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A modified Hamilton-Jacobi formalism is introduced as a tool to obtain the energy- 
momentum and angular-momentum tensors for any kind of nonlinear or linearized Maxwell- 
collisionless kinetic theories. The emphasis is on linearized theories, for which these tensors are 
derived for the first time. The kinetic theories treated-which need not be the same for all 
particle species in a plasma-are the Vlasov and kinetic guiding center theories. The 
Hamiltonian for the guiding center motion is taken in the form resulting from Dirac’s 
constraint theory for nonstandard Lagrangian systems. As an example of the Maxwell-kinetic 
guiding center theory, the second-order energy for a perturbed homogeneous magnetized 
plasma is calculated with initially vanishing field perturbations. The expression obtained is 
compared with the corresponding one of Maxwell-Vlasov theory. 

1. 1NTRODUCTlON 

In two previous papers’*2 different forms of generally 
valid expressions for the energy of perturbations of general 
Maxwell-Vlasov equilibria are derived by various methods. 
A consequence drawn from these expressions was that all 
inhomogeneous equilibria of interest allow negative-energy 
modes and are therefore potentially nonlinearly unstable. 
The proof of this result is based on infinitely strongly local- 
ized perturbations. A question therefore arises, to what de- 
gree is localization necessary for negative-energy waves. Per- 
turbations with extents smaller than typical gyroradii of the 
different particle species could lead to anomalous collision 
terms in Fokker-Planck-like equations and might thus con- 
tribute to anomalous transport. It would, however, also be of 
interest to find out which equilibria allow negative-energy 
modes with wavelengths larger than the gyroradii. One can, 
of course, do this kind of investigation with the energy ex- 
pressions mentioned above. A more appropriate procedure 
would be to use from the outset theories that have automati- 
cally eliminated all perturbations with wavelengths smaller 
than the gyroradii. The collisionless guiding center theories 
are of this type. 

For the case of the nonlinear Maxwell-kinetic guiding 
center theory, which included all kinds of drift motions, 
especially polarization drift, we were able to obtain com- 
pletely general expressions for the conserved energy, and 
also the full energy-momentum and angular-momentum 
tensors.3.4 For relativistic theories these quantities were ob- 
tained independently by Similon’ using a method different 
from ours. Our derivations made use of the Hamilton-Jacobi 
formalism for the particles. As mentioned in Ref. 1, there 
are, however, some difficulties in applying this formalism to 
general linearized theory. In Sec. II of this paper we present a 
modified Hamilton-Jacobi formalism which is simpler than 
the original one and circumvents these difficulties. It is ap- 
plicable to linearized theories without restriction. For gen- 

era1 Hamiltonians that depend upon the electromagnetic po- 
tentials #( x,t), A( x,t), the electric and magnetic fields 
E(x,t), B(x,t), and are arbitrary functions of extended 
phase space variables, necessary for describing guiding cen- 
ter motion, the new method is used to derive the energy- 
momentum and angular-momentum tensors. In Sec. III the 
general linearized theory is presented, and in Sec. IV the 
corresponding energy-momentum and angular-momentum 
tensors are derived on the basis of the formalism described in 
Ref. 4. In Sec. V we specialize to the Maxwell-Vlasov case 
and obtain for the first time the full energy-momentum ten- 
sor for the linearized theory. In Sec. VI we introduce expli- 
citly the Hamiltonian for the guiding center motion within 
the framework of Dirac’s constraint theory for nonstandard 
Lagrangians.6 We use the regularized Hamiltonian of Cor- 
rea-Restrepo and Wimmel’ and indicate in which way the 
derivations for the more familiar unregularized theory are 
related to the ones for the regularized theory. Thereby we 
make use of the results of Ref. 8, where Dirac’s constraint 
theory was previously applied to the nonlinear theory within 
the original Hamilton-Jacobi formalism. 

In Sec. VII the results of Sec. VI are used to derive for 
the Maxwell-kinetic guiding center theory rules for obtain- 
ing the energy-momentum tensor for each special case from 
its general form. We prefer to present the results in this way 
instead of writing out in full detail the very complicated ex- 
pressions for the general form of this tensor. At the end of 
this section we give an example: the second-order energy for 
a perturbed homogeneous system with nonvanishing unper- 
turbed magnetic field but vanishing unperturbed electric 
field; no initial field perturbations are assumed, i.e., all initial 
perturbations are perturbations of the distribution functions 
with vanishing corresponding charge density. The expres- 
sion obtained is used to derive a sufficient condition for the 
existence of negative-energy modes. The result is compared 
with a corresponding one of the Maxwell-Vlasov theory. 
Finally in Sec. VIII we summarize. 
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ii. THE MODIFIED HAMILTON-JACOBI FORMALISM “particle” contributions to the charge and current densities. 
FOR THE MAXWELL-VLASOV AND KlNETlC GUIDING 
CENTER THEORIES 

The quantities to be varied are Pi, S,, A, and c#. In expres- 
sion (3) 

Let H, (pi,qi,t) be the Hamiltonian for particles of spe- 
cies Y in a phase space p,, . . . ,pn, q, , . . . ,qn with 
(4, ,qz 43 1 = (x, 9% 9x3 1 = x and correspondingly 
(pi ,p2 ,p3 ) = p, where x is the position in normal space; 
n = 4 is needed for describing guiding center motion. The x,t 
dependence of H, is given by the dependence of H, on the 
electromagnetic potentials $(x,t) and A(x,t) and, for the 
kinetic guiding center theory, also on the electric and mag 
netic fields E(x,t) and B(x,t) and their various derivatives. 
The derivatives only occur, when Dirac’s constraint theory 
formalism is used. They are absent in a formalism that 
avoids the necessity of constraint theory by introducing iner- 
tial terms with infinitesimally small masses (see Ref. 3). But 
even with Dirac’s formalism the variation of these quantities 
makes vanishing contributions to the Euler-Lagrange equa- 
tions and to the energy-momentum tensor [see remark after 
Eq. ( 122) in Sec. VII]. The general formalism is therefore 
equivalent to that for Hamiltonians not depending on the 
derivatives of E and B. 

dqdP=dq,***dq,, dP,***dP,. 
In addition, we define d$ as 

d3xd$=dq. 

