result is expected from the analytic scaling of 
the inner layer width E--S - 2’5 [small shear, Fig. 5 (b) ] and 
E-S - 1’3 (high shear). The upp er line of Fig. 5 (a) has a 
slope of - $, in good agreement with the calculated points 
from thesolutions shown in Fig. 4(a) and the nonconstant-$ 
tearing mode (Table I). The dashed curve is the imaginary 
part of y for the nonconstant-$ case. The oscillations of the 
fluid appear to be caused by K-H instability and therefore 
exhibit a different behavior than yR , which is dominated by 
tearing, 

The dependence of the growth rate on the shear param- 
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FIG. 1. (a) The time-dependent solution log[ I& (t,pO )I]. (b) A linear fit 
to themaximaoflog[ I& (t,,uO )I]. Theslopeofthislinedetermines y,. (c) 
The solution qR (f,pO ), with only the oscillatory part remaining. Perfonn- 
ing FFT on it determines y! (see Fig. IO). Note that the initial transition 
time of ISOO~, was removed from the calculations. 

Downloaded 17 Dec 2009 to 128.83.61.179. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



1. 

-75 

.25 

0. 

-.25 

-. 5 

-.75 

.__-___-___-_____ 
--.* : 

-. 
‘\ : 

‘\ 
# 

\ 
Ra($) t, ' '\ 

--- Im(+) ',, t 
__._ _..____ _-_ Re ( W) , : 
- - - - - - - - Im(W) 

' : \ 
') : , 

-.25- '\, 
8 

, I 
: : I 

-.5- , 1 
- Re(+) 

, , ' \ 1 
--- lm($) , t 1 ' 

- . 75 __.__._.____-_ Re( W ) t 1 \ ' 
-------- Im(W) t I : \ 1 

: : -1.’ ‘\ , I , -., I 
10-4 10-Z 100 102 -l.L 10-d 10-Z 100 102 

1. 

.5 

.25 

0. 

-.25 

-.5 

-.75 

-1. 

P 

i ________--------__ 
-. : -. 

‘. : 
‘. 

- Re(+) 
--- Im(+) 
._ ._....___._. _ Re(W) 
- - - - - - - - Im(W> 

-. 

-. 

P 

1. 

(b) 
,:' :; 

,/ \ 

:, ~~.,,,,~~~ 

o - ____ ____------‘- \ _ _ _ _ 

-. I 
‘\ 

, 
I I \ I 

25. I 
', , , 

, I 
, , I 

,.5' t 1 # 
~ Re(#) L ' , ' 
--- Im(#) , ' t 1 

75 ______..____-_ Re ( W ) I ' , ' 
-------- Im(W) I L : , ' 

: : 

FIG. 2. (a) The spatial variations of the complex solutions Wand $ (invis- FIG. 3. (a) Plot of Wand $ as in Fig. 2 except the equilibrium flow is 
cid case) normalized to their peak values. The equilibrium flow is G= kJsech(@) - I] and the parameters are V= 1, R = 0.44, S= 106, 
G= Ytanh(Q), and the parameters are V= 1, R =0.73, S= lob, and a = 0.5, and the notation is the same as in Fig. 2. (b) Same as (a) except 
a = 0.5. (b) Same as (a) except viscosity S, = 10”. viscosity S, = 106. 

TABLE II. The maximal absolute values of the solutions in Figs. 2-4. 

+bR 
$1 
Wll 
w, 

Fig. 2(a) Fig. 2(b) Fig. 3(a) Fig. 3(b) Fig. 4(a) Fig. 4(b) 

1.000 1.000 l.CQO 1.000 I.000 1.000 
0.145 0.129 0.218 0.490.10 - ’ 1.798 2.156 
0.145 0.129 0.596.10 - ’ 0.135.10-’ 1.851 2.166 
0.897 0.898 0.27 1 0.27 1 0.984 1.081 
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FIG. 5. (a) Growth rate scaling versus S for V = 1, R = 2.5, (x = 0.5, and 
the sech flow profile, the nonconstant-4case (the squares are the calculated 
points). The scaling for V = 1, R = 0.73, a = 0.5, and the tanh flow profile 
(the circles are the calculated points). (b) The scaling with Sof the inner 
layer width E, as defined by the inner peak of W,, for the tanh profile with 
the parameters V = 0.1 and R = 0.5. 

