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Gradient-driven instabilities and the subsequent nonlinear evolution of generated vortices in 
sheared E X B flows are investigated for magnetized plasmas with and without gravity 
(magnetic curvature) and magnetic shear by using theory and implicit particle simulations. In 
the linear eigenmode analysis, the instabilities considered are the Kelvin-Helmholtz (K-H) 
instability and the resistive interchange instability. The presence of the shear flow can stabilize 
these instabilities. The dynamics of the K-H instability and the vortex dynamics can be 
uniformly described by the initial flow pattern with a vorticity localization parameter E. The 
observed growth of the K-H modes is exponential in time for linearly wIsEable modes, secular 
for the marginal mode, and absent until driven nonlinearly for linearly stable modes. The 
distance between two vortex centers experiences rapid merging while the angle 6 between the 
axis of the vortices and the external shear flow increases. These vortices proceed toward their 
overall coalescence, while shedding small-scale vortices and waves. The main features of vortex 
dynamics, the nonlinear coalescence and the tilt or the rotational instabilities of vortices, are 
shown to be given by using a low-dimension Hamiltonian representation for interacting vortex 
cores in the shear flow. 

1. INTRODUCTION 

The presence of shear in the flow of neutral fluids and 
plasmas gives rise not only to instability of the sheared layer, 
i.e., the Kelvin-Helmholtz (K-H) instability, but also to 
stabilization of other instabilities, the interchange mode 
[ Rayleigh-Taylor ( R-T) instability], for instance. Resis- 
tive-interchange-driven turbulence has been proposed as a 
mechanism for the anomalous thermal transport in stellara- 
tors and in edge plasmas of tokamaks. Recent calculations 
indicate that a strong nonuniform radial electric field can 
suppress the interchange’ and resistive pressure-gradient- 
driven instabilities.’ The fluid dynamics of shear flows under 
the influence of gravity is also important for the problem of 
an imploding inertially confined plasma. In the initial phase 
of implosion, short-wavelength modes are stabilized by the 
ablative flow and relatively long-wavelength modes can 
grow on an ablation surface. 3P4 Large-scale vortices excited 
by the R-T instability are adiabatically compressed, and 
thus increase in strength during the implosion. It appears 
that the shear flows associated with large-scale-length vorti- 
ces suppress the short-wavelength R-T mode in the stagna- 
tion phase that occurs during the final phase of the implo- 
sion. The presence of vortices can also influence the nature of 
turbulence and associated transport. In the isotropic two- 
dimensional (2-D) Navier-Stokes turbulence the well- 
known Kolmogorov power spectrum of k - 3 developed 
from space filling small-scale eddies. However, we find that 
the turbulence power spectrum changes to a steeper power 
law in kin the presence of vertical structure in the fluid in the 
wave number regime on the scale of the vortices. Thus the 
presence and dynamics of the vortices may strongly affect 
the macroscopic behavior of turbulence. 

In this work, we extend the previous work’ by investi- 
gating the shear flow effects on the gravitational instability 
and the magnetic shear effects on the K-H and R-T instabi- 
lities. Also, the detailed analysis of the nonlinear evolution of 
large size vortices is presented here. 

In magnetic confinement devices the shear flow occurs 
at the boundary between the rotating core plasma and the 
wall or limiter. The magnitude and direction of the core rota- 
tion is determined by the strength of the nonambipolar loss 
rates leading to the charge-up of the plasma. The mirror or 
open field line confinement system has an intrinsically faster 
electron loss rate leading to the net positive potential of sev- 
eral times the electron temperature. In the stellarator with 
strong electron cyclotron heating there is also a dominant 
electron Ioss and positive charge to the plasma. In contrast, 
for stellarators with neutral beam injection or ion cyclotron 
heating and, in general, for tokamaks, there is a net radial ion 
loss rate from finite ion orbits size effects and the plasmas 
build up a substantial, of order the ion temperature, negative 
potential. The positive potential plasmas rotates in the ion 
diamagnetic direction and the negative potential plasmas in 
the electron diamagnetic direction. In typical stability analy- 
sis the assumption is made that the rotation is sufficiently 
close to a solid body rotation and sufficiently slow that the 
only effect is to Doppler shift the wave frequencies from the 
values calculated in the absence of rotation. The conditions 
for the limit of this approximation are given in Ref. 1 for the 
rotating cylindrical plasma wi#h o*, and wlc, drift modes. In 
the presence of shear flow we can estimate the condition for a 
strong effect of the shear flow on a mode of growth rate yk , Y , 
wave number k,,, and the mode width Ax by the condition 

k,, Ax u’> yk,. 
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Here, we consider a configuration of plasma density, shear 
flow, and magnetic shear as shown in Fig. 1, where U’ = u/a. 
Applying this condition to the values of k, Ax, and yk for the 
interchange, resistive g, and the drift wave, gives a first esti- 
mate for the shear flow required to reduce the growth rate. 
Table I shows the condition on U’ obtained from this crite- 
rion for several forms of plasma turbulence. 

Since the sheared velocity flow contains a source of free 
energy, one expects instability to arise from the shear flow, 
which it does above a critical strength. However, the forms 
of the eigenmodes of the K-H are sufficiently different from 
those of the interchange-drift-wave-type of instability that 
there is generally a substantial window between the stabiliz- 
ing effect of the shear flow on the interchange modes and the 
onset of the Kelvin-Helmholtz instability, as shown in some 
detail for the m = 1 and 2 modes of the rotating cylinder in 
Ref. 1. 

Recent experiment8 in the DIII-D tokamak show that 
associated with L (low) to H (high) confinement mode 
transition, there is a substantial increase in the perpendicular 
component of the plasma flow velocity, as measured by the 
spectroscopic shifts of helium line radiation.’ No such ap- 
preciable change is observed in the toroidal component of 
the plasma flow velocity. Taylor et al.’ also report no appre- 
ciable change in the toroidal velocity and a substantial in- 
crease in the poloidal velocity with the onset of H-mode-like 
plasma conditions. The abrupt change in the flow speed is 
interpreted to be due to a strengthening of the radial electric 
field strength. Shaing and Crume’ have interpreted this 
change in.the radial field strength with increased nonambi- 
polar radial ion currents and a bifurcation to a new rota- 
tional equilibrium. 
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n,(x) 

1 t 

.,,,r 
FIG. 1. (a) Slab geometry showing coordinates used to describe the sheared 
magnetic field B(x) and sheared flow velocity v,,(x) along with the direc- 
tions of Vn,, and g. (b) The piecewise continuous profiles of the sheared flow 
velocity o,(x) and the density n,,(x). 

Shaing et al.’ note that without considering the stability 
problem there may arise improved confinement resulting 
from the shear flow layer. Biglari et al.” also discuss that the 
shear flow in itself may reduce the transport. A simple sin- 
gle-mode description of the shear flow reduction in transport 
is given by the convective cell island width formula’ 

which traps plasma to form an insulating layer. Here R is the 
poloidal rotation rate R = (c/rB) (da/&) and @ is the am- 
plitude of the vortex wave. 

In the present work we consider how the shear flow may 
strongly modify the strength of the growth rates of the un- 
derlying turbulence generation from the interchange- and 
drift-wave-types of instabilities in the limit of ion gyroradius 
small compared with all scale lengths, both in theory and 
simulation. Theilhaber and Birdsall” studied the K-H in- 
stability with finite Larmor radius effects fully taken into 
account but without magnetic shear effect. 

A similar charge separation induced shear flow appears 
in the barium ion injection in the ionosphere.‘* Other mag- 
netospheric appearancesI and astrophysical ones such as 
jets14 of the shear flow instability are noted. When the shear 
flow is sufficiently strong to dominate the stabilizing effects 
of magnetic shear, the growth rate reaches a maximum for 
wave number k, u 1/2a, where the maximum growth rate is 
Y max CO.2 max~dv,,/dx~~O.224/~. Since the short-wave- 
length modes with k,,a > 1 are stable to exponential growth, 
vortices excited by the K-H instability extend over all the 
shear flow region with A, -;1, > a. When the shear flow 
dominates, the density and temperature fields are passively 
convected with the fluctuations characterized by 
ep /T, %&z/n, 6T/T. 

The fastest growing normal mode forms a perturbed 
vertical flow pattern with the axis of the vortex tilted with 
respect to the flow direction, as shown by theory’ and simu- 
lation.5 The tilting of the vertical flow produces a momen- 
tum flux r = (0, v,,) across the shear layer. The momentum 
flux takes energy out of the shear and puts it into the vertical 
flows. Subsequently the vortices coalesce, with the dominant 
wavelength shifting to a multiple of the original wavelength. 
This shifting to longer wavelengths is a configuration space 
representation of the inverse cascade. Often the coalescing 
vortices or islands persist for long times. 

