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Nonlinear coherent structures governed by the coupled drift wav&on-acoustic mode 
equations in nonuniform plasmas with sheared magnetic fields are studied analytically and 
numerically. A solitary vortex equation that includes the effects of density and temperature 
gradients and magnetic shear is derived and analyzed, The analytic and numerical studies 
show that for a plasma in a sheared magnetic field, even without the temperature and drift 
velocity gradients, solitary vortex solutions are possible; however, these solutions are not 
exponentially localized due to the presence of a nonstructurally stable perturbative tail that 
connects to the core of the vortex. The new coherent vortex structures are dipolelike in their 
symmetry, but are not the modons of Larichev and Reznik. In the presence of a small 
temperature or drift velocity gradient, the new shear-induced dipole cannot survive and will 
separate into monopoles, like the case of the modon in a sheared drift velocity as studied in Su 
et al. [ Phys. Fluids B 3,92 1 ( 199 1) 1. The solitary solutions are found from the nonlinear 
eigenvalue problem for the effective potential in a quasi-one-dimensional approximation. The 
numerical simulations are performed in two dimensions with the coupled vorticity and parallel 
mass flow equations. 

I. lNTRODUCTlON 

Since the solitary dipole vortex solutions or modons 
were found’ for the Hasegawa-Mima’ (HM) drift wave 
equation in a uniform plasma, numerous works3-* have con- 
cerned solitary vortex solutions in nonuniform plasmas. Pet- 
viashvili first suggested that if the HM equation is modified 
by including the effect of the electron temperature gradient, 
one can derive solitary monopole vortex solutions. The deri- 
vation of the original Petviashvili modek3 however, has been 
shown to be incomplete recently by several authors.5*7*8 In 
particular, the full analysis shows that nonlocality of the 
linear wave operator must be retained simultaneously with 
the KdV-type nonlinearity introduced by Petviashvili, in or- 
der to preserve the conservation of potential vorticity. The 
authors have shown that for a plasma with constant drift 
velocity L$~, there exist no monopole vortex solutions, no 
matter what the temperature profile, T(X); but monopole 
solutions can exist if the drift velocity ud (x) is not constant. 
In recent work,’ we have considered a fully nonlinear model 
with a Boltzmann density distribution and have concluded 
that the monopolelike vortices can exist if the temperature 
and drift velocity are not constant. Such monopolelike vorti- 
ces are not exponentially localized solitonlike monopoles 
since the inhomogeneity also causes energy leakage from the 
vortex core through radiative tails. This leakage will be neg- 
ligible if the strength of the inhomogeneity 
LY = jT’/T* - u&/u] and size of the vortex l/k, (where 
kO r,/m) satisfy a=gki. 

In all previous work,3-8 the spatial dependence of k,, is 
ignored, and consequently the effects of magnetic shear are 
systematically eliminated. The present paper extends pre- 
vious work* by taking into account the nonlinear coupling of 
vorticity to the magnetic-shear-induced parallel ion motion. 

Here a model that includes not only the temperature and 
density gradients, but also the effect of magnetic shear, is 
developed and analyzed. Analytically we consider a quasi- 
one-dimensional model for the finite-amplitude coherent 
structures that exhibits a nonlinear localization mechanism. 
With this model we are able to show that when the effect of 
magnetic shear is included in the drift wave equation, even 
without the gradient of drift velocity, the effective potential 
becomes a nonlinear trapping potential and, therefore, there 
exist solitary solutions. The solutions are shown to be dipole- 
like solitary waves. However, they are different from the 
well-known modons, which are exact solutions of the HM 
equation. Due to the coupling of drift waves to ion-acoustic 
waves, the solitary structures, like those induced by noncon- 
stant drift velocity in a shearless field,* are not exponentially 
localized solitonlike solutions; instead they have oscillating 
tails that connect to the cores of the vortices. We also use a 
two-dimensional magnetohydrodynamic type of numerical 
code to simulate the coupled vorticity and parallel velocity 
fields. The numerical results are consistent with the analytic 
resuhs obtained from the quasi-one-dimensional model. 

The paper is organized as follows. In Sec. II the model 
equations are derived and the conservation laws are present- 
ed. In Sec. III the model equations are analyzed. The nu- 
merical results are presented and discussed in Sec. IV. Final- 
ly, summary and conclusions are given in Sec. V. 

