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A simple sufficient condition is given for the linear ideal instability of plane parallel equilibria 
with antisymmetric shear flow and symmetric or antisymmetric magnetic field. Application of 
this condition shows that plane Couette flow, which is stable in the absence of a magnetic field, 
can be driven unstable by a symmetric magnetic field. Also, although strong magnetic shear 
can stabilize shear flow with a hyperbolic tangent profile, there exists a range of magnetic shear 
that causes destabilization. 

Shear flow is a very common phenomenon. It appears in 
such diverse areas as in astrophysical jets, I the magneto­
sphere,2 and rotating plasmas. Recently, experiments3 in the 
DIII-D tokamak show that there is a substantial increase in 
the perpendicular component of plasma flow velocity asso­
ciated with the L-(low-) to H- (high-) confinement mode 
transition. Since shear flow contains a source offree energy, 
it can give rise to the Kelvin-Helmholtz (K-H) instability.4 
A necessary condition for K-H instability to occur is the 
Rayleigh inflection point condition. The physical role of the 
inflection point condition is explained by the conservation of 
vorticity:5 In order to release the free energy contained in the 
shear flow, there needs to be a vorticity extremum, since only 
then does the restoring force against a perturbation vanish. 
Shear flows that are stable can become unstable when the 
magnetic field is included. The purpose of the present paper 
is to present a simple condition for such instability. 

The presence of the magnetic field has a dual role for the 
instability of shear flow. The magnetic field exerts a tension 
on the fluid, which usually acts as a restoring force on a 
disturbance. So it is easy to imagine that the flow is com­
pletely stabilized if magnetic energy overpowers kinetic en­
ergy everywhere;6 i.e., A 2> V 2 in the whole region, where A 
is the local Alfven speed. This condition need only hold in 
some reference frame for stability to be established. It was 
also shown by using the semicircle theorem 7 that the flow is 
stable if IA I min > ( V max - V min) /2. References 8 and 9 have 
discussed the stabilizing effect of magnetic shear. On the 
other hand, sometimes the magnetic field can destabilize the 
shear flow, since it breaks the constraint oflocal conserva­
tion of vorticity and thus makes the shear flow free energy 
accessible. In this case, the existence of an inflection point is 
not necessary for instability. Kent 10 has shown that a stable 
symmetric flow can be driven unstable by a symmetric mag­
netic field if, on the boundary A = ° and V' V" -A 'A " > 0, 
where prime denotes differentiation with respect to y. 
Stern II has also discussed the destabilizing effect of a 

piecewise continuous magnetic field on plane Couette flow. 
The actual role of the magnetic field depends on the specific 
profiles of both the flow and the magnetic field. Kent6 has 
shown that a constant magnetic field stabilizes some, while it 
destabilizes other, monotonic flow profiles. 

In the present letter, we consider a sufficient condition 
for instability, by assuming that the flow is antisymmetric 
and that the magnetic field has parity; i.e., it is either sym­
metric or antisymmetric. A technique l2 that is based on the 
use of symmetries and the Nyquist method is used to obtain a 
simple formula. Though the symmetries we assume may lim­
it application to some practical problems, results obtained 
from these special profiles provide insight into the physics 
and will be helpful in the more realistic situations. In many 
circumstances, the shear flow can be approximated by anti­
symmetric profiles. An antisymmetric hyperbolic tangent 
profile has been used to model the edge flow in tokamaks.8 

In order to focus on the shear flow driven K-H instabil­
ity, we neglect dissipation. In many situations, this is justi­
fied since the dissipation diffusion time scale is much longer 
than the K-H time scale. The dynamics is assumed to be 
governed by ideal incompressible magnetohydrodynamics. 
For simplicity, we adopt slab geometry and assume an equi­
librium with shear flow V = V(y)x and parallel magnetic 
field B = B(y)x. Here, we assume that such a flow is con­
fined between rigid walls located at y = - 1 and y = I. As­
suming that all the perturbed field components have the 
form/(k,c,y)exp ik(x-ct) , the normal mode equation for 
the transverse displacement w is6 

{[( V - C)2 -A 2]W'}' - k2[(V - C)2 -A 2]W = 0, 
(1) 

where prime denotes differentiation with respect to y, and 
A (y), as noted above, is the local Alfven velocity. Since the 
transverse displacement vanishes at the rigid walls, Eq. (1) 
has the boundary conditions w(l) = w( - I) = 0. Equation 
( 1 ), together with the boundary conditions, gives the disper-
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Since Eq. (1) is regular for complex c, c(k 2) in this case is an 
analytic function of k. 