The effect of the electron parallel motion on stabiliza- 
tion of the K-H mode is shown to reduce the maximum 
growth rate. The electron density fluctuations induced by 
the electron parallel motion (V,, l j,, ) balance with ion density 
fluctuations generated by the ion perpendicular motion 
(V,*j, ). Namely, for charge neutral currents we have 

V,*j, -I- V,, *j,, = 0. 

Since j,, -7pE,, = - ne2VIIrj/mvei, j, - - (d/d) 
X (neV,#/Bw, ) from the ion inertia current. The effect of 
the electron parallel motion is significant when 

kiv& 2k:upf. 
Here Y, is the electron thermal velocity, yei is the electron- 
ion collision frequency, 4 is the fluctuation potential, wci is 
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TABLE I. Effect of shear flow on other instabilities. 

Mode Characteristics Shear flow condition 
k,Ax Yk k,Axu’> yr, 

Rayleigh-Taylor 1 

Resistive g 7%” = 

Eta i 

dlnT 7, z2-. 
dlnn’ 

r/, (threshold ) 

Collisional drive wave 

UC k;i.$-cv*ys I, =r. 

Dissipative trapped electron mode 

EZI 
R 

the ion cyclotron frequency, ps is the hybrid ion gyroradius 
given by ps = c(m, T, 1 “2/e3, and 2u is the velocity shear 
limits in the B Xl? drift velocity. For a K-H mode with 
k, 5 l/a the critical tilt angle 8,, as measured between the k 
vector and the ambient magnetic field, is given by 
0, z @,/a) [ (u/v, )/( a/l, ) ] I’*, where I, is the mean-free 
path of electrons. For 0 2 Q,, the K-H instability will be 
stabilized. In the case of a sheared magnetic field, the tilt 
angle 19-a/L, is produced by the shearing of the magnetic 
field, will L, the shear length. Therefore the K-H mode is 
significantly stabilized when L, ~5 (a’/~, ) (Z,v,/ua) I’*. The 
ratio of the parallel diffusion k f I.$/v,~ to the ion inertial 
acceleration k fpfk,,u is sometimes called R, as is given by 
R = k,,v:a4/v,,up:L s. Both the resistive g and the K-H 
growth rates decrease with increasing R. 

When there exist a density gradient and a gravity force 
as shown in Fig. 1, the interchange modes can be unstable. 
Here we use gravity to represent either the effective accelera- 
tion from the VB curvature drift of the ions or the accelera- 
tion during implosion. The maximum growth rate for the 
density gradient d In n,/dxE - l/L, and the gravity 
g- vf/R, where vi is the ion thermal velocity and R the ma- 
jor radius of tokamak, is K. 

When there is a shear flow with [dv,,/dxl =~/a, the in- 
terchange mode can be stabilized. Stabilization by the veloc- 
ity shear occurs when u/a > m+ This is related to the 
critical Richardson number. 

Let us give two examples of the above instabilities. The 
first example is an edge plasma of the TEXT tokamak. Is The 
shear flow layer width 2a-0.6 cm, in which the velocity II 
changes from - 3 X ld to 3 X lo5 cm/set, the electron tem- 
perature T, =20 eV, the density n,- 1-2x 1012/cm3, the 
density scale length L, = 1 cm, and the magnetic field curva- 
ture R k 1 m. The electron mean-free path Z, - 200 cm and 

the hybrid ion gyroradiusp,r ~0.02 cm for the above param- 
eters The K-H modes in this case are stabilized when the 
shear length L, Su(2.7v,I,a/up~) “‘550 m. As for the in- 
terchange instability, the flute mode is stabilized by the 
strong shear flow, since u/a = 1 O”/sec 2 m 
=: 5 X lO’/sec. 

The second example is the Rayleigh-Taylor instability 
of the imploded laser plasma. A typical acceleration rate 
givesg--z/AR for the target shell thickness AR. The veloc- 
ity shear will be given by ac,/AR. Since the Rayleigh-Tay- 
lor mode growth rate is &, the stability criteria is roughly 
given by 

c&AR Z 2$+@-. 

Therefore the unstable modes are limited to short wave- 
lengths where k 5a2/4 AR, and a k 1 will strongly stabilize 
the Rayleigh-Taylor instability. 

The characteristic time scale of the Kelvin-Helmholtz 
or interchange processes do not involve a characteristic os- 
cillation frequency, such as the plasma, cyclotron, or the ion 
acoustic frequencies, in the center of mass frame of the plas- 
ma. The plasma how is due to the E x B drift of the guiding 
centers and the characteristic time scales are those of hydro- 
dynamic flows, although the elementary process is that of a 
magnetized plasma with long range Coulomb interactions. 
The effects of finite pressure density gradient and gravity, 
across the magnetic field and the shear flow layer, bring in 
the drift wave frequencies o*, and @*pi. Thus to study the 
nonlinear evolution of shear flows and vortices associated 
with the magnetized plasma through numerical simulation, 
time scales much longer than the plasma oscillation periods 
are required. We employ the implicit particle simulation 
technique with the decentering algorithm,‘6 which system- 
atically removes the characteristic time scales and spatial 
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length scales that are smaller than the time step At and space 
scales Ax chosen for the space-time grid. The filtering meth- 
od has been shown to preserve the accuracy for the low- 
frequency (w At < 1) dynamics.” 

In the present paper we investigate the nonlinear evolu- 
tions of the Kelvin-Helmholtz and interchange instabilities 
as an initial value problem through particle simulation, in 
contrast to the previous work,5 where the shear flow was 
externally fixed with an imposed driver, as would arise from 
nonambipolar losses in the background plasma. Namely, in 
the present simulation, we assume that a space-charge sepa- 
ration exists initially, which produces an initial E X B shear 
flow. Note that any processes that induce charge separation 
have not been included in the simulation. The secular 
growth and decay of the marginally stable normal modes are 
also studied. After the linear stage of exponential growth of 
the primary normal modes, the growth of secondary modes 
can be nonlinearly triggered. 

In order to systematically explore the parametric de- 
pendence of the development in the nonlinear stage, we iso- 
late the evolution of vortex coalescence and associated pro- 
cesses caused by vortex formation, which in turn is due to the 
K-H instability and its nonlinear evolution. To investigate 
the second stage, the system is initiated from the secondary 
equilibrium of a chain of finite-amplitude vortices. The 
chain of vortices is unstable against the coalescence mode 
and against the tilt or rotational mode. In this nonlinear 
regime the growth of coalescence and tilt modes are nonlin- 
ear instabilities showing the finite time singularity like 
(t, -t)-“fortimest<f,. 

In Sec. II the equations for K-H and interchange insta- 
bilities, both for plasmas with and without a magnetic field 
are derived. These equations include the effects of velocity 
shear, magnetic shear, density gradients, gravity, and elec- 
tron-ion collisions. The linear dispersion relations derived 
from the equations for the two instabilities are also discussed 
in two analytic limits. In Sec. III we study the initial value 
simulation of the shear flow K-H instabilities, both in its 
linear and nonlinear stages. In Sec. IV the nonlinear evolu- 
tion of vortices, starting from the periodic chain of vortices, 
is examined and the coalescence and tilt instabilities of vorti- 
ces are studied via the particle simulation method as well as 
theoretical modeling. In Sec. V we summarize the results 
and discuss the applications of the results to fusion plasmas. 

II. VORTEX EQUATION IN A PLASMA WITH VELOCITY 
SHEAR, MAGNETIC SHEAR, GRAVITY, AND DENSITY 
GRADIENT: K-H AND INTERCHANGE STABILITY 
ANALYSIS 

We carry out linear theoretical analysis of plasma stabil- 
ity associated with shear flows. We consider the effects of 
shear flows and gravity both in magnetized and unmagne- 
tized plasmas. In the case of a magnetized plasma, the static 
sheared magnetic field is given by B = B,(f + 9x/L,), 
which is shown in Fig. 1. The initial ion density has a gradi- 
ent of l/L, = - d In n,/dx between x = b and - 6. The 
flow velocity is in they direction, and changes according to 

u, x>a, 
v” = u(x/a), Ixlca, 

- u, x-c -a. 
The configuration is schematically shown in Figs. 1 (a) and 
1 (b) . Except for especially indicated cases, we consider the 
previous plasma configuration. Also, gravity is applied in 
the x direction, which destabilizes (stabilizes) the inter- 
change mode for r’ = g/L,, ? 0. 