II. MODEL EQUATIONS AND CONSERVATION LAWS 

We consider a plasma of cold ions and massless elec- 
trons in a sheared external magnetic field 
B = B, [i + Y(x/l;, 191 = B,,h. The dissipationless equa- 
tion of motion and the continuity equation for the ions are 
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dv -= 
dt 

-ew+vxn, 
mi 

$ + V-(m) = 0, 

(1) 

(2) 

where d /dt = d /dt + V-V, and Kl = eB/m,c = wcih is the 
ion cyclotron frequency. Ubon taking the curl of Eq. ( 1) and 
combining with Eq. (2), one can derive the inhomogeneous 
Ertel’s theorem, 

where w = VXv. 
Introducing the ordering, 

E,~LLy’v- vIIvll g* - 7 w,i at wci tici 
we obtain from Eq. ( 1) to lowest order in E,, 

v = v, = (e/mioci )fXV@, 

0 = wci Cpf/Te )V: (eQ)f, 
and the convective derivative becomes 

$=$+v,*V=-$+w,i$[e*, 1, 
e 

(3) 

wherep, = C,/Wd and C, = [ T, (x)/m, ] “*. Now we define 
T(x) = T,(x)/T, (where To is a constant), r; ’ 
= - d In n,/dx, e, =p.d,, PSO = cdJ//wci 
= ( To/m, ) “2/w,i, and the magnetic shear strength S(x) 
= (r,/p, ) Y (pax/L, ). The parallel component of the 

vorticity equation from Eq. (3) can now be written as 

&*n(l+El]v’p)+[p, ln(l+‘iv’P)] 

= a2 ( 2 + Xx) ; > E,UII P (4) 

and the parallel component of the momentum equation from 
Eq. (1) is 

avll at+ [p, q] = - ( -$+sw; p. > (5) 

For the massless electrons, we assume the Boltzmann distri- 
bution, 

n = n, (x)exp(e@/l;) = n, (x)exp(E,p/T). (6) 
In writing Eqs. (4)-( 6)) we have used the following scaling 
transformations to dimensionless variables: x,y+x/pfl, 
Y/Pa ; z-+z/r,; t+ (&Jr, )t; VII + (rJp,c, )q; 
~4 (r,e/p, To )Q>. 

Upon substituting Eq. (6) into Eq. (4), and considering 
the ordering, 

Now we look for traveling wave solutions of Eqs. (4) 
and (5) by assuming p = qa,Y - ut) and 
v,, = v,, (x,y - ut). Equations (4) and (5) become 

$&-p$Vf -r,Vll -$w$-~~~n -E, (7) 
so n -~$ln(1+~v2P)+[~, ln(*+zV2’)] 

we can rewrite Eq. (4) to order E and 2 as 

where v,(x) = -dlnn,/dx-B(1) and KT(X) 
= - (l/T)dln T/dx-d(e). 

Now the conservation law for mass is evident by rewrit- 
ing Eq. (8) as 

$(&)+v*[ -~+(vd(x)p-Ky~2)9 
I) 

+ (VP xf)V2p + qlb = 0, I (9) 

and momentum conservation by rewriting Eq. (5) as 

-gull +V*[(Vq,x~)q +&I =a (10) 

The conservation law for energy can be obtained by multi- 
plying Eq. (5) by vll and Eq. (8) by e, and then combining 
the two equations to obtain 

$+v. 

-v’+“$)+vpxi~+ cpvl,,i] =o, (11) 
where the energy density $ is defined as 

> 
- 

Therefore Eqs. (9), ( lo), and ( 11) show, respectively, that 
the dynamical system conserves mass, momentum, and en- 
ergy to the second order in E. 

Equation (4) describes the advection of the generalized 
potential vorticity and its change caused by parallel com- 
pression VII vll . The compression from the parallel motion 
eliminates the conservation of potential enstrophy, defined 
as U = J [ (V, p)’ + ( V:F)~] dx dy. However, the general- 
ized cross helicity appears as a constant of motion. To sys- 
tematically construct the invariants, the so-called Casimir 
noncanonical Hamiltonian structure is developed in the Ap- 
pendix. Here we observe that if we introduce the antideriva- 
tive of the shear a(x) = fYY(x’)dx’ such that [a(x),vll ] 
= S(x)$,/ay and the potential vorticity q = V’g, 
- p/T(x) - In n, (x), then it is straightforward to show 

that the conserved helicity is 

h = q[vII -o(x)]dxdydz. 
s 

(12) 

A generalization of this invariant in the case where z depend- 
ence is neglected is given in the Appendix. 

