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The degeneracy in the Lie-Poisson bracket, associated with the Hamiltonian structure of the Vlasov equation, is removed by 
restriction to a given symplectic leaf. The restricted equation of motion is written in terms of a generating function and it mani
festly preserves the Casimir constraints of the system. A nondegenerate Poisson bracket in terms of the generating function is 
presented. 

It is by now well known that many nondissipative 
continuous systems possess a Hamiltonian structure, 
which when viewed in terms of Eulerian variables 
has a noncanonical form. Examples from plasma 
physics include ideal magnetohydrodynamics 
(MHD) [1], theVlasovequation [2], the two-fluid 
equations [3], and the BBGKY hierarchy [4]. A 
common feature of all these systems is that they pos
sess Casimir invariants due to the degeneracy of their 
Poisson structure. These invariants foliate the phase 
space'into sub manifolds, called the symplectic leaves, 
which are invariant under dynamics. (A symplectic 
leaf is the phase space of an ordinary Hamiltonian 
system.) Thus it is of interest to study the evolution 
equations restricted to a single leaf. For instance, 
points on a leaf are dynamically accessible, subject 
only to energy and momentum constraints: this can 
be'important when one uses statistical mechanical 
techniques. Another reason is that the restricted 
equation with its Casimir constraints removed is 
naturally variational, while the original equation can 
only be made so with the help of some ad hoc tricks 
[5]; this fact is important in deriving energy prin
ciples and performing stability analyses [6]. Re
cently Crawford and Hislop found a restriction for 

particular equilibria of the Vlasov equation in one 
dimension [7]. Here we generalize their result to ar
bitrary equilibria in three dimensions, and also de
rive explicit expressions for the Poisson bracket for 
the Vlasov equation on a symplectic leaf. First, we 
briefly review the Hamiltonian structure of the Vla
sov equation in order to establish our notation. 

The Vlasov equation is usually written as a partial 
differential equation on the particle phase space z: 

(1) 

where fez, t) is the particle distribution function, 
H (z, t) is the single particle Hamiltonian, and [ , ] 
is the Poisson bracket. In terms of the canonical vari
ables Z = (q, p) the Poisson bracket takes the familiar 
form 

(2) 

On the other hand, if one considers the physical ob
servables 9"[J], which are functionals of the distri
bution function, one can show that their evolution 
obeys a I:Iamiltonian equation [2] 
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dff 
- ={ff :If} dt ' , (3) 

which is equivalent to the Vlasov equation (1 ). Here 
:If is the Hamiltonian functional which satisfies 8:1f I 
8/=H, and { , } is a Lie-Poisson bracket, defined by 

{ IZ IZ} [J] f elFf[oS'f o~J $'i, S'2 = oj' of ' (4) 

where elF denotes the Liouville measure on the par
ticle phase space, e.g., elF=d 3qd3p in canonical 
coordinates. 

A striking feature of the Lie-Poisson bracket (4) 
is its infinite degeneracy: if we consider observables 
of the form 

~[J] = f elFC(j) , (5) 

where C(f) is an arbitrary smooth function, then it 
is obvious that ~ commutes with any functional of 
f Therefore such observables are conserved for any 
Hamiltonian :If: 

~: = { ~, :If} = f elF iT C' (j), H] = 0 . ( 6 ) 

These conserved quantities are known as the Casi
mirs. They define a foliation of the space of distri
bution functions into invariant submanifolds, which 
are symplectic by the Kirillov-Kostant-Souriau 
theorem [8]. Each of these submanifolds or sym
plectic leaves can be characterized as a group orbit. 
The characterization is determined as follows: given 
an initial distribution fo(z), there is a unique sym
plectic leaf that passes through it. Let A denote a ca
nonical transformation of the particle phase space, 
then the points/having the form/=fooA are on the 
same leaf as 10. Thus we say that the group of ca
nonical transformations generates the leaf that passes 
throughfo. It has a subgroup, called the isotropy group 
oflo, for which/=Io. Therefore in order for the group 
action and the leaf to have one-to-one correspond
ence, we must "mod out" this isotropy subgroup. 
Following ref. [7], we can represent a group element 
that is connected to the identity by a Lie series: 
A;::::eLW, where Lw= [w, ] and W is a generating 
function. Thus a point on the leaf near 10 can be writ
ten as 

(7) 

A function that commutes withfo co'rresponds to an 
element of the isotropy subgroup. We call the set of 
all such functions the isotropy kernel. In order to use 
the generating function Was a local coordinate sys
tem on the leaf, we must keep it outside the isotropy 
kernel, i.e., Lwfo=f. O. We remark that not all ele
ments of the group of canonical transformations can 
be represented by exponential maps, e.g., there are 
transformations that are not connected to the iden
tity. But for initial value problems, where /=fo at 
t=O, A(O) must be the identity. Representations of 
the form of (7) are thus sufficiently accurate to de
scribe Vlasov dynamics. 