Here, we consider an extreme case with wave number 
k = O. If there exists an eigenvalue where Im(c) =Ci =FO for 
k = 0, then this is sufficient to say that the system is unsta­
ble. Strictly speaking, the growth rate kc; is zero when k = 0, 
but analyticity of c( k 2) ensures a finite growth rate near 
k = O. This argument has previously been used in Refs. 6 and 
13. 

Setting k = ° in Eq. (1), integrating, and applying the 
boundary conditions leads to 

F(c) = y = 0. fl d 
_ f (V - C)2 _ A 2 

(2) 

Without solving the above integral equation for the eigenval­
ue c, we can use Nyquist diagram method, in a manner simi­
lar to the Penrose criterion,14 to determine whether or not 
there exist unstable modes. By a well-known theorem of 
complex analysis, the number of roots of an analytic func­
tion like Fin the upper half-plane [1m ( c) > 0 J is given by the 
number of times a polar plot of F encircles the origin as c 
traces out the curve as shown in Fig. 1. Path 3-1 has a dis­
tance e from the real axis so that the singularity on the real 
axis is avoided. Thus F( c) is an analytic function. However, 
in order not to miss any possible unstable modes, we take the 
limit e-+O. 

Along the path 1-2-3, c = ReiO and in the limit R -+ 00, 

F( c) - 2le2io / R 2. The corresponding plot of F is shown in 
Fig. 2. Since we assumed that the shear flow is antisymme­
tric and that the magnetic field is either symmetric or anti­
symmetric, we have along path 3-1 in Fig. 1 

F(c, + Ie) = F*( - Cr + Ie), 

where "*,, means complex conjugate. Thus we have the fol­
lowing conclusions: (i) 1m FUe) = 0, and (ii) if 
1m F(cr + E) = 0, (cr =FO), then 1m F( - Cr + ie) = 0, 
and Re F(c r + iE) = Re F( - Cr + tE). To determine the 
winding number [the number of times F(c) encircles the 
origin], we can just count the points of crossing of the real 
axis. Denote crossing points by n; associated with such 
points are two quantities 

{
I, crossing of real axis with up direction. 

(Tn = _ 1, crossing of real axis with down direction. 

and 

Im c 
2 

3~------~---4~----~----~ 

Re c 

FIG. J. Nyquist diagram in the c-plane. 
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FIG. 2. Nyquist diagram in the F-plane. 
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Since the Nyquist diagram must be closed as c traces the path 
of Fig. I, this implies the following conclusions: (i) The total 
number of crossing points is even and ~n(Tn = 0; and (ii) for 
crossing points i andj with r i = rj and O"i + O"j = 0, there is 
cancellation and thus no contribution to the winding num­
ber. 

For the present problem, if Re F(O + iE) > 0, then the 
total number of crossing points with positive and negative 
Re Fare both odd numbers, and we always have net crossing 
on each side of the real axis of F(c). Now we consider, re­
spectively, two possible cases. 

Case I: In this case, we suppose there are no crossing 
points with Re F = 0. Thus the net crossing with Re F> 0 
and Re F < ° must point in opposite directions. Hence, the 
Nyquist diagram encircles the origin at least once, and there 
exists at least one unstable mode. 

Case II: In this case, there exist crossing points with 
Re F( ± Cr + ie) = 0, which implies that there exist mar­
ginal modes with C = ± Cr' When this occurs, we can prove 
that the Nyquist diagram still indicates a nonzero winding 
number. In other words, it is impossible to have a Nyquist 
diagram with the net crossing for Re F> 0 and the net cross­
ing for Re F < ° pointing in the same direction. For the mo­
ment, suppose this is the case. The Nyquist diagram will be 
as shown in Fig. 3(a) and there exists no unstable mode. 
Now we change the c contour a little bit, so that E is very 
small but with finite value; instead of proceeding to the limit 
e -+ 0. Since there exists no unstable mode, there are no cross­
ing points with Re F= 0 along the new contour. Further­
more, we still have Re F(O + Ie) > 0, since e is very small. 
Using the argument of case I, there exists an unstable mode, 
as the example shown in Fig. 3(b) indicates. This contra­
dicts our original assumption and thus the proof is estab­
lished. 