III. TRAVELING WAVE EQUATION AND SOLITARY 
WAVE SOLUTIONS 

(8) (14) 
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Equation (14) gives we obtain 

cp-ux,v,, + -g (_ l)nd(“-‘)S(x)/dx(“-‘)e,. =o, 
n=I fZ!U” > 

(151 
which has the general solution 

SIX s, u --e,+,U,~2=G(p-uxL 
” u 

where G is an arbitrary function of its argument. In writing 
Eq.(l6),wehaveexpandedS(x) =S, +S,x+S,x2+ .+. 
with S, = 0 and noticed that the higher-order derivatives of 
S(x) are significantly smaller than the first-order derivative 
for the magnetic shear problem. Here S, = r, /I., . 

For localized solutions p-0 as r-+ 00 and we assume 
the boundary condition vlI -+ v, = const as r+ CO. Assuming 
G( co ) = v, , vl, can be written as 

VII = (S,x/u)p - G, /2u2)p 2 + u, , (17) 
where we see that the magnetic shear introduces an impor- 
tant nonlinearity into the dependence of vII on p. 

Substituting Eq. ( 17) into Eq. (13), we obtain another 
condition, 

[p-~x,*~(1+~v2p)+~p 
3Qsfx 6?s: ---p2+3p3 =a 

2u3 1 
which has the general solution 

(18) 

ln(1 +E, V’p) --Inn, - EnP E,S:X2 
-+- 
T(x) u2 p 

3e,s:x G: --p2+- 
2u3 

2u4 ~~==F(q,--uxL (19) 

where we have assumed quasineutrality with the electrons 
obeying the Boltzmann distribution of Eq. (6). Again we see 
that the presence of magnetic shear introduces important 
strong nonlinearities into the system. 

To ensure localization for 9 we select 

F(p--ux) = -lnn,[(ux-~p)/u]. (20) 
For a simple exponential density profile, 
K$, (x1 = exp( - E,x), and constant temperature (T= l), 
Eq. ( 19) with Eq. (20) becomes 

E, V2p = exp[t,(l -:)p 

2 x2 - ens, ( &P- 2u3 -++$ -1, >I 
(21) 

where vd = 1 follows from the choice of units. 
Considering the quasi-one-dimensional case in which 

d /ay<a /ax and introducing the new variables 

&l-L, x=L, 
u k 

s: s2=-, 
2u2k 4 

co = ukq,, 

~=exp(~OIY -s2(2t2Y-3tY2+Y3)]}-~1. eo at2 
(22) 

Here, note that for small k 2, corresponding to large coherent 
structures, the effective shear parameter Sz is considerably 
enhanced over the original shear parameter S: . 

The boundary condition \I, ( t + f 00 ) -, 0 and the initial 
conditions Y(t=O) =0 and dY(t=O)/dt=const or 
Y (f = 0) = const and dY (t = O)/dt = 0 together with Eq. 
(22) define a nonlinear eigenvalue problem for the unknown 
constant values at t = 0. 

In the new variables we can calculate the rotation rate4 
R E = (c,/r, 1 k, dp/dx compared to the vortex frequency 
0 lab = (cS/r,)kyu in the laboratory frame as 
flE/cqab = dY/dt, 

Equation (22) can be written in the form of the Hamil- 
tonian equations for an imaginary particle with coordinate 
q = Y, time t, and momentum p = dY/& in the effective 
potential V,,(Y,t, = -1 s 9 

dY exp&[Y -?(2t2Y 
EO 

- 3tY2 + Y3)]1+ (Y/e()) . (23) 
For U-vd = 1, E. -E”, < 1 and the effective potential re- 
duces to 

v,, (YJ) =. - t2Y2-- tYl+F)]. (24) 

Although for simplicity in Eq. (24) we have kept only the 
lowest order of V,, in eO, it can easily be shown that this 
approximation does not change the shape of VeP. 

