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1SPP-12 «Piero Caldirola»
Theory of Fusion Plasmas

E. Sindoni and J. Vaclavik (Eds.)
SIF, Bologna 1992

NUMERICAL SIMULATIONS OF TURBULENCE-PROBLEM OF
SELF-ORGANIZATION '

W. Horton, D. Lindberg, X. Su, J. Liu, and P.J. Morrison
Institute for Fusion Studies
The University of Texas at Austin
Austin, Texas 78712

Abstract /

Once sufficient energy is invested in the fields of plasma waves or hydrodynamic
ﬁows, the nonlinearity of the system plays a dominant role competing with dispersion
and dissipation to form coherent self-organized structures. The nonlinear drift wave
equations describe the growth of turbulent fluctuations and the formation of coherent
vortices. The existence of the vortices even in the presence of the driving mechanism
and magnetic shear is especially clear in the case of VTi-drift modes. Both parallel
and perpendicular sheared flows produce vortex-dominated turbulence.

New analytic theories of magnetic shear induced vortices and other self-organized
structures are discussed from the minimization of the appropriate Lagrangian function-
als. The minimization is being carried out numerically with the conjugate gradient

method. The Lagrangian formulation allows several interpretations: one as a free

energy and secondly as pseudo particle motion in a time-dependent potential.

Various dynamical simulations are reviewed. The unstable/stable regimes of the
Larichev-Reznik dipoles are discussed. The VT,-monopolar vortices and the magnetic

shear induced dipoles are discussed.
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Introduction

Initial value simulations of drift wave-Rossby waves and a variety of other plasma
wave equations show that once sufficient energy is present in the fluctuations the
nonlinearity results in the self-binding or self-organization of the fluctuations into
coherent, localized structures. Many examples have been found in the study of drift
waves including the effects of magnetic shear,! ion-temperature gradients® 34 % and
sheared velocity flows™ & 7'® in the equilibrium. Analytical analysis has been used to
derive the nonlinear partial differential equation (NLPDE) that govern these stationary
structures; however, there are essentially only two highly idealized analytic solutions
of the resulting NLPDE. The best known and most useful solution of this class of
NLPDE’s is the Bessel function double vortex solution given by Larichev and Reznik;?
the second and third types of solutions are the approximate monopole solutions of
Petviashvili'® ' and of the type of solution given by the 1D nonlinear oscillation

model solution of Su et al.! Here we develop a numerical method for finding solutions

of the equations describing coherent structures.
Coherent Structures Equations

Nonlinear plasma equations of the drift wave type yield a variety of nonlinear
equations describing structures moving with a velocity u in the magnetic surface with
inhomogeneities of the magnetic field, density, temperature or flow velocities in the

z-direction. The general form for the equation governing these structures is
Vi = k*(u,z)p — a(u, 7)p? — azp® (1)

where the cubic order nonlinearity is positive definite a3 > 0.

Equation (1) is derived in the case of nonlinear drift waves in the presence of an
electron temperature gradient!®™!! 5, and density gradient!? in which case az = 0,
ay = 1. and

v

k%u,:r):l—f——aa:. (2)
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In the presence of a sheared’ma.gnetic field described by the parameter S,, = L,/ L,

Poe(i- 2o B Yeg)e o

In Eq. (3) we use z,y in units of p, and ¢ = c®/B(p,va) = (e®/T.)(Ln/ps) where

the equation!' S is

vg = (cT./eBLy) = pscs/Ln. This equation has nonlinear dipole vortex solutions
that are bound together by the cubic (5% /2u*)® restoring force at large ¢ in the core

of the vortex. In the tails of the vortex where ¢ <« zu, Eq. (3) reduces to the linear

wave equation

describing the coupled drift wave-ion acoustic waves in a sheared magnetic field in
which kL, = ky ps Smz.

In fact, the solution of Eq. (1) can be formulated as the stationary point in function
space through the va.ria.tic;na.l principle of the Lagrangian L(p) = [ £ dv where dv is

the relevant volume element and L(p, Vi, z) is the Lagrangian density given below.
Numerical Solutions in 2D

The exact stationary solution ¢,(z,y) is a fixed point in functional space of the
nonlinear function N (@) defined by Eq. (1). In seeking numerical solutions we seek a
sequence of approximations (*) which converge, in some sense, to @,(z,y). Since we
do not know the exact solution o, we cannot form the measure ||@*) — ¢,||. Instead,

we seek to measure the convergence through
IN@IP = [ dolN(o)P (5)
where p = 1,2,...,00. In finite difference form this measure of error is

Z |Nii (@) (6)

V 1)

IN(@IP =

We also introduce the (-weighted average of N(¢) =0 by

(o, V) = / dN()=0 (7)
ZS"’U (@) =0.

