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The effects of density and temperature gradients on drift wave vortex dynamics are studied 
using a fully nonlinear model with the Boltzmann density distribution. The equation based on 
the full Boltzmann relation, in the short wavelength ( -ps ) region, possesses no localized 
monopole solution, while in the longer wavelength [ - (psrn ) “‘1 region the density profile 
governs the existence of monopolelike solutions. In the longer wavelength regime, however, the 
results of analysis show that due to the inhomogeneity of the plasma the monopoles cannot be 
localized sufficiently to avoid coupling to propagating drift waves. Thus, the monopole drift 
wave vortex is a long-lived coherent structure, but it is not precisely a stationary structure 
since the coupling results in a “flapping” tail. The flapping tail causes energy of the vortex to 
leak out, but the effect of the temperature gradient-induced nonlinearity is to reduce the 
leaking of this energy. 

1. 1NTRODUCTlON 

It is well known that the dipole vortex is an exact soli- 
tary wave solution to the dissipationless Hasegawa-Mima’ 
(H-M) drift wave equation, which in the fluid mechanics 
literature is referred to as the Rossby wave equation 

(1 - V?) g + Vd % - [&g, ] = 0, 

where 

is the Jacobian involving the electrostatic potential 47 and the 
vorticity c = V2q7. The convective nonlinearity [&I of Eq. 
( I), also known as the Poisson bracket or vector nonlinear- 
ity, facilitates the formation of dipole vortices.2’3 Recently, 
there have been numerous studies of this type of nonlinearity 
and the resulting vortex dynamics.3*4 In the present work, we 
consider a generalization of the H-M drift wave equation 
that includes a general density profile n,(x) and tempera- 
ture profile T, (x).~-” 

Petviashvili” first studied the problem with a tempera- 
ture gradient and an exponential density profile. The model 
he proposed has recently been criticized by several au- 
thors’-” because of inconsistency with Ertel’s theorem, the 
basic conservation law of potential vorticity. Some of these 
authors7+” showed that monopole vortices exist only when 
the drift velocity in Eq. (1) is nonconstant, vd = vd (x). 
More recently, Spatschek et al.‘* used a new high order and 
long wavelength scaling to develop a model that is similar to 
Petviashvili’s model. These authors argue for the existence 
of a monopole vortex solution in the very long wavelength 
region ( -pp /E), even with constant drift velocity vd . Here E 
is the usual drift theory expansion parameter E = ps /r, , 
where ps = c(m, T, ) “2/eB is drift wave dispersion scale 
length, and r, is the density gradient scale length. We also 
define 7, = r, /rT, as the ratio of the density-to-temperature 
gradient scale length. 

It is well known that there exists a large class of vortex 
solutions for nonlinear drift waves. These solutions arise be- 

cause of an arbitrary function P( 97 - ax) that appears in the 
equation for traveling wave solutions. Usually this function 
is chosen such that the solution vanishes as r-+ CO. The func- 
tion F determines the relationship between the generalized 
potential vorticity, which to the first order is V2g7 
- p/T(x) - In n,(x), and the streamfunction, p - ux, in 

a frame traveling with speed u. For the well-known dipole 
vortex solution, the choice of this relationship is piecewise 
linear with a jump in the slope dF/dp. In spite of the pres- 
ence of this jump the solution is consistent with the H-M 
equation.3-‘0 Alternatively one can demand F to be analytic. 
In this work we show for a model that includes an arbitrary 
temperature gradient and a constant density gradient, that 
this choice of F makes it impossible to have a binding effec- 
tive potential. Here the density profile is strictly exponential, 
but the result is independent of the temperature profile. 
However, with a more complex background plasma, i.e., 
with nonconstant drift wave velocity vd (x), the monopole 
vortex is found in the ps /E’/* wavelength region. Physically 
the nonconstant vd (x) adds a shear to the diamagnetic drift 
velocity. Since it is well known (Horton et al.‘” and Sagdeev 
et a1.14) that shear flow causes the formation of monopole 
vortices, it is perhaps to be expected that the shear flow from 
nonuniform vd (x) will create monopole solitary waves. 