The dynamical equations for a “particle” representing, 
the system are 

p= -&Y,,(Y,t)=Y-Z(2t2Y-3tY2+Y3), 

kp. 
(25) 
(241 

In order for Eq. (22) to have localized solutions, the eRec- 
tive potential must be a trapping potential. In the limit of 
S-+0 the effective potential has the form 
V,, (s = 0) = Y - ( l/e@ )e4,’ or to lowest order 
V,,(s=O)z - JY”, which is easily seen to not be a trapping 
potential. However, with existence of small shears, the situa- 
tion is changed entirely. To realize this, one can examine the 
properties of V,,. The extremal points of the potential are 
given by 

--=Y-s2(2t2Y-3tY2+Y3)=0, aq 
which yields Y,, = 0, Y,, = St - ;Jt ’ + 4/$, and 
VI,, = it i- id-. The signs of second derivative 
8 2 Ve,/dY2 at the external points determine the shape of the 
potential. Figure 1 is a sketch of the evolution of the effective 
potential with “time” t, Figure 2 displays corresponding 
phase space portraits showing the bifurcation of the origin 
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pJ? 
2s 

Y-4 

III 
0 

9 
II 

k dt 

+,J2’ 
2s 

FIG. 1. Evolution of effective potential V,, (Y,t) with the “time” t that 
corresponds to the distance kx from the shear reversal point. FIG. 2. Evolution of the separatrix in phase space corresponding to the 

effective potential V, (YJ). 

from unstable to stable at r = V2/2s. It is evident that the 
effective potential has two wells when t = 0, indicated by I 
and II in Fig. 1. Well I moves to Y = 0 and disappears as 
r-+V?!/2.s and then a new trapping well III appears and stays 
at Y = 0 for t > fl/2r, while well II moves toward Y -+ CO as 
t -, 00. For t < 0, well II moves to Y = 0 and disappears as 
f-r - v%?.s and a new trapping well III appears and stays at 
Y = 0 for t < - \/z/2.s, while well I moves toward Y + - 03 
ast+-m. Therefore only a “particle” eventually trapped 
in well III corresponds to a solution satisfying the boundary 
conditions. The initial conditions determine if the “particle” 
will be eventually trapped in well III. 

The presence of the trapping well indicates that the exis- 
tence of magnetic shear changes the effective potential from 
nontrapping to trapping, and therefore creates the possibil- 
ity of solitary wave solutions with finite amplitudes. How- 
ever, the presence of magnetic shear also makes the solitary 
drift wave couple to the ion-acoustic wave by changing the 
effective potential V,, (YJ) at the critical “time” 
to = & v%Lr. The new trapping well III that appears when 
It 1 > Ito 1 actually is the potential well associated with the 
ion-acoustic wave. The coupling between the solitary waves 
and the propagating ion-acoustic waves leads to the forma- 

tion of the oscillating tail emanating from the core of vortex. 
This tail gives rise to the dissipation of energy from the soli- 
tary wave core. Therefore for a solitary vortex solution, the 
oscillating tail must be far away from the core of vortex, that 
is, to > 1 or x0 > l/k, where l/k is the size of the solitary 
vortex. This gives s < a/2 or S, < 1 u - vd I, which is consis- 
tent with the condition for a modon with small damping 
given earlier by Meiss and Horton.’ 

Equations (24) and (25) are symmetric under the fol- 
lowing transformations: 

V,,W,f)+V,,( --,--1, 
Y(t)- - Y( -t). (27) 

These relations rule out the possibility of monopole solu- 
tions, since these are symmetric about t = 0. However, local- 
ized solutions in the form of dipoles are not ruled out. The 
shape of such a dipole is determined by the initial conditions 
Y (t = 0) = 0 and dY ( c = O)/dt = constant corresponding 
to the strength of the core electric field or EXB flow veloc- 
ity. Numerical integration of Eq. (25) yields the spectrum of 
eigenvalues for the initial momentum dY ( c = O)/dt or 
equivalently (l/u)dp(x = O)/dx. Solutions are construct- 
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ed by choosing the initial condition of zero coordinate and 
nonzero momentum, and then integrating beyond 
r, = + VV2.s to determine if there is trapping as t-r f 00 in 
the ion-acoustic potential well. Physically the trapping im- 
plies the radiative tail at large t. 