FIG. 4. (a) Same as Fig. 3(a) with R = 2.5. (b) Same as Fig. 3(b) with 
R = 2.5. 

eter Ii for the tanh flow profile (empty circles) and the sech 
profile (full circles) is shown in Fig. 6. The real part of the 
growth rate yR agrees with the results, obtained with a dif- 
ferent numerical approach, in Ref. 10. For small values of R 
the FKR growth rate is recovered. When R is of order one 
(R = 0.73), the tanh profile produces a peak in the growth 
rate, which satisfies conditions (12b)-( 12d) and scales as 
S - ‘I2 ( 13a). The sech profile produces a different behavior 
for R > 1, namely the solutions become nonconstant-@ solu- 
tions and the tearing mode is further destabilized. The non- 
constant-$is most evident for 2 < R < 3 with V = 1. At R > 4 
a transition to ideal K-H instability occurs.5*‘o The oscillat- 

ing part appears in the nonconstant-+ regime and reaches its 
peak value near the transition point to ideal instability. 

The matching quantity A’ was estimated numerically 
for the solutions in Figs. 21c by calculating $‘/$ near the 
singular layer. It was found that A’ is drastically affected by 
the flow in the outer region (e.g., by the value of R), while 
almost unaffected by the resistivity. For the constant-$ case 
A’--O( 10) and for the nonconstant-11, case A’-U( IOO), in 
agreement with the analytical calculation of Ref. 5. 

When the viscosity is comparable to or larger than resis- 
tivity, and with no shear flow, the classical FKR scaling 
( I 1) changes to ( 13d). In Fig. 7 the dependence of the 
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FIG. 6. The growth rate as a  function of the shear parameter R, where 
S = IOh, V = 1, (2 =  0.5, for the tanh (empty circles) and  sech (full circles) 
equilibrium flows. The peak is located at R = 0.73. For small values of R, 
the FKR growth rate is recovered. 

i 
0 

L  

10-S I 
10-2 10-l 100 

growth rate on  S, is shown. The line with the theoretical 
slope of i agrees with the calculated points, which have a  
least-mean-square slope of 0.168. In F ig. 8  the dependence of 
the growth rate on  Q  [ Eq. ( 13~) ] is verified and is found to 
agree well with the analytical result in the range 
0.02 < Q  < 0.2. When  Q  is very small, the influence of flow on 
the matching quantity A’ should be  accounted for in the 
analytical growth rate scaling, thereby mod ifying ( 13~). 
(Note that in the numerical solutions 1c, and $’ are contin- 
uous everywhere and, therefore, A’ is not well defined.) 

The  dependence of the growth rate on  viscosity for the 
sech profile is presented in F ig. 9. For R = 0.44, V= 1 the 
analytical scaling of S L’6 is recovered (lower straight line). 
For R = 6  (high shear) the tearing mode is stabilized, and 
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FIG. 7. Calculated numerical growth rate scaling with viscosity parameter 
S,.. The other parameters are S = lob, V= 0, a  =  0.5. 

Q  

FIG. 8. The dependence of the growth rate on  Q  [Eq. (13~) ] for 
S = S, =  lob, V = 1, a  =  0.5. The straight line represents the analytical 
dependence of Q  “3. 

the instability becomes a  Kelvin-Helmholtz mode.  The K- 
H instability is practically unaffected by intermediate to low 
viscosity (S, = 104-lo*), but for higher viscosity, when the 
viscous time  scale is comparable to the instability growth 
time  scale, the mode is stabilized (S, < 103) in agreement 
with the results in Ref. 11. It is interesting to note that the 
imaginary part of the growth rate exhibits similar behavior 
to the real part, unlike yr in F ig. 6  where both K-H and 
tearing instabilities are present. 