The variational principle is 

(4) 

(5) 

S 
s 

“zdt =O, 
4 

(6) 

with S(p = SS,, = SC$ = SA = 0 at t, ,t, and some boundaries 
in q,Pspace. Gauge invariance requires that H,, and, similar- 
lY%H, (‘) be of the following form: 

Hv (pi,qi,t) 
= S,(P - (e,./c)A,p,...p,,q,..-q,,lE,B) f e,.4. (7) 

Variation with respect to pv, S,., rb, and A in Eq. (6) then 
yields, respectively, 

In addition to H,,, we introduce a reference Hamiltonian 
H”‘(P. Q. t) in the phase space P , , . . . ,P,,, Q,, .., ,Q,# that 
wih latey:at the beginning of Sec. III-be specified to be the 
equilibrium Hamiltonian and then be time independent. Let, 
furthermore, S, (Pi ,qj,t) be a mixed-variable generating 
function for a canonical transformation between pi,ql with 
corresponding Hamiltonian H, (pi,qi,t) and Pi,Qi with cor- 
responding H I”‘( Pj,Qj,t). The quantities pi and Q, are ob- 
tained from S, as 

%+f-f,. ($,qj,t) -H:P)(P,,$+f) =0, (8) 

~+-+($P”)--&(~P.)=o> (9) 

-~e~~~,,d~dP-~oC~~~,d~dP 
v 

(10) 

as, 
pi=Fi’ Qi=gy 

I 
and S, must be a solution of the equation 

(1) 

~+H~(~,q~,r)=H:Y)(P.,~,i). (2) 

The original Hamilton-Jacobi theory is obtained when 
H I”‘=O. If this is the case, then for perturbation theory 
there is a problem of finding a solution Sip’ of the unper- 
turbed Hamilton-Jacobi equation with c%’ ~“‘/c?q, time-inde- 
pendent. This is needed for obtaining an energy expression. 
In the modified Hamilton-Jacobi formalism we can choose 
H Lo’ as the time-independent equilibrium Hamiltonian. The 
time-independent, zeroth-order solution S to’ of Eq. (2) is 
then simply S y (O) = BPiqi, which makes the new formalism 
applicable in a straightforward way with full generality. 

We claim that, analogously to Refs. 3 and 4, 

L = -c dqdPp,,(Pi,q;,t) 
1’ 

+& d3x(E2-B*) 
s 

(3) 

is the Lagrangian for the Maxwell-Vlasov or kinetic guiding 
center theory, the criterion being that it leads to the correct 

+ l aE+i -- 
~VC at 4ncur1B=0y 

with 

aH, aHtr (PjTqiJ) -s 
6% $Pi p, = as,/aq, ’ 

aH:“’ dH:‘“(P;,Qi,t) -E 
aQi aQ; I Q, = swap. 

(12a) 

(1%) 

In Eq. (9), and often in‘the following; we use the summation 
convention in the form 

2 sib ‘=a,b’and C a+, ma@,. 
I 1 

Equation ( 8) is F& ( 2) again. Equations ( 10) and ( 11) 
are the inhomogeneous Maxwell equations with “particle,” 
polarization, and magnetization contributions to the charge 
and current densities. These equations do not have contribu- 
tions arising from H Lo’ since this quantity depends only on 
equilibrium field variables that are not dynamical variables. 

That the “particle” contributions, which are the first 
terms in Eqs. ( 10) and ( 11), are correct follows from the 
properties of the density functions pov: in Appendix A we 
prove that the modified Van Vleck determinant 
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&=det/ l&I / (13) 

solves the mixed-variable continuity equation (9). Its gen- 
eral solution can then be written as 

(Px.(P,>qi,t) = ~xL(Pi,Qi>f), (14) 
where, as shown in Appendix B,T” can be represented as 

.Tv (Pi,qt,t) =.fv ($,9,,1) 9 
or 

3;*(Pi,qi,t) =fL” p’ ( .,~,I), 

and where f,, (pi,qi,t) solves the “Vlasov” equation 

(15) 

(16) 

aH*e @j,qi9r) ah JHv afv ---- 
JP; &7i &7i JPi 

=$‘- [H&l =0, (17) 

and f !,” (P, ,Q,, t) solves the “Vlasov” equation for the refer- 
ence system 

t f aH!P'(Pi,Qt,t) afL") v af? awe) afy -- 
at api JQi JQi aq 

=aflp'- [H~~',f!~'] =(-J 
at (18) 

The brackets [ ] are the corresponding Poisson brackets. 
The representation ( 15) yields for any function G(pi,qi,t) 

= G(pi,qi,t)f,(Pi,qi,t)d~dp, s (19) 

which shows that Eqs. ( 10) and ( 11) contain the correct 
“particle” contributions to the charge and current densities. 
Altogether we can now replace Eqs. (8)-( 11)) in agreement 
with Refs. 3 and 4, by the following set of equations: 

2- [H,.,f,.] =0, (20) 

P = C e,. IL 4 dp + div & s $$A, c-4 dp, (21) I’ 

j = C e,. 
\’ s 

$'f, d+ dp - & F s s f,dG dp 

-ccurlC 
I' I 

aH 
&'fv 4dp. (22) 

This section is concluded by rewriting the theory in a 
way that facilitates derivations to come. We introduce the 
following notation: 

(xp) = W',...,x3) = (c&x), (A,) = ( - #,A), 

FpA =%-%EA,~ -A+ 
ax* axp s * 

Ei =J(Foi -Fn), Bi = -jei*[ekXe,]Fk’, 
where ei is the unit vector in the i direction, 