Figure 3 shows an example of a nonlinear trapping solu- 
tion for s = 0.06. Clearly the trapping solutions of this form 
only occur for certain initial data, which depend on the shear 
parameters. The magnitude of dY ( f = O)/dt and the initial 
amplitude Y’, of the vortex can be estimated with the help of 
Eq. (25). For small Tut,, -e. < 1, where t, is the “‘time” at 
which Y assumes its maximum value or amplitude 
Y ,zY(t=t,) and dY(t=t,)/dt=O, the second and 
third terms on the right side of Eq. (25) are much less than 
the first and fourth. Therefore for a nonlinear solitary solu- 
tion, there must be a balance between the linear and nonlin- 
ear terms on Eq. (25)) that is, Y -szY3. This gives the scal- 
ing law for the amplitude of the vortex, 

Y m - l/s or cp, -@u2k/S,, (28) 
On the other hand, multiplying both sides of Eq. (25) by 
dY/dt and integrating in time from t = 0 to t = t, , we can 
approximately obtain [Y’(0)]2~((s2/2)Y~ - Yi, where 
Y’(0) =dY(t = O)/dt. Therefore the scaling law for the 
Y’(0) is 

yr(o) &‘W = 0) ,_1 
dt S 

or 

p’(O)z 
dp(x = 0) @u2k 2 

dx --. 
S, 

(29) 