109




Using 9V = V- (¢V) — (Vip)? we can rewrite the projection (@, V) into a sum

of energies and the boundary flux F

| 5
(o) = [[dv (Vo) + K0 — 0z — s o - [, deo 5t (8)

where Op/0n is also equal to d€ x Z- V. For a localized structure the boundary term
in Eq. (8) is small whereas for a linear structure it is comparable to the two quadratic

integrals defined by
1
(2) - - 2 2 2
W —2/@ [(V<p) +k(:n,u)(p} . (9)

. Thus, an important feature of the nonlinear structure is the replacement of the bound-
ary term with the nonlinear binding energy in the balance of (p, N) = 0.

Computing (, V) leads to the nonlinear binding energies

W = q, / o dv (10)

w = a3/t,o4dv (11)
that overcome the linear flux F = [, d¢» 8¢/0n in producing the localized state.
Conversion of the Nonlinear Equation into a Sequence of Linear Equations

In seeking a sequence of approximations w*) that approach a solution of N(p) =

0 we use the Newton method in functional gpace to extrapolate to the solution of
N(p) = 0. From ¢*) we determine @*+!) by requiring that

§

N (p*+0) = v (o) 4 OV

Y ((p(kﬂ) - sa“") =0 (12)

k)
which gives the linear sequence of equations for ¢**!) requiring the inversion of the
inhomogeneous linear operator (§N/8p) acting on ¢*+1). Thus, there are two series
of iterations: first, for solving the linear problem for p*+1) and secondly, the Newton
sequence defined by Eq. (12) for £k = 1,2,3,.. ., co.

For the linear problem defined in Eq. (12) of inverting the operator L(z,y) =

(6N/6¢) evaluated at ¥ we first tried the methods of successive over-relaxation
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(SOR), and related methods. These methods were found to be poorly suited due to
the motion of the eigenvalues of L with o(*). We have come to the conclusion that
the SOR method is not a suitable method. Subsequently, the search for finding a
suitable solution method for inverting L led us to study the ITPACK software of Rice
and Boisvert.'® The conclusion is that algorithms using variations of the conjugate
gradient (CG) method are best suited for solving the present problem.

The CG method approach is essentially an algorithm t~o minimize the quadratic

form associated with the linear inversion problem AX = b
L= %XTAX—XT(;.

The conjugate gradient method seems to follow the physics of the problem closely
and does not require the eigenvalues of A to be less than unity. The convergence
and accuracy is poor when the eccentricity of the major-to-minor axes of the hyper
ellipsoid XT AX = const are extreme. The ratio of the maximum major axis to the
minimum minor axes is the condition of the matrix.

The standard conjugate gradient method is best suited for matrices that are sym-
metric and positive definite (SPD). Matrices generated from the finite difference form
of Eq. (12) are generally not SPD. Generalizations of the standard conjugate gradient
method have been developed to handle non-SPD matrices.! A number of these gen-
eralized methods are included in the NSPCG (Non-Symmetric Preconditioned Con-
jugate Gradient) package developed at The University of Texas. The GMRES and
ORTHOMIN methods were found to give the best results.

We use both the p = 1 one-norm || V|| defined in Eq. (6) and the energy constraint
(v, N) = 0 given in Eq. (7) as measures of convergence over the sequence of Newton
iterations. The conjugate gradient convergence is a sequence of approximations to
minimize the residual r of the linearized equation (12) so that we do not need to
closely monitor the convergence of the CG iterations. In the runs presented here we
typically use 50 CG iterations for each Newton iteration.

An example of the convergence trend of || V|| versus the number n¥* of Newtonian
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iterations is shown in Fig. 1. (The convergence example in Fig. 1 is for the structure
shown in Fig. 2.) In general there is a rapid decrease of || V|| for the first 3 or 4 Newton

iterations. After that, |[V|| tends to oscillate with a mean value that falls as

IV = e

Nt

where nV¢ is the number of Newtonian iterations.
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Fig. 1

The energy-like measure of convergence (@, N) shows a rapid decrease for the first
3 or 4 Newtonian iterations, then typically oscillates about zero with decreasing swings
for 20 to 30 iterations. After this the magnitude of (¢, N) decreased dramatically. The
general trend appears to be for (¢, N) to finally converge to a small negative number of
order a few times 10~ W"¢ where W™ is the nonlinear binding energy. For nVt = 60
the overall decrease in |[N|| is 7 x 10~* and (@, N) is 2 x 10~* from the initial values
as shown in Fig. 1. We believe that the convergence can be continued for considerably

Nt

larger n™* values but have not pursued the limiting factors at this time.
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Examples of Self-Organized Structures in Inhomogeneous Plasma

Magnetic shear controlled structures

The reduction of the steady-state vortex equations for drift waves in a sheared

magnetic field leads to the nonlinear, inhomogeneous pde
Vi =1 — sz —¢)(z ~ $/2)y (13)

where the exterior wavenumber £ = 1 — vy/u has been used for the space scale,
then the amplitude is rescaled as ¢ = (u/kvg)¥ and s? = S% v3/k?u? a dimensionless
measure of the magnetic shear parameter. The vortex Eq. (13) is invariant under the
transformation ¥ — —3(—~z,y) giving rise to antisymmetric solutions. In Su et al.!» 12
the nonlinear solutions were investigated with the approximation of slow variation in
y compared with z.