Also we show that the monopole vortices mentioned 
above in inhomogeneous plasmas are not strictly localized 
solitonlike monopoles. The effect of inhomogeneity in the 
background plasma on vortex dynamics is shown to give rise 
to an oscillating tail; the inhomogeneity forces a coupling of 
the vortex core to the tail of a radiative wake of drift waves, 
which thus causes radiative damping of the vortex core. 

This work is organized as follows: in Sec. II, we derive 
the model equation for nonlinear drift waves in plasmas with 
density and temperature gradients. The steady-state travel- 
ing wave equation of the model is given and solutions of this 
equation are discussed in Sec. III. In Sec. IV we investigate 
the effect of inhomogeneity on the drift wave vortex and give 
analytical results. Section V describes the results of numeri- 
cal investigation. Summary and conclusions are given in Sec. 
VI. 
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II. MODEL EQUATION 111. TRAVELING WAVE EQUATlON AND SOLUTIONS 
We consider a plasma in a uniform external magnetic 

field in the z direction, where the electrons move freely 
along the magnetic field. The dissipationless equation of mo- 
tion and continuity equation for the ions are 

Now we look for stationary traveling wave solutions of 
Eq. (5) of the form p = ~(x,y - ut). Such solutions travel 
with the velocity u in they direction. Equations (5) and (6) 
together give the following: 

*= 
dt 

--vq+w ,vxf C-I , 
m 

I+% =o, 

where d /dt = 8 /dt + v*V and wci = eB /mic is the ion 
cyclotron frequency. Combining these two equations, one 
can easily derive Ertel’s theorem by neglecting the parallel 
compression VII VI,, 

(4) 

where o, = f*(Vxv) . 
With the ordering, 

1 d v-v E,S----<I, 
&et dt @ci 

to the lowest order in E, , we have 

v = (e/m,w,,)$XVQ,, 

0, = q.i(pl/T,)V’(eQ,) , 
and 

$=~+coci-$- [e*, 1, 
e 

where ps = c,/w,, and c, = [ T,(x)/m,] I’?. Now we 
define T(x) = T,(x)& (where To is a constant), 
p= (r,/p,,,kQ>/T,,, and E, =p,Jr,,. Equation (4) 
becomes 

(5) 

The space and time variables are normalized by pa and 
r, /cti, respectively, where r+; ’ = - d In n,,/dx, andp,a and 
cso are the ion Larmor radius and ion acoustic speed at the 
reference electron temperature To, respectively. Equation 
(5) states that the potential vorticity is conserved on each 
fluid element moving with the velocity v = ixVq(x,y,t). 

To close Eq. (5), we assume that the particles satisfy the 
condition of quasineutrality with the electrons obeying the 
Boltzmann density distribution. Thus, the ion density is giv- 
en by 

n = n,(x)exp[e@/T,(x)] = n,(x)exp[E,q7/T(x)] , 
(6) 

where n,(x) and T(x) are assumed to be analytic functions. 
Because of the fact that E, is a small parameter, for the nu- 
merical calculations in Sec. V the exponential in Eq. (6) is 
expanded to first order in E, . For certain strong monopole 
solutions with large negative 47, however, the expansion can 
lead to negative density states. Thus, whenever the expan- 
sion is performed we require that E, 47 < T for all x. 

-ug+ [@I =O, 
where 

G 
1 -I- e,v=p 

= n,,(x)exp[qp/T(x)] r 
Equation (7) gives the condition for stationarity as 

[p-ux,G] =O, (8) 
which requires that 1 -k E,V2g, 

ndx)exp[~,p/Rx)] 
=F(e,--ux,, (9) 

where F is an arbitrary function of its argument. 
If we follow Ref. 7 and choose F to be an analytic func- 

tion determined by n,(x), then Eq. (9) becomes 

e, v*p = n,(x) 
%(X - 40 /u) 