A detailed study of the numerical spectrum yields the 
Y’(0) vs s curve shown in Fig. 4. The curve shows the al- 

~~~3\1._ -10 0 IO 20 30 
t =kx 

FIG. 3. Nonlinear eigenfunction for s = 0.06 and &(t = O)/dt = 13.58, 
showing the dipole-type vortex and wave solutions in the case without tem- 
perature and drift velocity gradients. 

50 - 

40 - 

30 - 

s 
-0 

20 - 

IO - 

0' I , 1 L I 
0 0.02 0.04 0.06 0.08 0.10 

Shear 5 

FIG. 4. Spectrum of critical &(t = O)/dt versus the effective shear s from 
0 to 0.1, showing the allowable initial “momenta” &( t = O)/& in the 
range of O-50 for the eigenfunction Y(t) to be bounded as t- & CO. The 
shaded regions represent the allowable initial values for uV( t = O)/dr. 

lowable initial momenta Y; (0) -(l/s) + 5n, n = 0,1,2,..., 
for the eigenfunction Y(t) that are bounded as t-r + 00, 
versus the shear parameter s. The shaded regions in Fig. 4 
represent the allowable initial values for Y’( 0). The lowest 
values of Y’(0) gives the minimum flow velocity for the vor- 
tex core required for the formation of the coherent trapped 
structure. Both the Figs. 3 and 4 consistently support the 
scaling laws presented by Eqs. (28) and (29). In addition, 
Fig. 4 shows that the existence of a vortex for small electric 
fields Y’( 0) (or flow velocity) requires that ~0.06, whereas 
for large electric fields a vortex is formed for saO.02. 

Note that the dipole solutions presented here are differ- 
ent from the Larichev and Reznik modons.’ The modon 
construction uses two different linear functions F(~T - ux) 
in the two different regions, namely, the interior and exterior 
regions of a modon; thus the equations determining the mo- 
don structure are two linear equations. These two equations 
are solved separately in the two regions and the solutions 
from the two regions are matched up to second derivatives at 
the boundary. However, the construction of the new dipole 
solutions presented here uses only one single arbitrary func- 
tion F( q, - ux) . Therefore the derivatives of the eigenfunc- 
tion 97 = (u/k)Y are continuous to any order in the whole 
x-y plane. Furthermore, the equation determining the struc- 
ture of the dipole is a nonlinear multieigenvalue equation. 
When the parameter S, and u are given, one can find multi- 
ple eigenfunctions 40, (x) with different amplitudes and de- 
rivatives dpn (x = O)/dx. The derivatives dpn (x = O)/dx 
of eigenfunctions form a banded continuous spectrum as a 
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function of the parameters = S, /\r( u - udO ), as shown in 
Fig. 4. 

From the analysis, we conclude that when the magnetic 
shear parameters<0.02, the effect of magnetic shear on drift 
waves is small and the coupling between the vorticity and 
parallel velocity fields is weak. The decoupled vorticity 
equation becomes the HM equation and therefore we re- 
cover the modon solutions. With the increase of s, the cou- 
pling between the two fields becomes important. When 
O.O2<s<v%2, the new type of dipole vortex emerges. The 
new vortices are localized solitary waves. However, when 
s > G/2, the strong coupling between the drift waves and 
ion-acoustic waves causes strong radiation damping of ener- 
gy from the vortex cores and thus eliminates the existence of 
the solitary waves. 

Even though the above analysis is based on the one- 
dimensional (1-D) model, it exhibits the main features of 
the solitary vortex induced by magnetic shear. The 2-D sim- 
ulations of Eqs. (4) and ( 5) discussed in the following sec- 
tion show that the principle features of the one-dimensional 
model are consistent with the simulation. As the shear pa- 
rameter increases the x variation of the coherent structure 
becomes stronger than the y variation and the one-dimen- 
sional model becomes more accurate. The one-dimensional 
model is adequate qualitative picture, but does not yield 
quantitative values for the amplitudes. 

IV. NUMERICAL VORTEX SOLUTION IN 
INHOMOGENEOUS PLASMA WITH SHEARED FIELD 

In order to facilitate the numerical solutions of Eqs. (4) 
and ( 5), we first expand Eq. (4) according to the ordering in 
Eq. (7) and consider u& -K~ -6, --E. Keeping only the 
terms of order E and 2, we derive from Eqs. (4) and (5) the 
reduced dynamical equations 

( 1 -- v2 
T(x) > 

- [fp, Vg,] = 4(x,$ 

2 + [q&q, ] = - S(x) 

Here v;, = pa dv,/dx - (pa/r” ) vdo at the core of the vor- 
tex. In writing Eq. (3 1) we have included a viscous damping 
term to absorb energy transferred to 1 k I-. 00. 

To solve Eqs. ( 30) and (3 1 ), we use a uniform grid over 
x and k, in 85 X 85 xk, space with 3655 complex 4)X,ky (t) and 
u,,~,~, (t) modes. Since the first term of Eq. (30) depends on 
x, we leave the equation in x space and use the second-order 
central difference formula for d z, which yields a tridiagonal 
system that is solved for each J,q(x,k,,,t). We use the Ahl- 
berg-Nilson-Walsh algorithm for cyclic tridiagonal sys- 
tems” to reduce the operator [ l/T(x) - V’] to a cyclic 
tridiagonal matrix. Upon inverting the matrix we obtain 
Jrp (x, k, ,t ) for each mode. The nonlinear convolution terms 
in both the equations are evaluated by first transforming p 