Now we consider dynamics on the leaf. Our goal 
is to replace the Vlasov equation (1) by an equation 
for W, where now W is dependent on time. Our 
method is based on the following operator identity 
[9] : 

ieLW-L eLw 
at - a(Lw)8,w , (8) 

where 
1 

f eZ-l 
a(z)= deeliz=--. z (9) 

o 

is an entire function. We can derive (8) from the 
simpler identity 

d _eOLw=eIiLwL 
de W· 

(10) 

Differentiating (10) with respect to time yields 

~(i IiLW) 
de at e 

= (i eIiLW) L + eOLw L at w 8,W, (11 ) 

which can be rearranged into 

(12) 

The last equality follows from the fact that the Pois
son bracket is not changed by a canonical 
transformation: 
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eOLW [F, G] = [eOLW F, eOLw G] . (13 ) 

Upon integrating (12) with respect to e from 0 to 1, 
we obtain eq. (8). Also note that this identity re
mains true if a t is replaced by a general variation 0, 
a fact that will be used later in deriving the leafPois
son bracket. 

Applying (8) to (7) yields 

a/ 
at=[a(Lw)atW,j], (14) 

which shows that a/I a t is tangent to the leaf. (Gen
erally a vector o/tangent to the leaf at point/has the 
form [f, G], where G can be any smooth function. 
See refs. [7,6].) Substituting (14) into the Vlasov 
equation (1) and again using eq. (13) yields 

eLW[e-LW(a(Lw)atW-H),!o]=O. (15) 

We see that the first factor in the square brackets must 
commute with 10; denote this factor by C, an arbi
trary function which satisfies {C,!o} = O. In the gen
eral case when 10 has no special symmetry, we have 
C=C(fo). Thus we arrive at the Vlasov equation in 
terms of W: 

aw 
at =P(Lw) H+ P( -Lw) C, (16) 

where P(z)= 1/a(z), or more explicitly: 

z 00 zn 
P(z)= -z - = L Bn " e -1 n=O n. 

(17) 

where Bn are the Bernoulli numbers. Clearly P(z) is 
analytic near the real axis. The role of the function 
C in (16) is to keep Waway from the isotropy ker
nel: it should be chosen so that [at W, 10] ;6 O. 

For the one-dimensional case considered in ref. 
[7],!O=!O(v) was assumed to be an equilibrium, and 
H=!v2-¢(x) (we have set e=m= 1). So Ccan be 
any function of v. Letting C=CO+C1 +C2+ C3 +···, 
and upon expanding (16) in a power series, yields 

aw 1 2 
at=(zv +Co) 

98 

+(C1 -¢-!LwOv2-CO» 
+(C2+!Lw(C I +¢» 

+ (C3 +!LWC2 +izLiv(CI -¢) + .... (18) 

Choosing Co, C[, etc. to remove the x-independent 
part of the right-hand side order by order, we find 

C2=-!(Lw¢), C3 =iz(Liv¢), (19) 

where ( ) stands for x-averaging. Therefore 

aw 1 2 1 
at =-¢-zLwv +z(Lw¢-(Lw¢» 

- OLw(Lw¢) +iz(Liv¢- (Liv¢») + .... 
(20) 

This result is the same as that of eq. (31) of ref. [7] 
(except for a few misprints therein). 

Now let us turn to the Poisson bracket for the leaf 
equation (16). By (7) we can regard any functional 
of f, ~[j], also as a functional of W: ff[ W] = 
~[j]. Using (8) (see the comment at the end of that 
paragraph) we obtain, similar to (14), 

0/= [a(Lw) OW,j] ; 

then by the chain rule, i.e., 
off[ W; 0 W] = o~[f; oj], we find 

off (o~) oW =a(Lw) Lfo e-Lw 0/ . 