With the numerical methods described here we are able to solve the full 2D-
nonlinear pde. We find that solutions are qualitatively the same as given in Su et al.!
The prediction of the 1D analysis that s > sy, is required for a localized self-organized
solution is also born out in the 2D solutions. When s < 0.5 the 2D solutions collapse.

An example of the 2D vortex structure for s = 1 is shown in Fig. 2. Figure 2a
shows the solution in 2D perspective and Fig. 2b the level contours. The vortex has
a dipole vortex core connected to a magnetic shear induced drift-wave ion acoustic
wave (/z < 1) exterior solution. In terms of the energy components the structure
has a linear wave energy of W* = 196 balanced by a corresponding negative nonlinear
binding energy of -196 and a boundary contribution of 0.2. Thus, the self-trapping in
2D is very strong and nearly complete within the 5 x 5k~? domain.

In"Fig. 3 we compare the profile of the shear induced dipole vortex in Fig. 2 obtained

from the slice ¢(z,y = 0) to the solution obtained using the 1D model (dropping 92)
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Fig. 2

We see that the 1D model significantly underestimates the strength of the nonlinear
binding. While the position of ¢, in both cases is nearly the same the @ (1D) =~ 4
compared with ¢ma (2D) = 6.4.

When the shear parameter is varied we find that the nonlinear structure collapses

for s < Sqie = 0.6 and that for s > 1 the amplitude decreases and the amplitude of
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exterior wave field increases relative to the amplitude of the vortex core.

For example, for gma(s = 1.5) = 4.8 compared with (2/3)(6.4) = 4.3, and for

Pmax($ = 2) = 4.0 compared with 6.4/2 = 3.2. Thus, the decrease is weaker, closer to

s™'/2, than the 1/s variation estimated in Su et al! For the case s = 2 the exterior

wave field is about one half the amplitude of the vortex core.

Variational Formulation and Conserved Forms

The general equilibrium governed by Eq. (1) can be obtained by varying the fol-

lowing free energy functional:

where

Fig. 3

Flgl= [ Flo, Vo, x)dv , (14)




1 I

1 1
F(e, Vo, z) = -2~(Vgo)2 + 3 kp? — 3 @ — i aze? . (lc
Variation of (14) is defined by
d * §F
6Flpidel = 7 Flp+ebe) = | 5 fedv, (16)

where 6y is required to vanish on V. Setting the functional derivative 6F /8¢ to zero

we get

6F oF O8F
R v eI v 2, 2 _ 3 _
5o v Vo + 9% P+ k'~ o’ — a3’ =0, (17)

which is Eq. (1).

One can interpret this free energy functional variational principle for the equilib-
rium as an action principle, ald Hamilton’s principle of mechanics, for various pseudo
dynamics. For example, in the case where restriction to a single spatial dimension, say
z, is made, the equilibrium becomes equivalent to a one and a half degree-of-freedom
Hamiltonian system. Here the role of time is played by z and the role of the coordinate

is played by ©. The free energy density F can then be interpreted as a Lagrangian L,

where
1
L= 59’2 — Ver(p, z) (18)
with
1 2 2 1 3 1 4
Vet (9, 2) = —p K"+ g aa(a)e’ + 7 (@)’ (19)

Observe that the vanishing of §¢ on the boundary is the appropriate end condition
for Hamilton's principle. In the case where o3 is “time” independent and a; = 0, (19)
becomes the potential for ion-acoustic solitons.

The case for Eq. (13), where @; and k? vary with z, is considered in detail in Su
et al.' and the phase space dynamics is shown here in Fig. 4. The Hamiltonian in this

case is given by Legendre transform as follows:

2
H=pp,— L= %+Veﬁ(%$) (20)

where p = % = pz. Constant energy levels at a sequence of t = kz values are shown
in Fig. 4.
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In Fig. 4 the effective time variable is ¢t = kz, the coordinate ¢ is the potential
¥ and the momentum p the electric field di/dt. The dipole solution given in Fig. 3
corresponds to throwing the effective ball down from ¢ = 0 with various values of
velocity into the time-dependent potential. The result is that there is a whole spectrum
of nonlinear solutions with various values of di/dt, or internal electric field, for which '

there are localized, self-organized plasma structures.

g
dt

Fig. 4
The creation of these self-organized structures is a method the plasma has of storing,
in a small concentrated region, considerable energy. It is perhaps natural that the

unstable or out of equilibrium plasma would choose to put part of its free energy into

these efficient capacitor-like storage banks.
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