and u,, in k, k,, space to get derivatives of p and u,, , then 
transforming pL and ullL and their derivatives into xy space 

to calculate the convolutions. The results are then trans- 
formed back into xk,, space. Finally we use high-order 
Runge-Kutta time stepping to get cp(x,k,,,t) for each mode 
at each time step. The constants of motion defined in Eqs. 
(9)-( 12) are used to monitor the accuracy of the code. The 
modon of Larichev and Reznik is taken as the initial pertur- 
bation for p(x,~,t = 0), and Eq. (17) with v, = 0, for u,,. 
The exponential temperature profile T(x) = exp( - c2x) is 
used so as to avoid the negative temperature problem that 
can arise when expanding T(x) as 1 - c2x. For the exponen- 
tial profile K~ = - (l/T*)dT/dx = c, exp(c,x). Because 
of periodic boundary condition, we choose the magnetic 
shear profile as S(x) = S, sin(27rx/l,), where 
L, = 207r,,, is the length of periodic simulation box in the x 
direction. Typical simulations use an average of 40 min CPU 
time on the CRAY-2 for At = lOOr,/c,, which is about ten 
rotations of the vortex core. 

In the first case we used vLo = c2 = 0, p = 0.1, and 
S,,, = 0.1 so that S, ~0.01 and the effective shear s-0.07, 
which give the parameter 1 u/v, - 11 = 0.1) S, , therefore 
the radiative damping of the vortex is small and negligible. 
We start with the Larichev and Reznik modon with 
I1 = l.lu,, and r, = 6.0~~~ so that the center derivative of 
the modon cp’(O)=(@/Jx),=,,6.7 or q’(O)-6.1, 
where t = kx. We observe that the dipole vortex structure 
for the q field stays a long time without much change, and 
that the uII field, though experiencing some change, still 
keeps a rather coherent and stable structure in the interior 
region of the dipole vortex. After a long time, the amplitude 
of the dipole p,,, - 13, the velocity u- 1.3, and the center 
derivative p ‘(0) slightly increases. Figure 5 shows the 
streamline of p(x,y,t) = const and u,, (x,y,t) = const at 
times fc,/m = tvdO/p,, = 0, 20,40, and 60. 

In the second case, temperature gradients exist. We 
choose c2 = 0.046, vAo =0, S,,, = 0.1, II = l.ludo, and 
,u = 0.1. For these values the dipole discussed in the first case 
cannot survive. Figure 6 shows that the dipole separates into 
monopoles immediately after it starts to travel. This is ex- 
pected since the c2 introduces the KdV nonlinear term in Eq. 
(30) that breaks down the symmetries of Eq. (27) and 
causes the waves in the region of negative potential to propa- 
gate faster as reported in Refs. 6 (a = - K~ in Ref. 6) and 8. 

We also did some numerical experiments with S- 1 or 
ju/u, - 11 -S, , and found that the dipoles eventually con- 
nect to oscillating tails with significantly large amplitudes. 
In these cases the dipole vortices experience strong damping 
of energy through the tails. 

In all the simulations, we notice that the waves with 
small amplitudes in the u,, field appear to be stationary and 
that the energy of the u,, field tends to go into waves with 
small scale lengths. The reason for these phenomena is that 
Eq. ( 3 1) does not have a linear wave term like vdo 84, /+ as 
in Eq. (30); thus linear waves with small amplitude do not 
propagate. Since Eq. (3 1) lacks linear dispersion, the non- 
linear steeping process cannot be effectively balanced and 
the waves with small scale lengths tend to grow. Because of 
this fact, we add a viscous term in Eq. ( 3 1) to dissipate the 
energy transferred to the waves with these small scale 
lengths. 
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X’PS 

FIG. 5. Contour plots of the electrostatic potential p(x,y,t) and  parallel 
velocity u,, (x,y,t) ofEqs. (30) and  (3 1) with temperature gradient K~ = 0, 
drift velocity gradient c& = 0  and  magnetic shear  parameter 
S, =  O.l(s=O.O7). The dipole-type vortex does not change much for a  
long time. 

The results of the simulations show the general consis- 
tency with the results of the anaIysis in the previous section. 
In particular, the simulations show that the dipole-type vor- 
tex solutions of the drift wave-ion-acoustic wave system can 
exist in a sheared magnetic field when the electron tempera- 
ture is constant over the vortex. The dipole-type vortices are 
well formed and can last a long time without much damping 
ifs < 1 or 1 U/U, - 1 I > S, , provided the K~ -+ 0. For finite /cr. 
we can estimate6 the lifetime of the dipole vortex from 
tL-1/KTQ)mk-1/KT(p’(0)k2. 

V. SUMMARY AND CONCLUSIONS 
Analytical and numerical studies of the effect of mag- 

netic shear on drift wave vortices in inhomogeneous plasmas 

tvd/‘p, 
: 

30. rp(x,y,t) 
0 

. 3c 

Y/Ps - 
o- 

-30 - 
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o- 
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FIG. 6. Contour plots of the electrostatic potential &x,y,l) and  parallel 
velocity u,, (x,y,t) ofEqs. (30) and  (31) with temperaturegradient param- 
eter c, =  0.046, drift velocity gradient I& = 0, and  magnetic shear  param- 
eter S,,, =  0.1. The dipole-type vortex breaks up  after a  short time. 

have been reported. Analytically we have derived a solitary 
vortex equation that includes the effects of density and tem- 