From the above discussion, a sufficient condition for 
instability with antisymmetric shear flow and antisymmetric 
or symmetric magnetic fields is given by 

f
t d 

F(O + ie) = Yz 2 > 0. 
-I (V - ie) -A 

(3) 

where the limit E-+O from above is assumed. For the case of 
antisymmetric shear flow with only one inflection point, the 
inflection point should be at y = O. When A = 0 (i.e., with-
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FIG. 3. A Nyquist diagram having crossing points with Re F = 0, and with 
the net crossing for Re F> 0 and Re F < 0 pointing in the same direction. 
(b) The Nyquist diagram of3 (a) with finite but small values of 10, instead of 
10=0. 

out magnetic field), our sufficient condition Eq. (3) reduces 
to that obtained in Ref. 13, and this condition becomes suffi­
cient and necessary for instability because of Lin's theorem.s 

For a plane Couettejiow profile V(y) = by, there is no 
vorticity extremum and thus this flow is K-H stable. IS 

Stern II has shown that the Couette flow can be destabilized 
by a piecewise continuous magnetic field. Here, we add a 
symmetric magnetic field A(y) = ay2 to the Couette flow 
equilibrium. The destabilizing effect of this symmetric mag­
netic field is easily demonstrated from our simple sufficient 
condition. Equation (4) gives 

F(O iE)=_I_(-2 A(/)lo 1 1 + A (/)IV(l) I). 
+ V(/)b + V(/) g 1 - A (/)IV(/) 

(4) 

When the magnetic field at the boundaries is sufficiently 
strong; i.e., A (/)IV(/) >f, where/zO.834 is the value at 
which F(O + iE) = 0, F(O + iE) > 0 and there is instability. 

For the second example, we consider a hyperbolic tan­
gent shear flow V(y) = Vo tanh (yl d I)' In the case without 
magnetic field, Eq. (3) is both sufficient and necessary for 
instability; it indicates that the hyperbolic tangent shear flow 
is unstable if, and only if, lldl > 2.39. Now we add a magnet­
ic shear A (y) = AoYl d2 • When the magnetic shear is strong 
enough so that Aold2 > V oIdl, the shear flow will be always 
stable since the magnetic energy overpowers the kinetic en­
ergy everywhere; i.e., A (y) 2> V(y) 2 for all y. We want to 
know what happens if the magnetic shear is not this strong. 
For simplicity of evaluating the integral in Eq. (3), we ap­
proximate the hyperbolic tangent profile by a piecewise con­
tinuous one as follows: 
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y>dl, 

Iyl<dl, 

y< -dl · 
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F(O + iE) = ~ (_1_ 10 (V' +A 'lldl )( V' -A ') 
dl V'A' g(V'+A')IV'-A'lldl l 

(5) 

where V' = Vold l, A' = Aold2, and V' >A', I> d l are as­
sumed. In order to stabilize the unstable shear flow, it is 
necessarytohaveF(O + iE) <0. When A ' <A', whereA 'sat­
isfies ~dlll V'>A'> (dIll) V', the necessary condition is 
satisfied. However, it is interesting to notice that when 
A' - (dIll) V';i.e.,A(l) - V(l),F(O + iE) is always positive. 
A stable flow (lld l < 2.39) can be driven unstable by the 
magnetic shear in this range. Thus magnetic shear does not 
always stabilize the K-H instability. 

We conclude from the above two examples that the 
magnetic field in the midplane tends to stabilize the shear 
flow, while the magnetic field at the boundaries tends to 
destabilize the shear flow, especially when A(l) - V(l). In 
the plane Couette flow example, A(O)IV(O) = 0, thus this 
flow is destabilized by the magnetic field at the boundaries. 
In the hyperbolic tangent flow example, the magnetic shear 
destabilizes the flow when A' - (dIll) V'; i.e., A(l) - V(l). 
However, a large magnetic shear stabilizes the flow. In this 
case, the stabilizing effect of the magnetic field in the mid­
plane overcomes the destabilizing effect of the magnetic field 
at the boundaries. 
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