In the case of low-frequency modes with relatively long 
wavelengths /2>&, and pi, where &,, and pi is the elec- 
tron Debye length and the ion Larmor radius, the wave dy- 
namics can be analyzed by fluid equation for electron and 
ion, and the condition of charge neutrality can be assumed. 
Namely, 

n, = n, = n. (1) 
From the electron equation of motion along B, we obtain the 
equation for the parallel electron currentj,, , 

me(& -I- V.P)io = - ne2VI14 + eV,,p, - mev,j,, --O, (2) 

where vE is the EXB drift, 4 is the electrostatic potential 
perturbation, p, is the electron pressure, and vei is the effec- 
tive electron collision frequency. Using the electron equation 
of continuity and Eq. (2), we obtain 

($ + v.d,)rr, = ~ll~.ill 
=--1_(-noeV~4+Vfpe). 

m vei 
(3) 

Assuming T, constant and nc = n,(x) ( 1 + s,), Eq. (3) is 
rewritten as 

(P+vE*V)Re = -~$+$vp, -$), (4) 

where $ = eqS/T,, L,, = (d In n,/dx( - ‘, c, = ,,/m, 
and the ion hybrid gyroradius ps = c,/w,+, where w,, is the 
ion cyclotron frequency. In Eq. (4), nonlinearities other 
than the nonlinear polarization drift are neglected. 

From the ion equation of motion, we obtain vi,, the ion 
drift velocity perpendicular to the magnetic field 

Vi1 =vE +Vg d-v, fvpt (5) 

where 

VE = C[ZXV($” + $5,1/B&, (6) 
vg = - (g/w,, 19, (7) 
vd = [ CgXVp, )/neB,]c, (8) 

and 

VP = - $+ (7, +v,)-v, > 
v, (40 + 4) 

C. (9) 

Here &, is a background plasma potential. Note here that 
when finite ion Larmor radius is included, the convective 
derivative of Eq. (9) may be replaced by ( vE + vd + v, )-V, 
as discussed in Refs. 18 and 19. The ion equation of continu- 
ity and Eq. (5) imply 
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( & + (v, + vg w, > 
nj -p;v, 

- nt [ ( &+(vE+vg)% > V,ta+so+o. (10) 
Setting nt = b(x) (1 -k 2, ), USing i, = [ (iXV$)/B,lc, 

and defining 

c 4% g &JO=------, 
B, ax (11) 

@ci 

which is the ambient ion flow velocity, Eq. ( 10) yields, 

( -g+ (v,+vg)‘vI >( fii - -$V, l noV, 4 
n0 > 

= 2 ,,a? w a$ pf a$ -- --PJQy L, ay tpav' (12) 

where the prime indicates d /dx. Equations (4), ( 12 ) , and 
the charge neutrality condition of Eq. ( 1) are our basic equa- 
tions. Note that only the dominant nonlinearity is retained in 
Eq. (12),asinEq. (4). WhenwelinearizeEqs. (4) and (12) 
and set v, = 0 and V,, = 0, Eqs. ( 16) and ( 12) can be re- 
duced to Eq. (31) of Ref. 11 and Eq. (7.17) in Chap. 7 of 
Mikhailovski’” and to the Rosenbluth-Simon equation.” 

In the absence of the gravitational drift velocity and for 
a uniform vE the coupled equations (4) and ( 12) reduce to 
the well-known Hasegawa-Wakatani equations” describing 
the collisional drift wave. In the low collisionality-strong 
shear limit k iv: > vei [wk 1 the density is forced to be close to 
the local Boltzmann distribution and the equations reduce to 
the single dissipative equation2’ often used to study drift 
wave turbulence. Including the gravitational acceleration 
g/L,, gives the resistive g mode for the collision dominated 
plasma and an additional stabilizing or destabilizing effect to 
the drift wave in the weak collisionahty regime. 

Let us look at a linearized wave equation for a mode that 
varies as &(x)exp[ - iot + iky + ik,, (x)2], where 
k,, (x) = kx/L,. Eliminating fi = Fz, = ii, from Eqs. (4) and 
(12), we obtain 

;&!-(no~) = (p;k2 _ p:k-j;Ltt) 

- (ku, + ik f;Q ) (kp,c,/L, ) 
(~-kvol(~-kv~~ fik&) 

+ ik i 4, 
w - kv,, f ik f D,, > A (13) 

where D,, = v~/v,, is the parallel electron diffusion coeffi- 
cient and uEo = c d&/ax B. Equation ( 13) includes various 
MHD instabilities driven by gravity, shear flow, and density 
gradient, which correspond to interchange instability, Kel- 
vin-Helmholtz instability, resistive g mode, and drift wave 
instabilities. In the following discussion, shear flow stabiliza- 
tion of the interchange mode is investigated. 

We derive dispersion relations for the following two 
cases. Case 1 is the discontinuous density step: b -0, no = It,, 
for x > 0, no = n2 for x < 0, U/a = const as a-+ 00 and no 
magnetic shear (L .~ -t 00 ). Case 2 is the smooth density 

chaws: a = b and n,(x) = no exp(x/l,) for 1x1 <b, and 
L s--tea. 

A. Case 1. Discontinuous density step 

Setting u(;’ = 0, a solution of Eq. ( 13 ) is written as fol- 
lows: 

4 =Ae-““, x>O, 

and 

$=Dekx, x<O. 
The jump conditions at x = 0 are 
A=D 

and 
(14) 

= k(n2 - O&P+ + p.$ “vgcs (n, - n,) - 

w - kv, w(w - kv, ) 4. (15) 

Using Bqs. ( 14) and ( 15), the dispersion relation is written 
as 

dti-kvg) -cz(tda)(m-kvg) +akg=O, (16) 
which yields 

c+!ag+$)+fJ~, (17) 

wherea = (n, - n,)/(n, $ n,) istheAtwoodnumber.The 
interchange mode is unstable when 2-2 /au/a + kv, 1. 
Hence the interchange process is stabilized by the shear flow 
when 

(18) 

B. Case 2, Smooth density change 

Here a = b and n,(x) = n,exp( - x/L, ) for [XI <a 
and k,, = kx/L,, as shown in Fig. 1. The eigenmode is 

(A exp(PR, d+ for x>a, 

$= Bexp(~~,dx)+Cenp(~~rZdx), for (~/<a, 

DexP(&2dx), for x < 0, 

(19) 

where the Wentzel-Kramer-s-Brillouin ( WKB) approxi- 
mation has been used in writing Eq. ( 19). The validity of the 
approximation is discussed later. In Eq. (19), 
KI = f l/2& - 4, K2 = + 1/2L,, + q, 

kvdL, a 
w - ku, 

(kv, + iv) kc, - 
(@ - kvo) (W - kv,, + iv)t,cp, 

Wpf 
1 

l/2 

+ 
w-kvEo +iv ’ (201 
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v = k [II,, , and we assume Re K, < 0 and Re ~~ > 0. The 
jump conditions are 4?(a) + t4t I’ 

A = B + CeJ’:, 
D = Be - *‘I + C, 

(21) 

and 

K; (a)A - K,(Q)B - KZ(Q)Ceti2 

=-- ku/a A 
w+ ku - kv, ’ 

K,( -a)Be-“‘l+~*( -Q)C-K;( -a)D 
(22) 

= + ku/a D 
* w- ku - kv, 

Here $,,Z = .f”- o~,,2 (x)dx. Equations (21) and (22) yield 
the dispersion relation 

K; (Q) -K,(Q) - 
ku/a 

w - k(u + up> 

x K2( -Q) -K;( -Q) + 
ku/a 

w+k(u-v,) > 
ku/a 

- K; (a) -K*(Q) - 
w - ku - ku, > 

x K,( ( -a) -K; ( -a) + 
ku/a 

w + ku - ku, > 
xe-“‘+&=o , (23) 

where 

K:(Q) =K,(Q) 1 ,,L,,=II and K;( -Q> =K2( -a)l,,L,,=o. 

This dispersion relation includes both the K-H instability 
and the interchange or the resistive pressure-gradient-driven 
instability. 