(10) 

where 

F(g, - ux) = l/&J (UX - 47)/U] * (11) 
With this choice of F the right-hand side of Eq. (10) ap- 
proaches zero as 1x1 -t 00 and p-+0, which corresponds to 
the untrapped flow region. Although there exist other ana- 
lytic choices for F that satisfy V’p-0 as Ix/-+ ~4 and p-0, 
which may lead to localized solutions for reasonable density 
profiles n,(x), for the strictly exponential profile 
n,,(x) = exp( - e,x) and the Fof Eq. ( 11) bound solutions 
do not exist. In this case Eq. ( 10) becomes the following 
nonlinear Poisson equation for 9: 

enV247 =exp[6(-j&--$)p] - 1 
expk, [l/T(x) - l/u]qz) 

E, [l/T(x) - l/u] ’ 
(12) 

The effective potential for Eq. ( 12) is then Kxp (@Xl = p - expk, [l/T(x) - l/~]~p) 
%[b’T(x) - l/u] ’ (13) 

We can easily see that this effective (“time’‘-dependent) po- 
tential VrXP (41,x), for any temperature profile T(x), is sim- 
ply not able to form a soliton well, and thus bind a local 
disturbance to form a solitary vortex (monopole or dipole). 
However, the fact that this choice for F does not produce a 
localized solution does not exclude the possibility that the 
dynamics of the plasmas in relaxing from a turbulent state 
finds another choice of F(q - UX) with a new structure that 
allows binding. 

One example for a binding F structure is to follow the 
modon construction 2*3 for the dipole vortex by choosing 
F( 9 - ux) to be piecewise linear. For the dipole vortex, Fis 
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the same as Eq. ( 11) in the untrapped region r > r, and a 
different interior function cnt (CJJ - ux) with differing slope 
dF/de, in the trapped region r < r,. To see the relationship 
with the dipole vortex solution we consider the logarithm of 
Es. (9) 
In( 1 + e,,V’p) = In F(q, - ux) -I- In n, + ~,p/T(x) . 

(14) 
With n,(x) = exp( - E,x), F(e, - ux) = exp[e, (x 
- p /u) ] as defined by Eq. ( 11)) and the ordering 

u-LJ,,=uv,(x=O) = 1, e@/T,-p,/r,o-E,-eEl, 
(15) 

Eq. ( 14) to lowest order in E yields 

v2q, = l ( 
VdO - - - 

T(x) u > 
p, for r)rO . (16) 

For the interior (r < rO) solution we choose 

lnF,,,(p--xl= -e,(l+p*)(p-ux), (17) 
so that, to the lowest order in E, Eq. (14) reduces to 

v2q,+ [l +p2- l/T(x)le, 
= [u(l +p2) - 11x, forr<r,. (18) 

Equation ( 18) for the interior vortex structure is driven by a 
source term that measures the mismatch between the vortex 
speed u and the linear wave speed l/( 1 + p2). The constant 
p’ > 0 is determined by continuity of p, C$ /Jr, and V2p at 
r = r,. In the case where T= const this choice for 
F(qu - ux) produces dipole solutions” of radius r, with an 
amplitude that increases as u,,r,,. Thus, while we have 
shown that the simplest analytic choice of F(q, - ux) for- 
bids the existence of monopole vortices for the strictly expo- 
nential density profile, the plasma dynamics in relaxing from 
a turbulent state in which trapping takes place may naturally 
produce a F(e, - ux) with nonanalyticity at the point of 
transition between the trapped and untrapped regions. An 
example from turbulent particle simulation that demon- 
strates an abrupt change in the slope of F(g, - ux) as plotted 
versus vorticity is shown in Horton et al.13 However, the 
dipole vortices have been shown6*‘2 to be structurely unsta- 
ble, in particular, a small term of KdV type nonlinearity can 
split them into monopolelike vortices, an effect to which we 
now turn. 