FM = - [e,Xe,]*B, 
E* - B* = - j&F@, 

-2!!La=, a a 
Mx,b4 a-%,p aF,, aF,, ' 

a a i a --- 
K= aE;, TaE,’ 

a -= 
aed 

- 3 [ek Xe,]&, W:L2,3, 

(4i) = (401 *** ,q, 1 = (ct,x,q.+, a** ,qn 1, 

where “ - ” is used when time is included, 

(Pi) = @09 *** 9” 1 = (Po,P,P4, .** ,pn 1, 

tOi) = (QO, *** 3% 1 = (ct,x,Q4, . . . ,Q, 1, 

tFi) = tpO, **- Pn 1 = (p09P9p49 *** 9pn 1, 

pv(Bi9Qi) =xv(j09 *** ,.Pn,~Oo, *** 4”) 

= CP, + Hv (P, , . . . ,pn,ql , 1.. ,qn,t), 

2q?(Fi,Qi) = 2iq,“)(Fo, . . . ,Fn,Qo, . . . ,Q,, 

(23a) 

(2%) 

(23~) 

(2%) 

(23h) 

(23i) 

(23j) 

= cPo + H:‘)(P,, . . . ,Pn,Q,, . . . ,Q,,t,, 
(23k) 

Ai= for i>3, (231) 
dgdi3=d&...d+, d&...dF” =dqdP, (23m) 

Wn) 

Note S?Y is a function of@, - A,e,/c, i = 0, . ..n. and F,, . 
The Lagrangian for our theory is then 

L =TJdqd’Pv[zv ($,Bi) 
-~;“‘(~i,~)] -&Jd’xF,,P”’ (24) 

and the corresponding Euler-Lagrange equations (8)-( 11) 
become 

(25) 

(26) 

(27) 
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III. THE LINEARIZED THEORY 
The equilibria considered in this section are represented 

by 
Hh”(Pj,Qi), pZ”(Pi,qi), Stop’(Pitq/), A?‘(X), 
while “primary” perturbations away from these equilibria 
are represented by 

p t.“v,,q,Ar S!.“(P,,q,,t), A :“w), 

where the superscript ( 1) is used since later these perturba- 
tions will only be first-order quantities; however, this is not 
assumed from the outset. The primary perturbations lead to 
first-, second-, and higher-order expressions for the per- 
turbed Hamiltonian H,.(dS,,/dq,,qi,t) or F,, the unper- 
turbed Hamiltonian H :!’ (P, ,&S,,/aP, ) or Z?‘!,“, and the La- 
grangian [see Eqs. (23k), (32) and (33) below]. The 
variations of the variational principle (3), (6) can then be 
done in terms of the quantities 9 t’ ‘, 5 :,’ ‘, A h’ ‘. 

The terms containing the quantities F$,. = dFj~~/ax” and 
FL:,!, occur in the kinetic guiding center theory when Dirac’s 
constraint theory formalism is used. Their variations do not, 
however, contribute to the Euler-Lagrange equations and 
the energy-momentum tensor and therefore do not influence 
the general formalism [see the beginning of Sec. II and the 
remark after Eq. (92) in Sec. VI]. 

The density of the second-order Lagrangian following 
from Eq. (24) is then 

Variation of the first-order Lagrangian yields zero, be- 
cause the unperturbed quantities are solutions to the vari- 
ational principle and thus variations around them vanish. 
The lowest-order perturbation of the Lagrangian that is rel- 
evant is therefore of second order, and one can now consider 
the perturbations p !,I’, S !,I’, and A iI’ ’ as being of first order 
only. The second-order Lagrangian in these perturbations is 
then the Lagrangian for the linearized theory. 

As mentioned in Sec. II, the advantage of the modified 
Hamilton-Jacobi formalism over the original one is the sim- 
ple and generally valid form of the time-independent, ze- 
roth-order function S i,” (P, ,qi ), namely, 

Y2 = - (1/16n)F;,;‘F”‘“’ 

-cs 
d$ & [p ;y’(%i”‘tFJ _ 3-f:)‘=‘) 

I’ 
+ qq.“(Fy.” -dye,]. 

Variation with respect to p f.’ ‘, S (.’ ‘, and A jl’ ’ in 
‘2 

s 
s s 

dt d3xaY(2’=0 
fl 

yields the first-order equations, 

(34) 

aj2;“f:” ,*$y~,i, _ ,y’) = _ e\-A i” _ 
C ap, 

S(,Y’(P,,q,) = i P,q,. 
ill 

(28) -t F::’ 
&yg (0) 

A -/- [S !.’ ‘,-K’:?] = 0, 
aF ;Jy 

Up to first order we therefore have (35) 

'Ji"O"2" 1 as;,') as:.') a%y? 
1. z----?-~-. 

2 api ap, aq(aij, 
(33) 

Here R’:,? ” and R”~P’(” are the first- and second-order 
expressions in the expansion of 

,Fq-i,EL) = z/D’(F;,q; + E$) , 

as, as ( 1) as,. -=p,+L, -= as tl) 
----!--. 

as(l) 

84; aq, ap, qf + ap, 
(29) + ‘I 5&l> 

h aa c I 

In the following we again use the notations of Eqs. (23). In 
order to obtain the second-order Lagrangian we need 

(30) 

$y’ I ) _ I+ - 

+ I$:' 
axy &y-tot 
- + F$,, L , 
aF;$' aFfs!, 

1 
r:j,'z' = -5 

as :.I ) --Z&p 
aqj c )( 

as? e. A-' h A (1) 
aqh c 

x F;I:!,. 
a 'JcO' 

a2, aF;;,y , 
+ ; F;,:I,rF:;,!r ,,4';~;;:(,> , 

f&l “fA T 

(31) 

<*(OH" - 
as(I) ac.y(0) 

1' 
," 

apt 

--.!I-) 

ag, 
(32) 

a as (,I) a *~,(~k 
& 

&%$ 

a -- 
aph ap, )- + ai& 

to' + [p :",jY:")] = 0, (36) 

~sd~d~[~i?'~(~-~A~i')~ 
I k 

+pj$F$' 
a *z;o' 

alj, cYF$' 

Here we have defined mixed variable Poisson brackets as 

[a&l =-fg-e& 
? , I I 

(38) 
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Equation (28) yields for@ :,“‘, upon making useofEq. (13), 

GI.0’ = 1 (39) 

and similarly the first-order contribution is 

$ I,” = a 2s (,’ ’ 
A. 
a~, aqi 

Furthermore, from Eq. (16), it follows that 

(40) 

(0) as(l) 

p =f!O'(ij,,ij,), j-p =+-J-. 