perature gradients and magnetic shear, and we have used a 
quasi-one-dimensional model to exhibit the main features of 
solitary vortices in sheared magnetic fields. The analysis 
shows that in a plasma with constant temperature and drift 
velocity, the presence of a small magnetic shear will cause 
the effective potential to change from a nontrapping to a 
trapping potential, which indicates the possible formation of 
solitary vortex structures with finite amplitudes. The solu- 
tions are shown to have the dipole-type symmetry. However, 
they are different from the well-known modon vortices, be- 
cause the derivatives of their eigenfunctions are continuous 
to any order in the whole plane; also the center derivative 
40 ‘(0) and the amplitudes form a banded continuous spec- 
trum. 
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It is also shown that the presence of the magnetic shear 
intrinsically causes the solitary drift waves to couple to the 
ion-acoustic waves. Thus the dipole solutions are not mono- 
tonically decreasing functions, instead, they have oscillating 
tails with monotonically decreasing amplitudes connecting 
to the core of vortices. This behavior is similar to the mono- 
poles induced by the gradient of drift velocity in shearless 
magnetic fields.* The oscillating tails cause radiative damp- 
ing of vortex energy. The damping is negligible if the ampli- 
tude p, ( -v??:U2k /+S, ) of the dipole structure satisfies 
p,,, > flu/k. For a weak effect of magnetic shear, this condi- 
tion is consistent with that for the Larichev-Reznik modon. 
However, for shear above a small threshold value 
s > s, z 0.02 as given in Fig. 4, we find that the nonlinearity 
of the u,, induced by the shear and vorticity equations com- 
bine to produce a nonlinear restoring force proportional to 
(ST /2u4)q, 3, which gives the new dipole vortex structures 
when s > 0.02 or S, > 0.03 1 u/v, - 1 I. The nonlinear struc- 
tures in the weakly sheared field greatly reduce the shear 
radiation expected in the linear drift wave-ion-acoustic 
wave theory. 

The numerical simulations performed in two dimen- 
sions with the coupled vorticity and parallel mass flow equa- 
tions consistently support the analysis. The simulations 
show that for a plasma with constant temperature and drift 
velocity in a magnetic field with small shear, the well-formed 
dipole vortices are stable and can last a long time without 
much damping when 1 (u/v,) - 1 1 > S, . However, with the 
presence of a small temperature gradient, the dipole vortices 
become structurally unstable and are rapidly separated into 
monopole vortices, which is consistent with our previous 
studies6*8 on the effect of finite inhomogeneities across the 
core of the vortex. Therefore we conclude that with constant 
temperature and drift velocity, the coherent structures of 
drift wave plasmas behave like dipole vortices in either 
shearless or sheared magnetic fields. But when the gradients 
of temperature and drift velocity exist, the solitary coherent 
structures take the form of monopole vortex structures rath- 
er than dipole structures. 
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APPENDIX: NONCANONICAL HAMILTONIAN 
STRUCTURE 

The vorticity equation (4) and the parallel momentum 
equation (5) with the Boltzmann density distribution n giv- 
en in Eq. (6) can be rewritten to order c and 2 for ~7 /dz = 0 
as follows: 

avll + + Ep,ql = S(x) ay , 

2 + [47,q ] = -S(x) J+?Et, 
ay 

(A21 

where the potential vorticity 4(X,YJ) = v2q, 
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-q/T(x) -ln[n,(~)]. 
The Hamiltonian is, from Eq. ( 11)) 

P2 -+ (vp)2+vi 
T(x) > 

dxdy 

=+- s (-qp-qln, +ui)dxdy, (A31 

where surface terms are neglected. Upon variation of H, 

SH = 
s 

( - 4, sq + q sq )dx dy, 

and we obtain the functional derivative 

SH SH -= -p; 
&? z = 71 * 

II 
(A41 

Equations (Al) and (A2) can be written in Hamilto- 
nian form, 

-$ = {q,Hh (A51 

(A61 

where the noncanonical Poisson bracket {F,G) is defined as 

@W>=~(q[~,~] + [q -dx)] 

X([$g] + [$E])]~x~Y, (A71 

where a(x) = J”S(x’)dx’. 
It is easily shown that the Poisson bracket given by Eq. 

(A7) is antisymmetric, 

@,G) = - cG,Fl, 
and one can prove it satisfies Jacobi’s identity, 

{&@‘,G)) + (F,@,E}) + {G,{E,F}) = 0. 
(A proof for essentially the same bracket can be found in 
Ref. 11.) 

The Casimir invariants C of the Poisson bracket are de- 
fined by 

cC,D) = 0, (A8) 
where D is an arbitrary function. Substituting Eq. (AS) into 
Eq. (A7), we obtain 

w,Dl=,(q[g,g] + [q, -o(x)] 

x([$$g + [f,fl))dxdY=o. 

Using the identity 

s 
fk,h ldx dY = s h Ugldx dy, 

we can rewrite Eq. (A9) as 

J($f [q.g] +g [ [u,, -w7$J 

+gp,, -dx)],g])dxdY=o. 

(A101 

(All) 
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Since D is arbitrary its coefficient must vanish, and we can 
find two independent Casimirs from Eq, (A 11) , 

c, = s f[q -dO]dxdy, 
c* = qgp-‘,, - dX)]dXdY, s 

where f and g are arbitrary functions of their arguments. 
When a/az#O, it can be easily shown that 

?, = qdxdydz, 

2’ = [u,, -a(x)]dxdydz, 
s 

2; = q[u,, -@(x)]dxdydz, I 
survive. 
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