In most magnetic confinement systems both T, (x) and 
ud (x) vary on the scale of r,. We define the dimension- 
less parameters KT “pso d( l/T)/dx--E and 40 
=pa dv,/dx - E, vdo. In the case of a nonconstant drift ve- 
locity ud (x), with or without a temperature gradient, the 
analytic choice of F( 4) - UX) in Eq. ( 11) can lead to the 
possibility of trapping and the formation of solitary vortices. 
Taking the logarithm of Eq. (10) 

ln( 1 + e,V’e)) 

= In n,(x) - In n,(x - 9 /u) + c,q~/T(x) 
and expanding the density profile as 

In n,(x) = - e, [ UdOx + (&,/2)x2 + a-.] 

yields 

(19) 

(20) 

ln(1 +fz,V2p) =E,~‘(u,X)~)+E~(UI;/ZU~)QI~+ *--, 
(21) 

where 

k *(u,x) = l/T(x) - ud (x)/u (22) 
and 

v,(x) = 1 + r&x. (23) 
Observe that ud,, = 1 follows from the choice of space-time 
units. 

With the ordering 

PfJ’ -e@/T, --K~-u;~ -pso/rno EE, -E< 1 

and 

u-udo = 1, (24) 
and keeping only the terms of order .? in Eq. (2 1 ), we get 

V’g, = k;q, + (u;,/2u2)q2, (25) 
where we have expanded k ‘( u,x) = k i + ax + . . * and 
considered k; = (1 -V&U)-E and a = (KT 

- qjo/u) -I?. 

Notice that Eq. (25) has the same form as the Petviash- 
vili equation for the steady state.’ But the crucial difference 
is that in the Petviashvili equation the nonlinear term arises 
due to the temperature gradient, while in the present case the 
nonlinear term is caused by the gradient of drift velocity. 
However, the gradient of the drift velocity also gives rise to a 
linear damping term - (v&/u)xg, on the right side of Eq. 
(25), which is the same order as the other terms. The impor- 
tant thing is that although the temperature gradient does not 
contribute a nonlinear term, its existence can balance the 
linear damping term caused by the gradient of drift velocity 
vAo. In this way the linear damping term is made smaller and 
exact monopole vortex solutions are possible when 
K~ = v;,/u or a = 0. 

The quadratic nonlinear Poisson Eq. (25) has mono- 
pole vortex solutions’.” when k i = ( l/T - v,/u),, > 0. The 
solutions can be approximately8v’” written as follows, for 
small r, 

f’W,t) = - 2.4k; (2u2/u;, ) 

x{cosh[$ko,/xZ -I- (y - z&l) -4’3. (26) 

From Eqs. (25) and (26) we see that the sign of the vortex 
amplitude no longer depends on the sign of velocity u as is 
the case for Petviashvili monopoles. Instead it depends on 
the sign of ~2~. From Eq. (25), we recognize the symmetry 
relation 

p( - &l;w) = - p(&;-w) , 
which we test in the simulations. The simulation results will 
be discussed in Sec. V. 

We have also tested the new monopole vortex solution 
given here for solitonlike behavior upon collision. Prelimi- 
nary results show that the overtaking collision is largely elas- 
tic. Details of these studies will be reported in a subsequent 
work. 

The following amplitude-velocity relation can be ob- 
tained from Eq. (26) : 
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* = t( udo rt &o + 0.831u;opm I ) , (27) 

where p,,, is the amplitude of the monopole vortex given by 
Eq. (26). However, the monopole vortex solutions given 
here must propagate in the direction ofthe drift wave (u > 0) 
since the negative velocity monopoles have 
k 2 = 1 + u,,/lu[ > 1, which violates the ordering in Eq. 
(24) required for localization. In this short wavelength re- 
gion, r,, -pa,, there are no localized monopole solutions as 
discussed in Sec. II. Therefore we can only take the positive 
sign in Eq. (27). 

We can use the amplitude pm to estimate the maximum 
or minimum density of the vortex 

n/n, = exp[E,p/T(x)] =exp(e,q,) 

= exp[ - (4.8~,&, )u(u - udo) ] . (28) 
Deriving Eq. (25)) and therefore Eq. (26) from Eq (21) 
implies that we have expanded the Boltzmann density distri- 
bution of Eq. (6) to first order in E, and dropped all the 
higher-order terms. For consistency of the expansion, 

e,IpP,[ =4.86,u(u--v,,)/tv~,191. 
We therefore get the interval condition for the velocity u 

v,,a<;(u,, + ~$0 + 0.83}u;oI/~,) (29) 
required for the validity of the expansion. Equation (29) 
shows that u must be the same order as vdO. This implies that 
we consider I&, - E, . 