, 
(41) 

Note that Eqs. (41) embody the fact that perturbations ofx. 
are assumed to arise solely from changes in the particle or- 
bits. With the foregoing equations we obtain from Eq. ( 14) 

q? if’ =f!p’(&,q,), p I,” = a j-(P) a~i ( , $&). (42) 

IV. THE ENERGY-MOMENTUM AND ANGULAR- 
MOMENTUM TENSORS FOR THE LINEARIZED THEORY 

As in Ref. 4 one can show that the energy-momentum 
tensor T;i is given by 

T; =$b+($-~~,,) sta;~axAj 1 
+2FPP5-+Y, 

PA 
with 

T; - T{ = 0, kg = 1,2,3 
and with 

(43) 

(44) 

M”k = TAXk - TAxP 
dMAk 

P P k 9 2 = 0, 
ad 

kg = 1,2,3 

(45) 
being the corresponding angular-momentum tensor. The en- 
ergy-momentum tensor (43 ) has been derived without spe- 
cifying _sP. We can therefore use expression (43) for the 
linearized theory by simply replacing kp, S,., A,, and F,lP by 
Yc2 , S”’ A j,“, and FL:‘. The result is I’ 2 

7-‘2’A 
P 

= -~~~~~~(~-~~~“)[f~O’(E.g+:“) ;;;;; 

+ f ;“Fj;’ 
a 2x;J 

a&. aF;“,’ 
+LJf,,‘~)~] 

- 2F;;’ F s c&j dij [f:“’ (g - :r4 ;“) ;;$;;) +f;“F;;’ a;;;;;;j 

- --& F$G”“~A + 6; (1 ~d&@fjp’(X~2’ - 2?‘~“‘(2’) + & F;;‘F”““) . 
Y 

(46) 

In this expression one has to use the Euler-Lagrange equation (35) together with Eq. (30) in order to eliminate aS I.“/& 
wherever it occurs. Specifically these equations yield the following expression for this purpose: 

e,. A  (,) _ as:.‘) 

at c O 
- - [S,‘.“,H:.“‘] 

dH co’ +e,p. ” - F;,;’ 
aH !,O’ . 

c ap aF/$’ 
(47) 

The angular-momentum tensor corresponding to Tr” is 
M'2"'h = 7-'2'"xk _ 7-',2'RXP 

h * 

Since sC2’ doesPnot depend explicitly on time, we have 
(48) 

aT62”’ = o 
- , 

ax A 
(49) 

which means that there is energy conservation. However, generally -5“ (2’ depends explicitly on x and therefore one has 
&r’ZV 
I’= a_qa(2’ 

axA ---SF ’ 
p = 1,2,3. (50) 

explicit 

Nevertheless, for certain symmetries of the equilibrium one can use the energy-momentum tensor to construct quantities, 
such as the angular-momentum tensor in the case of rotational symmetry, that obey a local conservation law of the form (49). 

V. THE ENERGY-MOMENTUM TENSOR FOR THE LINEARIZED MAXWELL-VLASOV THEORY 
In the Maxwell-Vlasov theory the extension of phase space introduced in the above formalism is not needed, i.e., n = 3, 
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.f da = 1, and for greater clarity we now write d ‘F instead of d’i;. Furthermore, fi, does not depend on Fpy. Equation (46) 
therefore reduces to 

7-0’” = _ 
P 

~~d’P[(~-~A:‘))(~-~~:“) ;iAHa; f;“’ 

as(l) e 
+ 

( 
i-r~;“)w$.(f;‘J’~)~] -&F;;‘F”“A 

agp c 

+&; [~,d3~f~o)~[(~-~~~“)(~-~~~“)~ 
v I k t k 

1 (51) 

with 

(L?z$)=(c,~). (52) 

Equation (52) denotes a vector with four components: the 
timelike component R = 0 has the value c; the spacelike 
components A = 1,2,3 are the components of the particle 
velocity of species V. 

Ofspecial interest is, of course, the energy, which we can 
compare with results obtained in Refs. 1 and 2. For 
p = A = 0 we have, expressed in terms of the quantities with- 
out tilde, 

+ & (E”” + II”“), (53) 

with 
as(l) e Y-Y/f(‘)= _ [S;“,H;o’] +?A”‘. ‘f;’ 

at c 0 
(54) 

from Eq. (47). The perturbation of the energy F (2) is then 

F’2’ = 
s 

T’2’0 dJx 
0 (55) 

It will be given in a form that can immediately be compared 
with an expression in Ref. 2. 

To this end we add to the right-hand side of Eq. (55) the 
vanishing expression 

s 

=Jd3xd3+-( - [S;‘),H;oP)] 

and we write 

&TV, =e,.A;“-e,A”’ 
c 

We then obtain 

1 asy as;‘) a2Hy ----- 
2 aPi ap, axiaXk 

+X2 - 
‘2) .& [s:“,H:p’])f~ol 

+ ( - [S:‘l,HIp’] - H,,, ) [S;“fl”] 1 

(E”j2 + B”‘2)d3X. (58) 
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With 

=+ [#q,“,[~~“,~;cy] ++!!5$3$~ 
1 k 

1 JS(‘) JS”’ fj12HvJ) 
--A 

&IS”’ JS”’ 
2L-L++ ff~~',-.L-.2L 

2 aPi ap, axiaxk [ ax C9P I 
, 

and 

s d3xd3P[S~?,[S~?,H~P)]]f~) 

one obtains with Eq. (57a) 

F~2’=~~d3xd3P[+ [S!.“,f~P’][H!P’,s~“] 

- 2,., [S:.“,f:?] + HJIP’] . 

Relation (62) agrees with Ref. 2 if one identifies 

P here = PRef.2 and gr~Ref.2 = - s L’)hera. 