1. Case 2(a). Magnetic shear stabilization of K-H 
instability 

The density gradient l/L, and us are set to zero in Eq. 
(23) to obtain 

(ku/a)* 
co* - k *u* exp( - fy, dx) 

+ 2q+ +s >( ku/a 2q- -- 
w + ku > 

= 0, (24) 

where qr and qi are a real and imaginary part of q, respective- 
ly, and q * = q( f a). As for the growing mode, we assume 
w = iy is pure imaginary. This assumption is justified since 
the imaginary part of the left-hand side of Eq. (24) is pro- 
portional to the real part of w, which can be set to zero. 
Equation (24) is rewritten by keeping in mind 
4+ = qt =q,(Q) •t iq,(Q) as fOllOWS: 

1 - 4Qcl,(Q) 

-exp( -2JIoq,dx)+4a’(q:+qf)] =Q (25) 

which yields 

X[exp( -2j-~aq,+-4a’lq+ 1’ 

where 

qr(a) = [(s2 + t*)“* +sl’/*/Jz, 

(26) 

(27) 

C?,(a) = - [(S* + t*)“* - s]“*/Jz, (28) 

and 

s=k*+ v(v + yvp5 =k2+ d/P? 
(v + y)* + k*U* y2 + k*u*’ (29) 

t= vku/p: vku/p: 
(v+y)*+k*u*=yZ+k*u** 

(30) 

Since qi (a) in Eq. (26) is negative, the K-H mode is unsta- 
ble when 

exp( -2JIoq,dx)- [2q,(a)a- l]*--4qf(a)a’>O. 

(31) 
Roughly speaking, the maximum growth rate is at 
q, (a)~ c ka=J and the threshold with respect to the parallel 
wave number is 

ak,, (Q) < 0.3OJm. (32) 
When the shear scale length L, is shorter than 

L, = 1.65 (V,i,Q/l&) ‘I*, 

all of the K-H mode will be stabilized. 
(33) 

2. Case 2(b) 

Without shear flow and magnetic shear, the dispersion 
relation (24) gives the growth rate of the interchange insta- 
bility for a finite density gradient. Equation (23 ) reduces to 

tanh(2aq) = - 2kq/(k* + q*), (34) 
where we assume kL n E L,/p, >> 1 and approximate 

K1.2 = -+ 4, 
q = k [ 1 + (g/L,/(w - kv,)w)] I’*. 

(35) 

Setting q = iz, Eq. (34) becomes 
f(z) = tan(2az) = 2kz/@ - k*). (36) 

Solutions of the dispersion relation correspond to the cross 
points of Fig. 2. As seen in Fig. 2, the solutions of /z/k ) < 1 

are approximately given by 

ZQ-(r/2)l, I= + 1, + 2 ,..., (37) 

which yields the frequency 

-=2+,/m. (38) 

Therefore the models unstable when 

a2w$i/gL, > k2a2 + (n-1/2)*. 
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FIG. 2. Graphical location of roots of the eigenvalue problem given by in- 
tersection oflc(z) = tan(2az) and the right side of Eq. (37). 

Since g,cf/R for the magnetic field curvature R and 
R 2 L,, the mode is unstable up to k Zz l/p,. 

3. Case 2(c) 

Finally, we briefly discuss the velocity shear effects on 
the interchange instability in a finite density gradient. By a 
process similar to the derivation of Eq. (36) from Eq. (23), 
we rewrite Eq. (23) without any approximation to obtain 

tan( -iJIoq(x)dx)=$, 

where 

s=q+q- +(K- -&)(G +$--) 

ku K, + 1/2L, -- 
a w - kv, + ku 

ku K- - l/2&, 
+- 

k %*/a* 
a o- kv, - ku , 

T= -- 
( 

2;n +K++ -$~+,*~jq?* 

ku q+ -- 
Q w- kv, + ku 

+& q- 
a w - kv, - ku ’ 

K + = [F ’ + iv/p: (0 F ku - iv) ] I’*. 
Here we used relations 

K1.2 = f I/=, t- qt 

and 

4i =q( fQ). 

(39) 

(40) 

141) 

(42) 

(43) 

(4.4) 

Since the dispersion relation of Eq. (39) is similar to Eq. 
( 36)) the solution of Eq. ( 39) is approximately given by 

s 

0 
q(x)dx=i:l+S (Z=O,& l,f2 ,... ), (45) 

-a 
which corresponds to Eq. (37), where S is a phase factor of 
the order unity. The WKB approximation that was used to 
derive Eq. ( 19) is valid when the integer I is sufficiently 
large. Assuming kL, $1, q(x) is approximated by 

q(x)= k’-- ( (ku, - iv) kc,/L,p, 
(o - kv,) (a - kvEO + iv) 

-I- 
iv/p: 

w-kv,, -f-iv (461 

There are two resonances in Eq. (44), which are located at 

X,1 = [b - kv,)/ku]a 
and 

X rt = [(w + iv)/ku]a. 
When 1~1 gkv,, i.e., the magnetic shear is small enough, the 
distance between the two resonance points is au,/[u 1. Evalu- 
ating q(x) at the center of the two resonances, namely, 

q( -!$+o -2 k2v; ;4W2)“2, 
the growth rate obtained from Eq. (46) is roughly evaluated 
to be 

Therefore if V 

(481 

the interchange mode is stabilized by the shear flow. Note 
that Z? = fL,/gl ( U/Q)* is the Richardson number. Accord- 
ing to Chandrasekhar’s textbook,*’ 5? < 1 is given as the sta- 
bilization condition of K-H instability as for the gravity in 
the stable direction. 

In unmagnetized plasmas the linearized equation, in- 
cluding equilibrium shear flow and gravity, is derived from 
the inviscid and incompressible fluid equations. The similar 
equation has been derived by Chandrasekhar,** in which the 
effect of gravity on the K-H instability is discussed. The 
result is 

k =P?PO + W + kW, /po 
(co - kv,)’ o - kv, w - kv, > vx. 

(49) 

As for the shear flow stabilization of the Rayleigh-Taylor 
instability, the stabilization condition for the configuration 
of case 1 is exactly the same as that given by Eq. ( 18). The 
criterion of Eq. ( 48 ) for case 2 is also applicable to Eq. (49 ) , 

III. INlTiAL VALUE SIMULATION OF SHEAR FLOW 
INSTABILITIES 

The static uniform magnetic field B, is now in the z 
direction only. The initial ion density is uniform, n; = n,, in 
the x-y plane. The plasma is encased in a metallic box in the x 
direction with 4(x = + LJ2) = 0 and periodic in theydi- 
rection for most of the computer experiments we present, 
unless otherwise specified. The particle velocities are reflect- 
ed at the x boundaries. We load the electrons with a density 
given by 
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n, (x,t = 0) = no + An,/cosh2(kg), (50) 
where typically An, = 0. In, and k, = l/a, with a being the 
shear layer width of the E X B flow produced by the charge 
separation py = e[ n, ( CO ) - n,] . The initial flow of the 
plasma produced by the charge or vorticity layer given in Eq. 
(50) is 

u,(x) = (4an,,ec/k&,) (An,/n,)tanh(k+) 

= u. tanh (X/Q). (51) 
Although we vary parameters over a wide range, the typical 
set of parameters are as follows: the numbers of the grid 
points in the x and y directions L, = L, = 64, the numbers 
of particles in the x and y directions N, = N,, = 192, the 
electron cyclotron frequency o,, = SOW,, with oPe being the 
electron plasma frequency, the ion-to-electron mass ratio 
M/m = 1600, the shear width a = k 0 ’ = 6A with A being 
the unit grid separation, the electron and ion Debye lengths 
perpendicular to the external magnetic field direction 
/2,, = /zm = 0, the electron and ion Larmor radii 
pe = p, = 0, and the simulation time step At = 2OOw, ‘. (In 
other words, particles are loaded cold with no thermal veloc- 
ities in the directions perpendicular to the B field. No tem- 
perature development is seen well beyond the linear stage. 
The shear width is input as CI = 5A, which gives rise to the 
effective shear width of 6 as a result of the finite size particle 
effect.) Note that (W,i/W,i)2 = (m,/me)(u,,/u,,)* = 4, 
which is orders of magnitude smaller than that of the usual 
fusion plasmas. Instead of assigning a uniform weight of uni- 
ty to an individual particle, the weight of the particle is deter- 
mined by the fraction n, (x)/n, dependent upon its initial 
location. The weight of the particle in the simulation is not 
changed throughout the run. In the reference simulations we 
choose Andn, = 0.1, the size of particles LI, = a,, = 3A, and 
the decentering parameter’” yi = 3/e = 0.1. 

The linear theory’*5,23 for the hyperbolic tangent profile 
of Eq. ( 5 1) gives that the Kelvin-Helmholtz mode is unsta- 
ble for the wave numbers k,,, satisfying 

k,a < 1, (52) 
where k, = 2rrm/L, and m is the mode number in the y 
direction. Figure 3 shows the electric potential ]@I2 as a 

FIG. 3. Evolution of the electric potential Qf,, (t) for modes m = 1,2,3,4 for 
the reference parameters in Sec. III. 

function of time for each mode (m = l-4). Notice that be- 
cause of the lack of noise in the implicit particle code, a large 
number of decades of exponential growth of the instability is 
observable. After a short period of time modes with m = 1 
and 2 grow exponentially in time, while modes m = 3 and 4 
do not grow until well into the nonlinear stage 
t-5x 104wP; ’ = 31a/u,. Here recall that the threshold 
mode number m, = L,/a = y and m = I,2 are supposed to 
be linearly unstable and m>3 are stable. This is in agreement 
with simulation in Fig. 3. For these simulation parameters 
bru,(x=L,)At/A is equal to 0.75. The m =2 mode 
shows a slight oscillatory feature, as seen near 
t = 8x 104wP; ’ = SOa/u,. The modes with larger mode 
numbers are triggered unstable after the amplitude of the 
linearly unstable modes becomes high enough and the vorti- 
ces of these modes begin to interfere or overlap around 
t-5x10%,‘. 