Using a multiple-scale method and a different ordering, 
namely taking 

e@ u 
PszV2 T -----KT- kg- 8 and 12-2, 

*cr dt 
(30) 

e cs 
Spatschek et al.” developed a model in which the steady- 
state equation has a form similar to Eq. (25), but with a 

I 

coefficient of the last nonlinear term in Eq. (25) proportion- 
al to arm - (I/T)(d In T/ax). Although both the equa- 
tions, our Eq. (25 ) and Eq. (5) in Ref. 12 have been shown 
to have monopole solutions,5*h*‘2*‘5 in reality the vortex wave 
function will extend into the region where 

k2(u,x)=k(:+ax+.+*<0. (31) 
When this happens outgoing drift wave propagation occurs. 
The matching analysis in the following section shows that 
the amplitude of the outgoing wave is of order pvortex (x 
= X,rit ) where x,,,~ is the point at which k 2(u,x,,it ) 
= l/T - u,/u = 0. For large scale vortices with core size 

ro-kg ’ >P,~/E”‘~, in inhomogeneous plasma, the coupling 
to outgoing drift waves is a strong effect that eliminates the 
existence of the monopole vortex. 

IV. RADIATION DAMPING OF SOLITARY DRIFT WAVE 
VORTEX IN INHOMOGENEOUS PLASMAS 

In the small amplitude region exterior to the vortex core 
the wave field is given, from Eq. (2 1 ), by 

d2Pk,W 
dX2 

(32) 
with ~0~” (x) the Fourier transform in y of p(x,Y,t) such that 

P(xd’,t) = 
s 

dk, ~3b,(x)eik~‘Y- u’) I 

Equation (32) has turning points at x = xT, where the xr 
are determined by u,(x,)/u - k: - l/T(x,) = 0. For 
kz -+O the x,(k,,) -+x,,~, defined by k 2(u,~,,ir ) = 0 in Eq. 
(31). 

For Ix[> x,, in the exterior region, where x0 is the length 
scale of the vortex core given by kGo c. I, the WKB solutions 
of Eq. (32) are 

* 
Ak,Qk; “4(x,u)exp (I i Qy(x’,u)dx’ , ” > 

Q@x) > 0 > 

q%,(x) = 
XI 

Akv [ - L&,(w)] -“4 exp - 
( s 

x; [ - Q,,Wd] “2dx’ - $5 Q,$w) <O, 
(33) 

where Q,, (x,u) = ud (x)/u - l/T(x) - k: and the ampli- 
tude A,” will be determined by matching to the vortex solu- 
tion. Equation (33) with Qk, > 0 describes the outgoing 
radiation wave in the high-density gradient and high-tem- 
perature region. In the region where 
u,(x)/u - l/T(x) <k;, we again expand ud (x)/u 
- l/T(x)- -k: -ax>O. Then xr= - (ki + k:)/a 

fork: >Oand 

s :, [ - Q,, (x,u) ] "2 dx' 

The approximate exterior vortex solution can be ob- 
tained by neglecting the nonlinear term in Eq. (25), 

p(w,t) -p,,&(k,r) , (34) 

where p = [x” + (y - ut)‘] “‘andq,,, = - 4.8k$u’/v;, is 
the amplitude of the vortex. The Fourier transform of Eq. 
(34) inpis” 

pk ‘v - pm exp( - b4pzT-q) 
2 @rTq . 

(35) 

2/ [x - (2/3/cr/)(k; + k;)] (k: + k:)“2, 

for lx,l<txl<lx,l. 
Matching Eqs. (35) and (33) with Qk, < 0, we can obtain 
the radiation amplitude formula 
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Ap 
Pm 

2(k$ + kyexp 
(36) 

which is to be used in Eqs. (33). Therefore the monopole 
vortex solution of Eq. (25) is coupled to a radiation wave 
with significant amplitude unless the condition 
Ial g2ki/3-PI2 is satisfied. 