(60) 

(61) 

(62) 

VI. HAMILTONIAN FOR THE GUIDING CENTER MOTION 
We start with a Lagrangian for the guiding center mo- 

tion. Such a Lagrangian was given by Littlejohn’ and later in 
somewhat modified form by Wimmel.” Correa-Restrepo 
and Wimmel’ observed a difficulty with these Lagrangians, 
namely that they are singular for large parallel velocities if 
B-curl (B/B) #O. This led them to propose a simple regular- 
ization method for removing the singular behavior while re- 
taining the variational form of the theory. They applied this 
method to the nonrelativistic guiding center theory without 
polarization drift. Later, in Ref. 8 the same method was em- 
ployed to derive regular kinetic guiding center theories by 
means of the original Hamiltonian-Jacobi theory.8 Here we, 
too, apply the regularized Lagrangian that is only slightly 
more complicated than the unregularized one in order to 
avoid possible difficulties. In the following the unregularized 
theory is obtained, if preferred, simply by replacing the func- 
tion g(z) by z. 

The Lagrangian is defined in terms of the variables 

t, x = (q1,q2,q3 1, and q4, (63) 
where q4 is an additional variable needed in guiding center 
theory. Here, L is of nonstandard form since it is not a con- 
vex function of i; it is given by the following linear function 
of i (the index for the particle species being suppressed) 

(59) 

I 

L = (e/c)A**i - e4*, 

where 
(6W 

A* = A + (m/e) [uog(q4/vo lb + vE], (64b) 

e#*=e$+pB+ (m/2)(qi +&I, (64~) 
vE = c(ExB)/B ‘, (64d) 
b = B/B, (64e) 

and p is the magnetic moment of the gyrating particle. 
The antisymmetric function g(z) with z = q4/uo does 

the regularization, where u, is some constant velocity. The 
nonregularized theory is obtained for g(z) = z, in which 
case the solution of Eq. (68) below for q4 resulting from the 
Lagrangian (64) is q4 = u,, = b-k. In the regularized theory 
g(z) ~zshould still hold for small 1~1. For large 1~1, however, 
g must stay finite such that with u. B utherma, one has 

~og(~)<v,= (eB)/(mc) 
b*curl b . 

(65) 

A possible choice for g(z) is 
g(z) = tanh z. (66) 
Upon varying with respect to x, the variational principle 

with L given by Eq. (64) yields 

+5& (A*&) -e- @* =o 
ax 

(67) 

and varying with respect to q4 yields 

m1b.i g’(q4/uo 1 - q4) = 0, 
where g’ = dg/dz. In Eq. (67) one has 

(68) 

eh4 aA* +$$A*+---. (69) 
C c at aq, 

Therefore, by defining 

E*= -.LJA* a+* CT-X-’ B* =curl A*, v=i, 

(70) 
we can rewrite Eq. (67) as 

E* + (l/c)vXB* - (m/e)g’Q4b = 0. (71) 
Crossing Eq. (7 1) with b yields 

bxE* + ( l/c)vB r - ( l/c)u,, B* = 0, B ; = b-B*. 
(72) 

From Eq. (68) we find 
bk = u,, = q4/g’. (73) 
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When this is inserted in Eq. (72), we obtain the guiding 
center velocity v = vp as a function of t, x, q4, which will 
enter the Hamiltonian in Dirac’s constraint theory: 

v = vg = (q4/g’B$)B* + (c/Bi;)E*xb. (74) 
Another “velocity” that is needed is G4 = V, , which follows 
from Eq. (7 1) upon multiplication by B*: 

Q4 = V, = (e/mg’)( l/Blf)E**B*. (75) 
The momenta canonical to x and q4 follow from Eq. (64) : 

p=K=:A*, 
ak c 

p4 _ dL -0 
%4 * 

With these momenta the “primary” Hamiltonian H,, in the 
sense of Dirac’s constraint theory6 is 

Hp=i.g+@4E+eqs*, 
%4 

and thus Dirac’s Hamiltonian is given by 

H = ed* + v,-(p - (e/CIA*) + V4p4. 
In addition to 

(78) 

(79) 

which are equivalent to Eqs. (67) and (68), one has the 
equations 

fi= Z-J - w 
ax -ex--($v,)fp-:A*) 

(80) 

and 

afi 
p4=-F4=- 

mq4 -?(p-fA*)+q,mg’, 

(811 
By using Eqs. (67) and (68) these two equations can be 
rewritten as 

$(p-;A*)= -(--$,)*(p-;A*)-sp,, 

(82) 

(83) 

This shows that relations (76) are possible solutions, but not 
the only ones, and that p - (e/c) A* andp, are not constants 
ofmotion. In order to guarantee that relations (76) are satis- 
fied, the distribution functionf(q,,pj,t) must be of the form 

f= &P, MP- (dcM*)Nx,q,O, (84) 
where h cannot be a constant of motion, because p4 and 
;h;t (e/c) A* are not constants of motion. However, it holds 

S(p, )S(p - (e/c)A*)dp, d 3p = const along orbits (85) 

and, of course, also that 

d 3~ dq4 d “p dp, = const and f = const along the orbits. 

Hence it follows that 

h(x,%,t)d 3x dq, = const along the orbits. (86) 

We therefore write 

mw4,t) = i;(x,44,t)fg(x,q4,t), (87) 
with h being a density in (x, q4 ) space and the guiding center 
distribution function fg being a constant of motion. 

The equation forfis 

(88) 

Integration of this equation over the full ( p,p4 ) space yields, 
with f given by Eq. (84), an equation for h: 

$+ -g.(v,h) +$(v$h) =o. 
4 

(89) 

It was found in Refs. 7 and 8, corresponding to a result ob- 
tained by a different method in Ref. 3, that 

h = B ifg’(q‘Juo ) (90) 
solves this equation. This can aiso be proved directly by 
means of Eqs. (74)) (75)) (73 ) , and the “Maxwell” equa- 
tions for E* and B* which follow from Eqs. ( 70) (note that 
d A*/& is a partial time derivative at constant x and constant 
q4 ). Finally we arrive at 

f = S(P, )S(P - (e/c)A*P $g’(%/o, )& (x,q4,p,f), 
(91) 

where fg is a solution of the drift-kinetic equation 

%+v,* Sk+ v4 3!L-J. aq4 (92) 

In f, a dependence on the magnetic moment /* has been add- 
ed; this appears in the various expressions only as a param- 
eter distinguishing between different “kinds” of particles. 
Later, one must sum over all these kinds of particles in order 
to obtain the total energy-momentum tensor, i.e., one inte- 
grates over p. In the nonregularized case, q4 is identical to 
u,, . Note that the form (9 1) off has the consequence that in 
the Lagrangian (3), any variation of vg [see Eq. (78) ] is 
multiplied by zero. Thus, although vg also depends on the 
derivatives of E and B, which is not the case with the rest of 
H, this dependence is unimportant for both the variational 
principle and the energy-momentum tensor. 