Figure 4 exhibits a typical particle plot and the corre- 
sponding electrostatic potential contours. For clarity, only 
particles with initial velocity uu > 0 on the left half at t = 0 
are shown. Figure 4 is at t = 1 X 10”~~; ’ = 62.5a/u,. In Fig. 
5 we show the measured and theoretical growth rates of the 
modes. Figure 5 also shows the measured growth rate for the 
case when the magnetic field B. is tilted toward they direc- 
tion from the z direction by angle 0 = 0.010 rad. Note that 
this is less than the critical angle (m,/M, ) “* = 0.025 rad. In 
this case the flow is still unstable although the magnitude of 
the growth rate is reduced by a factor of one order of magni- 
tude and the unstable wave number increases, as is charac- 
teristic of drift-wave-like modes. On the other hand, when 
we tilt the magnetic field away from the z axis by 
0 = 3 X 10 - *, the system is stable. The electron thermal 
speed uth is taken to be O.O5w,,A in the tilted B field runs 
where electrons can move along the magnetic field line, 
while the thermal velocity perpendicular to B remains zero. 
Thus k,, u,,, = 9.8 X 10-4m~pe for the 8 = 10 - * case, where 
m is the mode number in they direction. Thus y,,,,, < k,, u,,, , 
where yrnax = 1.25 X 10 -4~pe = 0.2Ou,/a for the K-H 
mode (in Fig. 5). For 8 = 3 X 10 - *,k,, u,,, g. F-“. The mea- 
sured maximum growth rate for 0 = 10 - * is 
0.26 x 10 - 4~pe, about one-fifth of the 13 = 0 case. When the 
normal mode is marginally stable, we find that the growth of 

FIG. 4. (a) Contour plot of the electrostatic potential at the critical time 
shown in (b). (b) Position of particles in the (x-y) plane with initial fluid 
velocities o, <O at a critical stage of dynamics just before wave breaking. 
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this amounts to the following initial electron density: 

a, (4.Y) = no f An,(l -2) 
[cosh(kfi) + E cos(k#) I2 ’ (53) 

I 
I 

k o- Y 

FIG. 5. Comparison of the measured growth rates with theoretical growth 
rate for the collisionless piecewise linear slab flow. For the * data the tilt 
angle 6 of the magnetic field is zero and for the A data the tilt angle is 
0 = O.OlO/rad. 

the mode becomes secular, as seen in Fig. 6. The electric 
potential resulting from the marginally unstable mode in- 
crease linearly with time. 

As has been shown in theearlier driven simulations,’ the 
stage at which the nonlinear triggering of other mode 
numbers sets in is coincident with the development of a vor- 
tex chain. In order to better control the study of the nonlin- 
ear problem of vortex evolution, our approach here is to 
separate the linear and nonlinear stages. We idealize the 
problem by starting from the secondary equilibrium of a vor- 
tex chain. 

IV. NONLINEAR EVOLUTION OF VORTICES 

A. Comparison with implicit particle simulation 

In this section we initialize the simulation near the Stu- 
art-Kelvin cat’s eye equilibrium.24*25 In the plasma context 

FIG. 6. Secular growth of the potentia1 with a linear increase in time for a 
marginally stable mode. 

where O<E< 1. The ion density is taken to be uniform 
ni = n,. The electrostatic potential resulting from these 
charge densities is 

#(x,Y) = (v&,)ln[cosh(kg) + ~cos(k~)l. (54) 
Thus the secondary equilibrium flow is given by 

VX = eUcsin(kg)/[cosh(kG) + Ecos(kg)], 

uv = u. sinh ( k,,x) 
cosh(kfi) $ E cos(ky,) * 

For E = 0, Eq. (53) reduces to Eq. (50). As E is increased, 
the island structure of the equidensity contours becomes 
wider in the x direction. We load electrons of nonuniform 
weight to describe the nonuniform density distribution, and 
the parameters are the same as in Sec. III. With these param- 
eters fixed, we vary E from zero to the following set of values: 
0.08,0.3,0.5,0,6,0.7,0.85, and 0.95. The unit of frequency 
wPe is measured where N, = n,, L, /a = 64.5, and the hydro- 
dynamic unit of time a/u, at n: = 0 or L, is given by 
a/v,- 1.6x IO%+; ‘. 

Figure 7 shows snapshots of particles with (x,y) coordi- 
nates and the corresponding electric potentials at various 
times for the case of E = 0.08. The instability is triggered by 

FIG. 7. (a)-(c) Contours of the electrostatic potential for the period-dou- 
bling coalescence from the m = 2, e = 0.08 island chain. (d)-(f) Particles 
starting with uv <: 0 at later stages of the coalescence instability evolving 
from the period island chain of strength E = 0.08. 
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noise due to numerical truncation that results upon loading 
the particles, as there is no noise associated with the particle 
motion perpendicular to B with the initialization and the 
subsequent decentering algorithm. I6 At 
t = 4.2 X 104wP; ’ = 26&c the contour lines show a recon- 
nection of the flow lines, reminiscent of the tearing instabil- 
ity of magnetic islands, which yields vortices (islands) with 
smaller wavelengths (m = 4). Note the original vortices had 
mode number m = 2. At a later time the smaller induced 
islands (m = 4) are absorbed by the original islands 
(m = 2). At a later time the smaller induced islands 
(m = 4) are absorbed by the original islands (m = 2). In 
Figs. 7(c) and 7(f) at time t = 6.6X 104wP; ’ = 41a/v,, we 
observe that the larger original vortices coalesce into one 
vortex with m = 1 in the direction of the exterior flow. We 
also see the vortex tilts in the clockwise sense as a result of 
the ambient external flow, which is downward on the right 
side of the vortex and upward on the left side. 

During the coalescence process the perturbed electro- 
static potential energy grows exponentially in time as shown 
in Fig. 8 (a). Figure 8 summarizes the growth of the electro- 
static energy for cases with various values of E. The satura- 
tion of this energy in Fig. 8(a) occurs shortly after a com- 
plete coalescence. 

As we raise the value of E, with other parameters being 
fixed as before, the growth rate of the electrostatic energy 
increases, as shown in Fig. 9. This figure will be further dis- 
cussed in Sec. V. In frames (b)-(d) of Fig. 8 we also observe 
that a slight bump develops in the middle of the otherwise 
exponential growth phase. In particular, Fig. 8(d) shows a 
faster than exponential growth in the early stage, while set- 
tling into a nearly exponential growth later. This indicates a 
transient growth that is faster than exponential growth for 
E > Lt ~0.5. Another feature to be noticed in Fig. 8 is the 
amplitude oscillations after the coalescence. These are asso- 
ciated with the ringing of the vortex shape. This is reminis- 
cent of the coalescence process of magnetic islands, although 
any parallelism of the coalescence of vortices in the present 
investigation with that of the magnetic island coalescence is 
perhaps fortuitous since the dynamical equations are rather 
different. Some conspicuous differences in the governing 

,~~~~1 

0 kdp- twp- 9x104 

FIG. 8. Evolution of the electrostatic potential energy from the nonlinear 
island chain as a function of increasing vortex strength e. 

L I 
Oo 

I I I 1 I I I 1 I 
0.2 0.4 0.6 08 IO 

E-- 

FIG. 9. Plot of normalized linear growth rate G vs E: X represents a data 
point extracted from the simulation results, 8 is a data point where it is 
difficult to ascertain the growth rate because the growth is faster than expo- 
nential. The dashed curve is the linear theory of Ref. 25; the solid curve is 
that derived from the localized vortex model. 

physics include (i) the vortex dynamics is described by the 
single field 4, while the magnetic island dynamics requires at 
least two fields 4 and the z component of vector potential A,; 
(ii) consequently, there exists a magnetic repulsive force 
upon magnetic island coalescence, while in the vortex dy- 
namics there is none; and (iii) the magnetic flux conserva- 
tion inhibits the reconnection of the magnetic flow lines. On 
the other hand, the presence of the Kelvin-Helmholtz insta- 
bility and the coalescence instability for the vortex dynamics 
is similar to the presence of the tearing instability and the 
magnetic coalescence instability, except for the frozen flux 
constraint that d$/dt = vV*$+O. The importance of the 
flux conservation constraint is easily seen in the formulas for 
the linear growth rates where yk-“- k, hvv but 
y’a~k:/3~~‘~. 