We point out that for the case dicussed in Ref. 12, where 
the stationary equation is similar to that of Eq. (25) but with 
the longer wavelength scaling kg-E and a-8, the mono- 
pole vortices should have oscillating tails with the substan- 
tial amplitude - [ (2/e) *‘*pm /4 ] exp( - 2/3) as seen from 
Eq. ( 36). The numerical solutions given in their work do not 
show the oscillating tail since their equation [ Eq. (8) in Ref. 
121 does not explicitly contain the inhomogeneity. Their nu- 
merical results, therefore, are only for the very special case of 
K~ = v&/u, i.e., (r = 0. Therefore the solutions which the 
authors give are essentially those given earlier by Su et al6 
for the Petviashvili equation. 

The decay rate of energy of the solitary drift wave can be 
computed by using the energy conservation law, 

F + v-s = 0, (37) 

where ~WJ) = 1[p*/m ) + (VqJ)‘l , (38) 
and 

s= ( 
Ud (x) -~~~~~3)~~pv~~v’~(i~v~) 

2 
(39) 

are the local energy density and the energy flux, respectively. 
Integrating Eq. (38) over the space volume, with the help of 
Eqs. (25)) (26)) and (34)) we obtain the energy for the mon- 
opole vortex 

E,, = ?F’d”xz s 
where L, is the length scale in z of the coherent vortex 
structure. 

The outgoing wave propagation given by the matching 
of Eq. (35) to Eq. (33), leads to the decay of the vortex 
energy E,. Integrating the energy balance Eq. (37) over the 
space volume J d ‘x, neglecting the last term of Eq. (39) 
proportional to p ‘, since p is exponentially small for x%x0, 
and using Parseval’s theorem and Eq. (33) to evaluate the 
outgoing wave energy flux, gives the decay rate of vortex 
energy 

dE,, -= 
dt 

d3xz -sdydz[pz]:;;. 

UL, += = -- 
s 477 -m 

dk, ik, [q Zy (xb%pkY (xl 

-Pk,wxq,~y(x)]~~L-L 
UL m  = -2 

s dky k, 14,12 9 (41) 
IT 0 

which is independent of L for L $x0. 
Using Eq. (36) for Ak, we perform the k, integral to 

obtain the vortex decay rate 

d& ULP?” - -= -- 
dt s 4T 0 

X exp -4 (k; + k;J3’* 
3bl 

= -- dt exp( - t)t -‘I3 

= (42) 

31 

:: 
* 0 a. 

r31 

:: 
9 0 a 

i31 

:: 
9 0 A 

-31 

3)tc,,/r,=O dipole vortex 

:‘,, r -, 
L’ 

0  

, <y-. ,.,;;~~,\ t I#@$,[ 
c)t;so,rn!gJj~ 

\V?r-$~.. ;@y!,$, 
pw-g!g$~~~ :--. 

@  ii? 

\“;-p 
72 D 

$I 0 0 b 0 

y- *-\ ,:=-,;,, ‘6-l ,,, J) $lCIIII 
0 31 

X’PSO 

FIG. 1. (a) Contour plot of the electrostatic potential p(xg,t) of Eq. (45). 
The dipole vortex (solution of the H-M equation) is taken as initial condi- 
tion with T(x) = exp( - c2x), c2=0.046, u=l.l, r,,=6.0, and 
U& = 0.05. The solid lines represent positive values of potential 9, and the 
dashed lines are negative values. (b) The dipole vortex is first split into two 
monopoles, cyclone (Q < 0) and anticyclone (4 > 0). (c) Only the cyclone 
is seen to survive. 
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where B = uL,e,L/4n, b = 4kif/31a[, 
kg )3’2, and 

t = b( 1 + ki/ 

O” rch3 = 
s 

drexp( -r)+’ 
c 

is the incomplete gamma function.17 For large f, one can 
write 

rGL3 -Fe’ exp( -S) . 
Therefore for small a <4k i/3, i.e., large 6, the decay rate of 
vortex energy is 

dE, ~LPt,bl 
dr=- 16rk; 

ew (43) 

valid for kg > 0. Thus the damping is exponentially small 
provided k i > 3a/4, or in terms of the vortex length scale, 
plogr,-k,‘9(4/3a)‘“3p, -~~/ti’~. The damping time 
scale r, for the decay of the vortex can be estimated by 