Whereas Eq. (9 1) for f is sufficient in the nonlinear the- 
ory to pick out the correct solutions, this is not the case with 
the linearized theory. The constraints (76), which must 
hold along the orbits, mean forp, = 0 that 

as as(o) -=-+-=p4+ds as(') 
84, aq4 a4, a44 

= 0 along the orbits. (93) 
Here, P4 = 0 is guaranteed by relation (9 1) when used for 
the unperturbed distribution function. Hence S(i) must 
obey 

iiS”’ - = 0 along the orbits. 
aq4 

The constraint for p means that 

(94) 

-f$ = :A* along the orbits 
C 

(951 
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eA =- *‘“‘(x,q, 1 + ; A *(“(x,q4,f) along the orbits. C 
(96) 

The equilibrium distribution function guarantees 

as(o) 
- = P(t) =; A*‘“‘(Q(t),Q, (t)), 

ax 
(97) 

where P(t), Q(t), and Q4 ( t) refer to the unperturbed orbits. 
InEqs.(95)and(96)x,q,meanx(t),q,(t),whichreferto 
the perturbed orbits. 

Up to first order we can write 

x(t) = Q(t) + x”‘(t), q‘,(t) = Qa (t) + q:“(t) 
(98) 

and then find from Eq. (96) 

as(l) e Xclj(t).a -=- 
( 

a - 
ax c aQ + ,:') aQ, > 

x A*“‘(Q(t),Qa (0) 

+ ; A*“‘(Q(O,Qa (0~). 

Furthermore, it holds that 

(99) 

Q(t) _ yp - ““’ ; as”’ as(') 
ap ap 

= x(t) + -, 
ap 

(100a) 

e,(r)-*-%?! 1 asfl,- 
ap, ap, ap, 

q+(f) + as(') -, (100b) 
ap4 

from which it follows that 

as") -= -xx”‘(t), 2gL 
ap 

-q:"(t). (101) 
4 

We can now consider for a certain instant of time 1 a 
distribution of perturbations x”i(^t), qJ”(?)b in (x, q4 ) 
space, which we denote by c (x, q4, t), l4 (x, q4, t) . Thus Eqs. 
(101) and (99) become 

(102) 
ds”‘= 

ap 
-g, gk -14, 

4 

as(l) e -=- 
ax c @ -& + 64 +) A*‘O’(x,q,) + ; A*“‘, 

4 

(103) 

The latter relation is more transparent when 

V=(l/m)[P- (e/c)A*“)(x,q,)] 
is introduced. This implies that 

(104) 

ay, - as,l”I, 

as(l) _ 
ax v 

If, in addition, we use 

-f(&A*(o,)~ 

+ f ($ A*“+. (105) 

e d A*“’ --=mg&p’, 
c aq4 

(106) 
vo 

as follows from Eq. (64)) we can replace Eq. ( 103) by 
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LX”’ 
ax v = -: SXB*‘o’ 

+~4mg’~bco’+;ii*(“. 

(107) 
The zeroth-order distribution function always selects 
V = P4 = 0. It is therefore reasonable to expand S (” in 
powers of V and P4. Since only first-order derivatives of S (I’ 
occur explicit knowledge of S (‘) up to first order in V and P4 
is sufficient: 

S”’ = i?“‘(x,q,) - @mV - g4P4 

+ higher-order terms, (108) 

where the first-order terms are chosen so as to yield the rela- 
tions ( 102) for P4 = V = 0. In addition, we obtain from Eq. 
(108)atP, =V=O 

as') #$(I) 
/ =-+;(&A*("').g 

ax. ax 
and 

(109) 

as(l) ai 
/ =-+~($A*(o').~ 

aq4 p aq4 
&(I) = - + mg’ h b(O).g = 0. 
aq4 

(110) 
vo 

From Eq. (107) we find, again with Eq. (log), g4 and the 
components of g perpendicular to B*(O), gI, : 

c4b= l B*(o). a+!+) eA,+(,' -__ 
mg’B f’“’ > axe ’ 

(111) 

gL* =f&- [b*(“).(~-eA”“‘)B*lO’Xb’o’ 
C 

- B*‘O’)( a&l) e A*clJ - - - >I axe . 
The full displacement vector 6 is then 

g = &, + Az(x,qcj )B*“‘. 
We find A from condition ( 110) : 

(112) 

(113) 

% + mg’ - b”‘*g 
vo 

I* 

1 =- a++ + c 

mg’B f(O) aq4 
,,'O'.B*'O' 

eB *(o’zB *co’ 
II 

x “(‘) 
( 

e A*(l) --- 
> axe. 

(114) 

The last quantity needed for TF’p is A(‘). It has to be in 
agreement with the constraints. Since these constraints must 
hold along the orbits, corresponding constraints for their 
time derivatives along the orbits must also be valid: 

d c3S edA* 
--=-- , ddS=O at t=;. 
dt r3x c dt dt aq4 

(115) 

These conditions can be viewed as being equations for the 
new quantities (d /dt) fj and (d /dt)g4. They could be solved 
for these quantities for any A ( ’ ’ This is, however, not neces- . 
sary, since T, (“lr does not depend on (d /dt)g and/or 
(d /dt)14. We thus have the result that the following quanti- 
ties can be freely chosen: 

D. Pfirsch and P. J. Morrison 279 

Downloaded 09 Nov 2009 to 128.83.63.21. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



A( >(‘)(x q 
, , 

p) 
5 47 (116a) 

while 4’ ’ ’ is subjected to the constraint 
V@” = 47&“. (116b) 

The ,u dependence of S (‘I has been added for the reason 
given after Eq. (92). 