In light of the above the actual dynamics of the tearing 
mode is, in principle, different from that for vortex coales- 
cence dynamics. Ideas used to study the tearing, however, 
can be used to measure the vortex dynamics observed here. 
One measure is the vorticity difference between the original 
0 point and the innermost X point (e.g., between A and B in 
Fig. 7 and Fig. 12), and another measure is the vorticity 
difference between the original 0 point and the outermost X 
point (e.g., between A and C in Fig. 7 and Fig. 12). The 
former measure of vorticity is indicated by circles and the 
latter measure by crosses in Fig. 10, for various E cases. By 
definition of the former, the measure of vorticity vanishes 
when the two vortices complete their coalescence. Compare 
Fig. 10 with Fig. 8. On the other hand, the latter measure of 
vorticity may or may not vanish. In small E runs [Figs. lO( a) 
and 10(b) 1, we see that it decreases until a certain point 
(t- 5 X 104wP; ’ = 38.6a/v,) and then begins to increase. 
This manifests itself in a larger vortex at 
t = 6.6 x 104wP; ’ = 5 la/v, [e.g., Fig. 7(c) ] than the origi- 
nal vortex. In larger E experiments [Figs. 10(c) and 10(d) ] 
the two measures depart, but both measures decrease, or at 
least not increase, even well after the coalescence. 

Let us further examine the cases with E = 0.3 and 
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FIG. 10. A measure of the vorticity in the trapped coherent structures. The 
vorticity difference between the original 0 point to the innermost X point is 
given by the circles (0) and vorticity difference between the original 0 
point and the outermost X point is given by the crosses ( x  ). 

E = 0.6, which are shown in Figs. 11 and 12, respectively. 
Figure 11 (c) shows skewness of each vortex, as well as the 
tilt of the axis of the two vortex centers, measured in the 
negative direction. This is similar to the prediction by Liu et 
al.’ and one found in the simulation.5 A more pronounced 
tilt may be seen in Fig 12. The rotation of the axis continues 
even after the completion of the coalescence. Thus we find 
that the chain of vortices is unstable against the tilt or rota- 

tw, - 3.6 x IO’ ‘- 

FIG. 11. Potential contours (a)-(c) and particle plots (d)-(f) for theperi- 
od-doubling coalescence of the m  = 2, E = 0.30 island chain. The skewness 
of each vortex as the axis between two vortex centers rotates during coales- 
cence. 
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FIG. 12. As in Fig. 11, but a case of e = 0.6 with stronger tilting, where the 
rotation continues after coalescence. 

tional instability. In Figs. 12(a)-12(d) we observe therota- 
tion of the axis that connects the two 0 points as they ap- 
proach each other. Even after the coalescence the rotation 
continues. At the same time the overshooting oscillation 
(squashing of the droplet) continues. In this particular case, 
where E = 0.6, during the course of these droplet vibrations, 
fission of the vortex occurs, as seen in Fig. I2 (d) . Observe in 
Fig. 12 that as the m  = 2 vortices coalesce into an m  = 1 
vortex, much smaller-scale vortices spring up. As the energy 
inversely cascades from the m  = 2 vortices to the m  = 1  vor- 
tex, the enstrophy cascades from m  = 2 to higher m ’s, since 
both the overall enstrophy and energy are conserved. From 
the distribution of particles in plots in Figs. 7, 11, and 12, we 
note that even when the potential contours show fairly co- 
herent patterns, the particles are strongly mixing in complex 
structures. 

In Fig. 13 the negative of the rotational angle of the 
vortex-vortex axis as a function of time is measured. As cs is 
increased, so is the growth of the angle. The rate of increase 
of the angle before 8 = 180” is found to be faster than expo- 
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FIG. 13. Simulation measurements for the rotation angle as a function of 
time 0(r) for labeled values of E. 

nential. Following the terminology of magnetic coalescence 
this growth is called explosive growth. This explosive in- 
crease of 8 saturates at or near 8 = 180”. In some cases 0 
stays around 180” after it reaches this position. In other 
cases, after a brief pause at 8 = 180” the angle again in- 
creases. The higher value of 8, the stronger is this tendency 
for continued rotation. Figure 14 displays the distance be- 
tween the two 0 points as a function of time. Once again this 
distance Sr(t) = J-z also grows faster than expo- 
nential during the coalescence, indicating the explosive na- 
ture of the transients in the coalescence process. Note that 
different from 0 in Fig. 13, the dependence of Sr as a function 
of E is not monotonically increasing. Also noted is that the 
increase of 6r as a function of time is sometimes not mono- 
tonic. 

Figure 15 shows the potential 4 at t = 0 and a later time 
at which point a nearly ?r/2 rotation of the axis of a pair of 
vortices is realized for the E = 0.3 and E = 0.7 cases. The 
evolution will be later compared with the theoretical model 
in Sec. IV B. 

B. Localized vortex model 

We now present techniques for analytically modeling 
vortex simulation results, such as those presented in Sets. III 
and IV A, by simple few degree-of-freedom Hamiltonian 

3( 

+ 
sr 

I- 

O 
t 

0 twp + 
6~10~ 

-J 

FIG. 14. The distance between two 0 points as a function of time E+(t), as 
measured in the simulation for the labeled values of E. 
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t 
Y 

64 

0 x-+ 64 

FIG. 15. Equipotential contours obtained from the simulation: (a) 
E = 0.95, t = 0; (b) E = 0.95 at a later time; (c) E = 0.7, t = 0; (d) 6 = 0.7 
at a later time. 

systems. This is a plausible goal, as the system is nearly dissi- 
pationless and low wave number modes dominate the dy- 
namics. The specific application of these techniques to the 
near cat’s eye simulations are considered. The goal here be- 
ing to elucidate the dynamical mechanisms that are active 
during the coalescence or tilt instabilities. 

The simulation results suggest that there is a large tem- 
poral regime where the two localized vortices of the initial 
condition remain isolated and maintain their integrity while 
moving. This suggests a few degree-of-freedom models for 
the flow, composed of localized interacting vortices, perhaps 
subject to an external field. 

Since the computational studies of this paper are period- 
ic in they direction, but not the x direction, these boundary 
conditions must be incorporated into a model of the dynam- 
ics. The x boundary condition is straightforward, since to a 
large degree the motion of the localized vortices is far 
enough removed from the boundaries for us to assume 
- 00 <x < CO. More generally, one can satisfy finite metal- 

lic boundary conditions by appropriate configurations of im- 
age vortices. This is not pursued here for the x direction, but 
the periodic y boundary condition does require images. 
These boundary conditions are perhaps a bit confusing since 
the simulations have a periodicity length of 4r/k,, while the 
initial conditions of interest are nearly 2n/k, periodic. This 
latter condition near periodicity is not a constraint of the 
dynamics; thus unlike the 4r/k0 periodicity should not be 
built into the vortex model. 

Begin by supposing that there are two vortices in the 
simulation domain: one denoted by “0” and the other by 
“1.” Periodicity in they direction requires that each of these 
vortices be tracked by an infinite chain of equal strength 
image vorticities. Vortices that track vortex 0 will be denoted 
by an even subscript, while those that track vortex 1 will be 
denoted by an odd subscript. The periodicity requirement 
thus demands the following constraints: 
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y,,,(f) = ye(t) + Bn-n/k,, 
~rn+i(t) =~,(t) -i-4rn/k,, 

x*n (t) = x,(t), 

%I+,(0 =x,(t), 

(55) 

where n = + 1, + 2, + 3 ,... . 
In general, suppose that the velocity at vortex n located 

at x,- = (x, ,y, ), resulting from vortex m located at x, , is 
given by 

V nm = V(x, - x,). (56) 

Upon superposing, the total velocity at the location of vortex 
0 is given by 

v,= -g V(x,-x,1. 
m= --r 

rn#O 

Similarly, for vortex 1, 

v,= 2 V(x,-xx,). 
m= --a: 

(58) 

mp I 

Suppose that V is derivable from a streamfunction, defined 
by 

V(x,y) = ~XV?NX,V), (59) 
where $ is even in both of its arguments, 

?KcY) = $( - KY) = $(x, -VI. (60) 
Making use of these symmetry conditions and the periodic- 
ity constraints of Eq. ( 55) yields the following for Eqs. (57) 
and (58): 

m= --no ( 

4v7m v() = 2 ;xv+ x,---xl,yo- y1 -- 
ko > , 

(61) 
v, = i 

in= -* 
PXV$(X, - XO,Yl -Y. - T). 