In F ig. 10  an  example of the dependence of y1 on  viscos- 
ity is shown. For the sech flow profile, R = 6  and S, = lo6 
[Fig. IO(a)], only one value for 3/r is found, and it corre- 

Y 
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FIG. 9. Dependence of the growth rate on  S,, for the sech Row profile and  
small shear:  V = 1, R = 0.44, and  a  = 0.5. The analytical scaling is recov- 
ered (empty circles). For R = 6, the transition to ideal Kelvin-Helmholtz 
instability occurs (the squares are the calculated points). 
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sponds to the fastest growing mode. When the viscosity is 
increased and S, = lo’, two overstable modes are present in 
the solution [Fig. 10(b) ] due to condition ( 18). The growth 
rate of the fastest growing mode for this value of viscosity has 
a local minimum (with respect to& ), and is shown in Fig. 9. 
When the viscosity is further increased to S, = 104, the dif- 
ference between yR, and yR 2 increases, and the magnitude 
of the second mode in Fig. 10(c) becomes very small com- 
pared to the fastest growing mode. 

The boundary conditions in the above solutions re- 
quired exponential decay of the solutions to zero at infinity 
(8). We have found that using conducting wall boundary 
conditions at large y (~2 IO) would not change the results 
significantly. 
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FIG. 10. (a) Determination of r, for the sech profile in Eq. (7b) using an 
FFT for V= I, R = 6, S= lo", a = 0.5, and (a) .S, = 10’. (b) S, = 105, 
(c) S,, = 104. Here Im(p) is the frequency in units of r ; ’ and the locations 
of the peaks render the vaIues of 1~). 

VI. S~~~~RY AND DfSCUSSlOPl 

The results of an analytic boundary-layer approach 
were compared to numerical solutions of the time-depen- 
dent, linearized, resistive, and viscous MHD equations (4) 
and (5) for various values of the parameters Q, R, V, S, and 
S,. In general, a very good agreement with the analytical 
growth rate scalings was found. Therefore, the approxima- 
tions used in analytical theory to find the growth rate scal- 
ings are found to hold. The spatial variations of the solutions 
that were not found analytically for the viscous and inviscid 
cases with flow have been presented. A nonconstant-+ tear- 
ing mode and its parameter range have been found numeri- 
cally to be in agreement with the analytical predictions. The 
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numerical growth rate scalings have been calculated and 
found to agree with the analytical ones, within the given 
range of their parameters. 

The time-dependent MHD equations (4) and (5) for 
tearing mode instability were solved numerically, without 
further approximations, in the region of interest. An implicit 
variable grid tridiagonal finite difference scheme was used to 
obtain the numerical solutions, and fast Fourier transform 
techniques were used to find the imaginary part of the 
growth rate after the real part, the exponential growth rate 
yR, was found. When the shear flow was very small ( V-c 0.1, 
R < 0.1) in the inviscid case the classical FKR growth rate 
and inner layer scalings were recovered. When viscosity is 
present, the growth rate scaling is changed to 
yR -s - “‘“(S”/S, “6 For the tanh profile, when the shear . 
flowwaslarge, i.e., IG’/F’j -O( 1) andS,/S = 1, it hasbeen 
verified that the growth rate scales as 
yR -{l - [G’(0)/F’(O)]2}“3. For the “sech” profile, a 
transition from the constant-$ to nonconstant-@ tearing 
mode was observed to be driven by the flow in the outer 
region (outside of the tearing layer). In particular for 
a = 0.5, S = 106, V = 1, and 2 <R < 3 the nonconstant-$ 
tearing mode is obtained, with the analyticaIly predicted 
growth rate scaling yR -S - “3 In case of the tearing mode, . 
small and intermediate values of viscosity, S, = lo’-103, 
lower the growth rate. For the sech profile and R > 4, Kel- 
vin-Helmholtz instability is dominant; it is stabilized for 
higher values of viscosity (S, < 103) when the viscous time 
scale is comparable to the growth time scale. 

The advantage of the time-dependent approach over 
time-independent methods (such as those used in Refs. 10 

and 11) is clearly seen when relatively short time scale simu- 
lations are performed, where more than one oscillating mode 
in the magnetic and velocity perturbations is present. This is 
particularly important for the generalization of the problem 
to nonlinear studies.” 
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