Vll. THE ENERGY-MOMENTUM TENSOR FOR THE 
LINEARIZED MAXWELL-KINETIC GUIDING CENTER 
THEORY 

In this section we use the results of the previous section 
to derive general rules for obtaining in each special case the, 
rather complicated, energy-momentum tensor Trjp for the 
Maxwell-kinetic guiding center theory. This amounts to tai- 
loring Eqs. (46) and (47) to the case at hand. It follows from 
Pqs. (84), ( 102), ( 109), ( 110) and from the remark after 
Eq. (92) that all terms which containf;” undifferentiated, 
the following substitutions have to be made in Eq. (46) : 

I 

P- (e,/‘c)A*[“, P4 -0, (117a) 
as(l) &(I) 
A+-& + ; ($ A*(O)).& 

ax 
i?.$), 

(117b) 

(117c) 

(117d) 

4beinggivenbyEqs. (112)-(114) and{, byEq. (111). 
There is one term containing derivatives off:“, namely, 

(118) 

This term can be written as 

--- 

where this expression is understood again with the substitutions ( 117).. 
Whenever the quantity aS 1’ ‘/at occurs, it is to be replaced according to Eq‘ (47) by 

as(l) 
2  - e,A I$ + - 

at 
[S;",ff;"] +~v;~'.A"' - ~~').-.&B"'.~)~$ 

We  note further that 

a%q? =. 
a;",' 

and that in Eq. (32) one has 

+ FL:!, F  ii!?. 
a2Rp -to 

aF$, dF'O' ' ap.r 
because of the constraints built intof!,” and F,,,, involving only vg, V, , 

We  give, in addition, a few helpful relations: 

('1 a 

All derivatives like d/d E”’ have the meaning 

a a -=- 
ap dE E=E'O" 

Of special interest are 

(125) 

(120) 

(121) 

(122) 

(123) 

(124) 

I 
a  (o) _ (eiXB'"') -vE -c 

aE (0) 

d 

B (012 ' (126) 

-v (0) = c (E'O'Xei) 2Bj”’ 
aB!o' E 

--v 
(0) 

B (0>2 B(o)2 E ' (127) 
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As an illustration, we derive the second-order energy for 
a perturbed homogeneous system with nonvanishing unper- 
turbed magnetic field but vanishing unperturbed electric 
field. We restrict to a case that was of special interest in the 
Maxwell-Vlasov theory, namely, that no field perturbations 
are initially present, i.e., all initial perturbations are pertur- 
bations of the distribution functions with vanishing corre- 
sponding charge density. Thus 

B”‘#O, E(‘)GO, F$kO, Aj,‘kO. 

Equation (46) for Ti2” then reduces to 
(128) 

77’2’0= _ 
0 

?I 1’ 

d&-g.& (fy !g) 

d$ dijf;“‘(X;2’ - A?~“‘(2’), (129) 

and Eq. ( 120) to 

as (.I) 
i= - [S:,“,H:P’]. 

at (130) 

Equations (32) and (33) yield 
39,” = 375w) = 0. (131) 

Furthermore, one has from 

Eqs. (64): A*“’ = A”’ + (m,c/e,)uog(q,/uo)b’o’, 

e,.t$*‘O’ = pB (O’ + (mJ2)q:; 

Eq. (70): B*(O) = B”‘; 

Eq. (74): VP) = (qJg’)b(‘); 

Eq. (75): v, =o. 
As a consequence, one obtains 

afft”’ -o 
474 

and it holds that 

b(o). _ a Ato’ = 0, A’O’.,,‘O’ = 0. 
ax 

This leads to 

(133) 

(134) 

(135) 
ak(l) 

[S;,“,H;?] =$b”“.-.& 

&(I) 

f;= -~(bl”‘+-.&+$,‘D’~, 

v 4 

(132a) 

(132b) 

(132~) 

(132d) 

(132e) 

& ( I ) 
c4 -.&b’“‘-.--$ 

1 

(136) 

(137) 

The second-order energy F”’ then becomes 

F (2) = djX 7-;2)0 
s 

=q- d 3x dq, d,u h to’ 
1 

& & + g4 $) 
4 

(138) 

and, with Eqs. (87) and (90) as well as with Eqs. (136) and 
(137), 

FC2’=C 
s 

B (0) 

d3xdq4 d/e--f$) 
Y m, 

x - 
( 

a ae) b(o) a!P a 
&I4 l dx+bmA- ax &I4 ) 

Introducing complex quantities by the rule 

AB+$ReA*B 

and with 
$(I) y --e 1k.X , 

one obtains 

FC2’ = VC ldq4 d/i Ff$)(,,p, 
Y Y 

=- VI &+d,u- s B”’ (k.b’0’)21$;1’12 Y m 

(139) 

(l@) 

(141) 

(142) 

where V is a normalization volume. We note that FC2’ de- 
pends on 2:” only via [,$‘:‘)I’. 

Since the first-order charge density p( ” is a q4, p inte- 
gral over an expression that is linear in !? t’), one can satisfy 
the assumption p (I) = 0 (made at the beginning of this ex- 
ample) by a proper distribution of positive and negative val- 
ues of 5 L’), on which F (2) does not depend. 