(21) 

upon equating 

(22) 

Note that for a Casimir ~ we have 0 ~ loW = O. Since 
10 is known, we can solve this equation for o~ loj. 
Formally we denote the inverse of LJo by L fa 1; in 
practice we need to solve the equations of motion 
with 10 acting as Hamiltonian. There is an arbitrary 
function in the solution which commutes with!o, co
inciding with the function C in eq. (16). Thus 

"$ ,,&-
u:!/' Lw -lp u:!/' Lw 0/ =e LJo (Lw) oW +e C. (23) 

Note that [C,!o] = 0 implies [eLW C,}] = 0, meaning 
that the second term in the above equation is the 
component transverse to the leaf, so it does not con
tribute to the Lie-Poisson bracket (4). Upon sub
stituting (23) into (4) we obtain 

(24) 

This Poisson bracket is non-degenerate in the sense 
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that, if {9i, ~} = 0 for all 9i, then we must have 
8~/8W=0. Any invariants of eq. (16) therefore 
come from the symmetries in the Hamiltonian. 

The Lie series representation (7) has the advan
tage of being coordinate independent; in particular 
it does not require canonical variables. However, the 
formal power series can be cumbersome in practice. 
In the following we develop another version 01' our 
results by using a mixed-variable generating func
tion, which requires canonical variables but can be 
easier to manipulate. 

Let the canonical transformation A be generated 
by Seq, P, t): 

as as 
p= aq' Q= ap' (25) 

where it is assumed that the Jacobian matrix of the 
transformation is non-degenerate: 

a2s 
wij(q,P,t)= aqi ap/ det(w);60. (26) 

Here to be explicit we use the F2-type generating 
function, but our method below can be adapted 
without difficulty to other types of generating func
tions. Locally one can always find a generating func
tion that satisfies the non-degeneracy condition sim
ilar to (26) [10]. It is convenient to work in the 
mixed-variable space (q, P), denoted by subscript 
. m. The distribution functions in various spaces are 
related to each other, through eq. (25), by 

I(q,p, t)=fa(Q,P)=lm(q,P, t). (27) 

The particle Poisson bracket (2) becomes 

[F G] =J .. (aFm 8Gm _ aFm 8Gm) (28) 
m, m IJ 8qj aPi 8Pi aqj , 

where the convention of summing over repeated in
dices is used, andJ (q, P, t) is the inverse Jacobi ma
trix: JifiJjk=bik. Now we calculate ai/at with (q, p) 
held fixed. Differentiating (25) holding (q,p) fixed 
yields 

(
ap) _ -J. a

2
s 

at (q,p) - 8q at' 

(29) 

Similarly differentiating (27) we obtain 

afa -J. aim 
aQ - 8q' 

afa aim a 2s afa 
ap = ap - 8P ap' aQ' (30) 

Together they lead to the following equation which 
is an analog of (14): 

GD(q,p) 

8fa (a Q) afa (ap) 
= qQ' at (q,p) + ap' at (q,p) 

(31) 

We remark again that this relation still holds if we 
replace the time derivative by a generic variation. 
On the other hand we have 

U; H] = [/m, Hm] , 

Hm(q, P, t)=H( q, ~:, t). (32) 

Hence the. Vlasov equation in the mixed-variable 
space reads 

(33) 

The second factor in the square brackets must com
mute with 1m. Let C( Q, P) be an arbitrary function 
that commutes with fa (Q, P), then we arrive at the 
equation of motion in terms of S: 

as (as) (as) at + H q, aq ,t = C ap' P , (34) 

which is equivalent to (16). This modified Hamil
ton-Jacobi equation was first introduced by Pfirsch 
and Morrison [11]. It can also be derived directly 
from an action principle [5]. 

Employing the same procedure as before we can 
derive the leaf Poisson bracket in terms of S. Here 
we only display the result: 

99 



Volume 156, number 1,2 PHYSICS LETTERS A 3 June 1991 

(35) 

where dFm =d3qd3P det(w) is the Liouville measure 
in the mixed-variable space. 

In conclusion, we have derived the Vlasov equa
tion on a symplectic leaf, where all points are now 
presumably dynamically accessible, subject only to 
energy and momentum constraints. We also found 
explicit expressions for the Poisson bracket for this 
equation, and showed it to be nondegenerate. For 
those readers familiar with geometrical aspects of the 
problem, the Poisson bracket on a leafis the cosym
plectic form of the Kirillov-Kostant-Souriau sym
plectic structure. Similar methods are expected to 
apply to other nondissipative models that describe 
fluids and plasmas. 

This work was sponsored by US DOE under con
tract No. DE-FG05-S0ET-530SS. The authors would 
also like to thank the Aspen Center for Physics where 
part of this work was performed. 
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