Eu 
TL = ldE,,/dt I 

zz(-$+ ki)exp($) I (44) 

The theory for the effect of the inhomogeneity in Eqs. 
(32)-(44) is based on the observation4 that for strong vorti- 
ces (ones with fiE/wk 3 1 where fi, is the rotation frequen- 
cy in the core of vortex and wk = k,u), the inhomogeneity 
causes a leakage of wave energy from the vortex core, but 
does not strongly alter the interior solution. At some strong- 
er level of inhomogeneity the core of the vortex is changed, 
and nonperturbative solutions exhibiting the effect of in- 
homogeneity are required. 

V. NUMERICAL VORTEX SOLUTION IN 
INHOMOGENEOUS PLASMA 

In order to facilitate the numerical solutions of Eq. (5), 
we first expand the equation according to the ordering in Eq. 
(24) and consider E, - E. Keeping only the terms of order 6 
and E?, we derive from Eq. (5) the reduced dynamical equa- 
tion 

( 1 -- v2 * 

T(x) > at 
+ (u&J + ULOX - KTP) - - f$ [pJ+ 1 = 0 s (45) 

which is valid only when the condition of Eq. (29) is satis- 
fied. In later work we will present numerical solutions of the 
full Eq. (5) and compare with those presented here. 

Rewriting Eq. (45)) we get the conservation of mass in 
the two-dimensional system, 

g&)+v.[ -~+(u,(xwq)9 
+ (VqJ X%)V$ I = 0. (46) 

Multiplying Eq. (45) by 9, we can derive the energy conser- 
vation law given by Eqs. (37)-( 39) in the previous section. 
The constants are subsequently used to monitor the 
solutions. 

To solve Eq. (45 ), we use a uniform grid over x and k, 
in 85 X 85 xk, space with 3655 complex P~,~,( t) modes. 

Since the first term of Eq. (45) depends on x, transforming 
Eq. (45 ) into k, k,, space would lead to a difficult convolu- 
tion integral in k, for the linear problem. Leaving the equa- 
tion in x space and using the second-order central difference 
formula for d :, gives a tridiagonal system to solve for each 
d,q?(x,k,,,t). We use the Ahlberg-Nilson-Walsh algorithm 
for cyclic tridiagonal systems’8 to reduce the operator 
[ l/T(x) - V’] to acyclic tridiagonal matrix and then com- 
pute a+~ /& for each mode, in which process the nonlinear 
convolution terms in Eq. (45) are evaluated by first trans- 
forming 50 in k, kY space to get derivatives of 40, then trans- 
forming p and its derivatives into xy space to calculate the 
convolutions and, after that, transforming the results back 
into nk,, space. Finally, we use high-order Runge-Kutta 
time stepping and the Fourier transformation y+-+k, at each 
time step. The constants of motion defined in Eqs. (37) and 
(46) are used to monitor the accuracy of the code. The ap- 
proximate monopole solution Eq. (26) is taken as the initial 
condition p( x,y,r = 0). The temperature profile is 
T(x) = exp( - c,x), which avoids the negative tempera- 
ture problem that arises when expanding T(x) as 1 - c2x. 
For this profile K~ = c2 exp( czx) . Typical simulations aver- 
age 15 min CPU time on the CRAY-II for At = 100 r,/c,, 
which is about 10 rotations of the vortex core. 

In the first case we initialized with the dipole vortex 
(solution of the II-M equation). As seen in Fig. 1 the dipole 
first separates into two monopoles, a cyclone p < 0 and an 
anticyclone p> 0, which was first reported by Su et al.” Fin- 
ally, only one monopole survives, which is determined by the 
sign of &. If vi0 > 0, only the cyclone survives, while if 
uio < 0, only the anticyclone survives. 