0 
We ignore the self-interaction of the vortices and assume 
they move with the local flow. This yields the following 
Hamiltonian equations of motion: 

dH i;=--, * dH 
ay; yt=z' 

i= O,l, (62) 

where 

H(x,-x,,yo-y,)= 2 t+o-xlYYo-Yl -g. 
,?I= -0e 

(’ (63) 
The form of the Hamiltonian of Eq. (63) suggests the intro- 
duction of the “center-of-mass” coordinates, defined by 

$5=x0--XI, 71=Yo--YI, (641 \- .I 
2-=x, +x0, 3=y, +y(y 

The coordinates (F, 9) remain fixed in time while ({,v) 
satisfy 

& 2Q77) ?j=~({@ 
a7 ’ ’ ac ’ ’ 

(65) 

In order to effect the modeling, the function H({,r]) 
remains to be determined. This can be achieved in two ways: 
first, a model H can be obtained directly by tracking the 

relative motion of the vortices. Since for this system physical 
space (&f;rl) is the phase space, and since trajectories lie on 
curves of constant H, one can attempt to fit H to the simula- 
tion output. Alternatively the vortex-vortex interaction $ 
can be postulated, perhaps, by examination of the vortex 
shape. Knowing @, the sum of Eq. (63 ) must be evaluated in 
order to determine the dynamics. 

Sometimes the sum of Eq. (63) can be evaluated in 
closed form; for exampIe, in the case of point vortices where 

$(@I) = q. InG’ + $1, (661 
this is the case. Defining z = (kd4)(77 + y), it is evident 
that 

J - ai! jag - ko~o i 1. 
a7j af 2 mz-oc.z-mmlT (67) 

The sum of Eq. (67) is the Mittag-Leffler expansion for 
cot z, which implies 

cosh( k,{ /2) - cos( k,T/2) > ’ (68) 

and thus from the first equality of (67) we obtain, to within 
an additive constant, 

H(&q) = z,& ln[cosh(k,CfZ) - cos(k,q/2) 3. (69) 
The summation performed above is related to the solved 

classical problem of obtaining the velocity field as a result of 
an infinite chain of point vortices,26 but here the context is 
different, in that H determines the dynamics subject to the 
constraints (55). Here H is not the streamfunction. Below 
we will construct the streamfunction as a function of time. 

We propose the following form for H in the case where E 
can differ from unity: 

H(S,q;c) = 11, In [ $;(E + cash k,c) - $ cos( k,q/2) ] . 
(701 

Arguments in favor of this seemingly obscure choice will 
shortly be given, but first consider the inverse problem for 
obtaining $( ~,v;E). Suppose $ has the form of the point vor- 
tex interaction, except isotropy is broken by warping the x 
dependence of the interaction, i.e., 

ljrG77;~) = fjo lnlf2(C) + ~~1, (71) 
where the functionf(g) is yet to be determined. Substitution 
off for 6 in our treatment of the point vortex case yields 

aH koh -= sin ( k,q/2 1 
877 2 cosh(k,f/2) - cos(k,q/2) ’ (72) 

aff ko@o -= sinh (k,f/2) 
af 2 cosh(k,f/2) - cos(k,v/2) ’ (73) 

Equations (72) and (73) imply 

H&W) = Jt, In[cosh(k,f/2) - cos(k,q/2)] -I- const. 
(74) 

Choosing the functionfas follows: 

cosh(k,f) = (l/e)cosh(k$), (751 

results in, apart from an unimportant additive constant, the 
H given by Eq. (70). 

There are several favorable attributes that lead one to 
choose the H of Eq. (70). To begin with, it is a continuous 
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deformation away from the case where E = 1, a case where 
the model agrees with the simulation [cf. Eq. (69) 1. Thus at 
least near E = 1 we expect reasonable agreement. Inspection 
of Eq. (75) reveals that for E# 1 the logarithmic singularity 
at CJ = 77 = 0 has been eliminated. Any distributed vorticity 
arrangement will have this feature. Also, the anisotropy in- 
troduced is in agreement with that observed in the simula- 
tion (cf. Fig. 15). In particular, cY$/&$ II =e dominates 
d$/&7] I = o. A convincing argument in favor of the choice of 
Eq. (70) is that it leads to a #(x,y,t), which, as we shall see, 
looks like the simulation. We emphasize, however, that this 
choice is not unique and only qualitative agreement is 
sought. 

The construction of d(x,y,t) requires that the contribu- 
tions from the double infinity of vortices be summed at each 
moment of time. We conclude that 

W,YJ) = 2 
,n= -0c 

[ d(x - XOYY - Yo - 9) 
0 

45-m 
+q x-X,,Y-Y, -7 

( 
* 

0 >I (76) 

Without loss of generality the arbitrary constant can be 
dropped. Assuming 

.P=yY=o, 

x0 = g, XI = -g, (77) 
Yo = 4% Yl = - pi% 

yields 

Ql(x,YJ;E) =H[x -&t)/2,y- 7(t)/2;el 

+H[x+&W2,y+ 7j(t)/2;~1. (78) 
At time t = 0, Eq. (78) should represent the cat’s eye initial 
condition. Using g( t = 0) = 0, q( t = 0) = 2r/k,, Eq. (70) 
implies 

qVx,y,O;~) = $. In [cash k,,x + E cos kg], 

the equilibrium state desired. At later times, 

(79) 

&x,y,t;e) = qbo ln(2[Jm 

- J; ..p(y - Y)) 

x[J~ 

- J; cos$(y + Y))) . (80) 

Now consider the comparison of the linear theory of the 
localized vortex model with the simulation. As noted above, 
6 = 0 and 7 = 2n-/k, correspond to the cat’s eye equilibri- 
um, but, also, these correspond to dynamical equilibrium of 
the localized vortex model. This is evident upon differentiat- 
ing Eq. (70). Moreover, expanding H to second order yields 
the following Hamiltonian for the linearized dynamics: 

h(w1?;E) = 
G$o@ 

8[-+&1 

-&6#+gy* 
E 
(81) 

Thus the linear growth rate based on this model, normalized 
by k i q&/4, is given by 

p = 23’4E”4/( 1 + E) I“+( Jr+E + $G,. (82) 
A 

For E = 1, y = 4, the classical result for the maximum 
growth rate of a row of point vortices. The localized vortex 
model selects the maximum because this is the only motion 
allowed by the periodicity constraints of Eqs. (55). Exami- 
nation of Fig. 16 reveals that the simulation is in agreement 
in this limit. As e-+0, p-23’4&4. This vanishing growth 
rate is in disagreement with the simulation; not a surprising 
result since the assumption of localization of the vortices 
breaks down. Because of E 1’4 behavior this disagreement is 
confined to O(E 5 0.2. The theory is in reasonable agreement 
for a large range of e away from unity. In Fig. 16 we have also 
plotted the results of Ref. 25, where the linear eigenvalue 
problem for the cat’s eye equilibrium was solved numerical- 
ly. Observe that for e-O.3 there appears to be a transition 
from localized vortex behavio: to what we refer to as K-H 
behavior, i.e., sustainment of y. This is further evidenced in 
Fig. 10. On the other hand, the theory2’ by Pierrehumbert 
and Windall is correct at E = 0 and agrees reasonably with 
simulation for E < 0.3, but is unable to converge beyond. 

Now consider the nonlinear behavior. Since H is con- 
served, one can obtain the orbits in physical space by simply 
plotting surfaces of constant H. In Fig. 17 we have done so 
for different values of E. This figure shows that the energy 
surface decreases in width as E decreases from 1 to 0. In the 
simulation it was observed that for small values of E the in- 

ko77 

kc& kc& 
FIG. 16. Contours of the vortex-vortex interaction potential $ given by 
Eqs. (75) and (79),forthecases (a) ~=0.05, (b) ~=0.30, (c) l =0.70, 
and (d) e = 1.0. 
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kO6 kOC 

FIG. 17. Contours of constant interaction Hamiltonian, H, for (a) 
~~0.05, (b) e-0.30, (c) E=0.70,and (d) E= 1.0. 

stability that occurs is of the pairing or coalescence type, as 
shown in Fig. 10. For values of E near unity the instability 
that occurs is of the tilt or rotational type. Figure 17 explains 
this tendency with E. For all finite values of E the vortices 
approach each other and move transverse to each other. For 
small E the later motion decreases with the width of the ener- 
gy surface and we observe the predominant coalescence. 