Recalling that according to Eq. (68) q4 /g’ is the compo- 
nent of the velocity parallel to B(O), we see that expression 
( 142) resembles the corresponding ones obtained within the 
framework of the Maxwell-Vlasov theory for homogeneous 
equilibria with B”’ = 0 and for infinitely strongly localized 
perturbations of general equilibria. The most important dif- 
ference is seen in the following respective terms: 

aft? 
(k*v)k*- 

av 
(143a) 

Vlasov theory 

and 

(k.bCo’)‘$$f~‘/ (143b) 
kinetic guiding center theory 

Whereas in the Maxwell-Vlasov theory any deviation off to’ 
from being a monotonic function of Iv1 allows negative ener- 
gy modes to exist, it is solely the u,, dependence of the distri- 
bution function in the kinetic guiding center theory that is 
decisive; the p dependence does not matter. The condition 
for the existence of negative-energy modes, which in the 
Maxwell-Vlasov theory is 

afp 
(k*v)k* av -> 0, for some k,v,v, (l+W 

is replaced in the Maxwell-kinetic guiding center theory by 
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(k-b 1oi 2 q4 a ) 2 Ffg’ > 0, for some k,q,,v. (144b) 
4 

The restricted class of initial conditions for which expression 
( 142) is valid means, however, that the inequality ( 144b) is 
only a sufficient condition. We expect that in the kinetic 
guiding center theory, initially nonvanishing field perturba- 
tions will be important. We remark that the sufficient condi- 
tion (144b) for the existence of negative energy modes, 
when applied distribution functions 
f,$‘(q4,p) =~,~~‘(E,/.L) zth E =,uB “” + fm,.(q,/g’)‘, be- 
comes 

>O for some k,e,,u,v, 

(145) 
In this form it is similar to the well-known sufficient 

stability condition” 

a!$) <o. 
de 

Condition ( 144b) or ( 145) does not, however, imply that 
the system is linearly unstable, but there is the possibility of 
nonlinear instability.” 

VIII. SUMMARY 
The introduction of a modified Hamilton-Jacobi for- 

malism as a tool allows straightforward construction of the 
energy-momentum and angular momentum tensors for any 
kind of nonlinear or linearized Maxwell-collisionless kinetic 
theories, which may be different for different particle species 
in a plasma, without any restriction. Contrary to the original 
Hamilton-Jacobi theory, which consists of an equation for 
the mixed-variable generating function for a canonical trans- 
formation to variables with vanishing corresponding Hamil- 
tonian, the modified Hamilton-Jacobi theory deals with a 
canonical transformation from the perturbed to the unper- 
turbed system or, more generally, from the system consid- 
ered to some reference system. The application to the Max- 
well-Vlasov theory is possible without any further 
developments. The Maxwell-kinetic guiding center theory 
has on the particle side to do with a nonstandard Lagrangian 
system. This was handled within the formalism of Dirac’s 
constraint theory. The constraints led in the nonlinear theo- 
ry to a special form of the distribution function defined in an 
extended phase space. It contains the guiding center distri- 
bution function defined in v,, , ,u, x space, where ,u is the 
magnetic moment. In the linearized theory the constraints 
introduce, in addition, a displacement vector in v,, , x space 
similar to that in x space occurring in macroscopic theories. 
As an example of the Maxwell-kinetic guiding center theory 
the second-order energy for a perturbed homogeneous mag- 
netized plasma is calculated with initially vanishing field 
perturbations. The expression is compared with a corre- 
sponding one of the Maxwell-Vlasov theory. As long as the 
possible existence of negative-energy modes follows solely 
from the u,, dependence of the unperturbed guiding center 
distribution function, the p-dependence does not matter. 
The criterion found is the same as in the Maxwell-Vlasov 
theory for wave propagation parallel to B”“. The condition 

is, of course, only a sufficient condition because of the class 
of initial perturbations considered. It is expected that in the 
kinetic guiding center theory initially nonvanishing field 
perturbations will be important. 
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APPENDIX A: PROOF THAT Gjv GIVEN BY EQ. (13) 
SOLVES EQ. (9) 

The proof is similar to those in Refs. 13 and 14 for the 
original Van Vleck determinant. 

Let A,, be the cofactor of d ‘S,./dq, 6Y’, in the determi- 
nant 

&.= l/g&-~1 * (Al) 

With this definition (under the summation convention given 
in Sec. II ) 

A/i %=A a’s,. 
as, apA - = &S& If aq, ap, 

and 

(A21 

C-43) 

then hold. With these relations, Eq. (8), and with notation 
(12),wehave 

4x -=Arh 
a “s,. 

at dt dq, 6’F, 

= A,, &[--If>. ($$w) 

a 
+ dP, -( 

dH y’ a “s,. 
-- JQJ af’, aqi )I 

which proves the statement. 

APPENDIX B: PROOF OF RELATIONS (15) AND (16) 
When 

p,. = &;3;. (F, ,q, ,f 1 
is inserted in Eq. (9), one obtains forA. with the notation 
(12) 
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L 

g+ a!. JH,. -aH:pij;=o, 

dP, %, 82, apt 
For 

m%t) =L (~.q,,t), 

(B2) 

(J33) 

with a notation forf,. corresponding to Eq. ( 12), the follow- 
ing relations hold: 

&. af af,. a 9,. 
at 

-x+-- 
ap, aq, at 

++!E -Y-- 

( 

aH aH, 

ai+ hi ap, 

a%. awe) a3 
X --A+LL, 

aq, aq, aQt m &7i ) 

aj, af,. I af,. a3,. -=- 
aq, aq, 44 a4rdq, 

(B4) 

(B5) 

(J36) 

Using Eqs. (B4)-( B6) in Eq. (B2) yields the equation 

af ar-r,. af aft. af,. 
dr+-----= 

o 
44 aq, aq, ap, 

(B7) 

for f,,(p,,q,,t), which is Eq. (17). Relation (15) is thus 
proved. 

For 

jl.V,,q,,t) =f!? p ( ,?$ J) (B8) 

one has, with a notation forf l,“) corresponding to Eq. ( 12), 

aft? + af:? a%,. al. _- -~ 
at at aQ, ap, at 

af I?’ af $1 z-f- 
( 

aIs,, a=s, --- 
at aa ap, aq, api 

JH (0) aH(o) a% -..Ll+LL 
+ ap, 82, w w ) 

aA. af:o) a%,. -- 
aq, aa w aqi 
aA. aft? afy a's,. -- 
ap, ap, +aQ1aP,aP,. 

(BlO) 

(Bll) 

Inserting Eqs. (B9)-( Bl 1) into Eq. (B2) yields 

afy + aH :? afy -- aH :r) af:,?' = o ~- 
at ap, a2 m ap, 

(B12) 

for f :P’(P,,Q,,t), which is Eq. (18). Relation (16) is thus 
proved. 
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