In the second case we used us0 = - 0.1 udo, u = 1.1 udo, 
andc,= -O.O1l,whichgivek~=(l-~v,o/u)~O.land 
ac2: (c, - u&,/u) -0.08. Therefore a is the same order as 
k :. We observe the forming of an oscillating tail with signifi- 
cant amplitude and a strong damping process of the mono- 
pole vortex. Figure 2 shows the streamline of a(x,y,t) 
= const at times tc,/r,, = 0,40, and 60, and the projections 

of their cross sections in the x and y directions. The particle 
density is, from Eq. (28), n/n,zexp(E,p,, ) z 1.7. 

In the third case z&, =O.O5u,,, u = 1.1~~~~ and 
c2 = 0.046, and thus a N 0.0006 and k i = 0.027. We can see 
in Fig. 3 that the amplitude of the oscillating tail is so insigni- 
ficant that the monopole vortex keeps its shape for a long 
time without much damping. The particle density in this 
case is n/n,~OSS. 

Although in the second and third cases above, we dis- 
cussed only the anticyclone vortex (p > 0) in the second 
case, and only the cyclone vortex (p< 0) in the third case, 
the same results are obtained for the cyclone vortex in the 
second case and the anticyclone vortex in the third case, 
because Eq. (45) possesses the following symmetry relation: 

Q?(K7+:O;X,y,t) = - p( -K,, - vi,; _ x,y,t) 

In Fig. 4, we used the same parameters and initial condi- 
tion as those in Fig. 3, but dropped the scalar nonlinear term 
with coefficient K~ in Eq. (45). The monopole vortex in this 
case is seen to connect to a radiation wake. 
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FIG. 2. Contour plot of the electrostatic potential p(xg,t) of Eq. (45) with 
T(x) = exp( - c,x), c, = - 0.011, u;,, = - O.lu,,, and u = l.lu,, so 
that ki/a~0.34. The contour interval Aq, = 0.8. (a) The initial condition 
is a monopole defined by Eq. (26). (b) At t = 4Or, /c, , the monopole vor- 
tex core is coupling to an oscillating tail, i.e., a radiative wake of drift waves. 
(c) At f = 6Or,/c,, the monopole vortex has been strongly distorted and 
the amplitude has been significantly decreased from 5.28( TJe) (pa/r, ) at 
beginning to 3( Tde) (PO/r, ), due to the strong damping. 
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FIG. 4. The parameters and the initial condition are the same as those in 
Fig. 3, but the scalar nonlinear term with coefficient K~ in Eq. (45) is 
dropped. The monopole vortex in this case is shown to connect to a radi- 
ation wake. 
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These numerical results support our argument that 
when the drift velocity depends on the space variable, mono- 
polelike vortices can exist in the wavelength - (pS r, ) *‘* re- 
gion. The simulations also verify that the stability of the vor- 
tices is affected by the combined effect of temperature and 
drift velocity gradients and that the vortices are stable or free 
of damping only when a & (4/3) k z. 

VI. SUMMARY AND CONCLUSIONS 
We have studied the effect of density and temperature 

gradients on drift wave vortices, both analytically and nu- 
merically. The results show that when the drift wave velocity 
vd does not depend on the space variable, localized mono- 
pole vortices cannot be formed in the long wavelength 
- (p, r, ) I’* region for the choice of Fof Eq. ( 11) , no matter 
what the temperature profile is. When the drift wave velocity 
is not constant, monopole vortex solutions can be found in 
the wavelength -P~/E’/~ region. However, the important 
result is that the monopole vortices are not the strictly locaI- 
ized monopoles found by many other authors.5S7*8*‘2 Al- 
though the gradient of the drift velocity is responsible for the 
formation of the monopole vortices, its existence also causes 
the formation of the oscillating tails or radiative wakes of 
drift waves, which connect to the cores of the vortices. The 
results show that as long as OZYE (K~ - u&,/u) #O, the wave 
energy of the vortices leaks out from the vortex cores 
through the oscillating tails. The effect of the temperature 
gradient-induced KdV nonlinearity is to reduce the energy 
leakage. The analytic and numerical results also show that 
only when the combined effect of the temperature and the 
drift velocity gradients satisfies a= (K~ - u&/u) 
4 (4/3) ( 1 - u,,/z4)3’2, will the leakage be small and negli- 
gible. 
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