In Fig. 18(b) we show the results of integrating Eqs. 
(65). Here 8(t) and Sr(t) = r(0) - r(t) for various values 
of e are given. Many features of the corresponding quantities 
for the simulation Figs. 13 and 14 are reproduced, as seen in 
Fig. 18(a). The initial conditions here were chosen near the 
separatrix, either just inside or outside. In the case where the 
initial condition is just inside, B can increase beyond 180”. 
This behavior is seen in Fig. 18(a) for the case where 
E = 0.95 and in Fig. 19(b) for the case with E = 0.3. When 
the initial condition is outside the separatrix, in the localized 
vortex model, 8 can only approach 180”. This behavior is 
indicated in Fig. 18(a) by the flat spot near 8 = 180” and 
shown in Fig. 18(b) for the case where E = 0.3. Similarly, 
Figs. 14 and 18 for SP( t) show qualitative comparison. 

Given the results ofthe orbit integration we can plot the 
streamfunction as a function of time by making use of Eq. 
( 78). We  have done so in Fig. 19 (a) for the point vortex case 
where E = 1 and t = 0, while Fig. 19(b) shows 4 for E = 1 
and t = 1, a later time chosen so that 8=:~/2. Similarly, in 
Figs. 19(c) and 19(d) we plot 4 for the case where E = 0.6 
and t = 0 and t = ?, respectively (7 is chosen again so that 
8~=/2). Figure 19 should be compared to Fig. 15. 

In summary, we see that there is qualitative agreement 
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between the simulation and the localized vortex model with 
increasingly better agreement for larger e. 

V. SUMMARY AND CONCLUSIONS 
We have derived linear theoretical stability conditions 

and growth rates for a plasma with shear flows, taking into 
account gravity and magnetic shear. We  analyzed the stabil- 
ity problem with a discontinuous background density and 
with a smoothly varying density. The dispersion relation 
shows the presence of E XB shear flows can stabilize the 
interchange and other related instabilities. The linear analy- 
sis of the gravitational instability shows that the interchange 
(R-T) mode is stabilized by theshear flow when the velocity 
shearu/a>fiorm[seeEqs. (18)and (48)J.Inthe 
case of the interchange mode, much shorter wavelength 
modes (much higher azimuthal modes) are destabilized. 
The mode is strongly locahzed near the mode rational sur- 
face. The interchange mode can be stabilized when 
u/a 2 (g/L, ) ‘/2. 

Implicit particle simulation results of the shear flow 
( K-H) instability resulting from E X B drift in a magnetized 
plasma show good agreement with the linear theory. The 
maximum growth (0.2&a) and the threshold wave number 
( l/a) agree well with the observed growth rate and thresh- 
old. The linear K-H instability with k,, = 0  has a sharp 
boundary between the stable and unstable wave numbers, 
with the marginally stable modes having a local secular 
( - t) growth arising, perhaps, from a ballistic resonance. In 
contrast, three-dimensional (3-D) modes with k,! /k < 8, 
have a reduced growth rates. In the simulation, if the tilt 
angle 6 2 0.02, the modes become drift-wave-like and the 
growth rate is greatly reduced, while the unstable wave- 
length band expands. In the K-H instability, vortices that 
grow to a sufficient size trigger a secondary nonlinear insta- 
bility with smaller, subharmonic wave numbers. 

The nonlinear instability is analyzed using a dynamic 
periodic chain of localized vortex structures with an equilib- 
rium equivalent to the Kelvin-Stuart cat’s eye type solution, 
This equilibrium is observed to be unstable against the co- 
alescence and tilt modes. The electrostatic energy increase of 
a lower wave number mode (m = 1) (the growth rate of 
m  = 1 mode) is in reasonable agreement with the theory by 
Pierrehumbert and W indal12’ and the analysis of Sec. IV B. 
In a small-amplitude regime, the tilt and coalescence insta- 
bility and shear flow instability coexist. Even after the com- 
pletion of coalescence, the shear flow instability continues. 
In the case of large amplitude, the tilt and coalescence insta- 
bilities dominate the shear flow instability. Upon overshoot 
of the tilt and coalescence, the coalesced vortices can again 
separate into two. 

The growth rate of the tilt angle is in good agreement 
with the coalescence instability ofa point vortex model in an 
appropriate range. The angle B increases faster than the ex- 
ponential function of time. The angle B approaches rr and 
stays for a long time. The point vortex model can accurately 
predict the time profile of the rotation angle of the vortices. 
The time scale prediction of the relative rotation of two vor- 
tices also provides a good explanation of the simulation. 

The results for the stability of the transitional layer of a 
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FIG. 18. Nonlinear results ofthe localized vortex model. (a) 8(f) for E = 0.05,0.30,0.70, and 1 .O. (b) &(t) for the same E values. (c) Plots of 6( I) that show 
trajectories with initial conditions on the two sides of the separatrix. (d) &r(t) for two initial conditions, one just inside and the other just outside the 
separatrix. 

FIG. 19. Thestreamfunction for-thecases: (a) 4(q~,O;l), (b) qS(x,y,^t;l), 
(c) 4(xg,O;O.6), and (d) 4(x9&0.6). Here I and tare chosen so that the 
rotation is approximately 180”. 
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resistive plasma with a substantial change in density and 
perpendicular E X B flow velocity is given in terms of the 
transcendental dispersion relation in Sec. II. The roots of the 
dispersion relations in the absence of shear flow describe the 
resistiveg instability and the collisional drift wave instability 
with their different dependence on collisionality and mag- 
netic shear. In the presence of a sheared flow, the growth 
rates are strongly affected when the condition k,, Axu’ > yk is 
satisfied, where k,,, Ax, and rkY are the parameters of the 
instability in the absence of the shear flow. The critical shear 
flow u’ obtained from this condition is shown in Table I. 

For the shear flows reported in the TEXT tokamak plas- 
ma with the new higher resolution probe measurements the 
condition given previously is marginally satisfied so that we 
conclude that shear flow may have an influence on the edge 
turbulence, even if it is not sufficiently strong to excite the 
K-H instability in that experiment. 

There are two effects of the sheared E x B flow on the 
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edge turbulence. Here, as in Ref. 1, we consider the direct 
effect of the shear flow on the wave dispersion relation, 
showing that the growth rate of the mode present in the 
absence of shear flow can be strongly reduced. The second 
aspect is that even for a given fixed level of background 
waves the transport across the magnetic field is reduced by 
the shear flow. This decorrelation effect of the transport has 
been calculated by Shaing and Crume’ and Biglari et a[.” 
using the ideas of relative diffusion or clump turbulence the- 
ory. A simpler estimate of the reduction of the transport 
comes from considering the single-particle motion of test 
particles in a dominant fluctuation of mode number k and 
strength &k; the radial excursion size is reduced from the 
distance T./k, between nodes of the radial modes to the size 
Ar = ( c$~/Bu’) “2 given by the strength of the shear flow u’ 
and the amplitude of the potential fluctuation. Taylor et ai., 
Shaing and Crume,9 Biglari et al., lo and Burrell et al.’ argue 
that the reduction in the plasma transport associated with L 
to H mode transition occurs as a result of the increased 
sheared flow velocity resulting from the deepening of the 
negative electrostatic potential well of the toroidal system. 
We show here how the increased strength of the shear flow 
changes the stability conditions of the plasma. 

We consider the unstable sheared flow regime with im- 
plicit particle simulations and describe the resulting vortex 
dynamics by the motions of the vortex cores. To make an 
analytic treatment of the vortex core dynamics, we idealize 
to the case of point vortex dynamics, including the vortex- 
vortex interactions and the vortex-shear flow dynamics. 
This appears to give a good description of the principal pro- 
cesses of mutual rotations and coalescence of the vortices. 
Comparison with the simulations shows that a lowest-order 
description of the turbulence follows from the vortex core 
dynamics with treating the density and pressure fields as 
passively convected. The possibility of describing the rela- 
tionship of the density and potential fluctuations measured 
in TEXT with the density being passively convected in the 
E x B flows given by the potential fluctuations has been pre- 
viously suggested by Bengtson and Rhodes.27 

Previous attempts to explain edge turbulence in TEXT 
by resistive hydrodynamic modes and by collisional modes 
have not been completely successful. The theoretical formu- 
las used have neglected the effects of shear flow assuming 
that the background velocity simply Doppler shifted the fre- 
quencies of these instabilities. In view of the present theory 
and new measurements of Ritz et a/.‘* (reporting 
du,/dr<106/sec, a reexamination of the comparison be- 
tween fluctuation theory and experiment is necessary, taking 
into account the finite value of dv,/dr. Here the first results 
of the drift wave resistive g turbulence in the presence of 

strong shear flow are given for slab approximation to toroi- 
da1 confinement systems. 
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