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Expressions for the energy content of one-dimensional electrostatic perturbations about 
homogeneous equilibria are revisited. The well-known dielectric energy, gD is compared with 
the exact plasma free energy expression, S2F, that is conserved by the Vlasov-Poisson 
system [Whys. Rev. A 40, 3898 (1989) and Phys. Fluids B 2, 1105 ( 1990)]. The former is an 
expression in terms of the perturbed electric field amplitude, while the latter is determined 
by a generating function, which describes perturbations of the distribution function that respect 
the important constraint of dynamical accessibility of the system. Thus the comparison 
requires solving the Vlasov equation for such a perturbation of the distribution function in 
terms of the electric field. This is done for neutral modes of oscillation that occur for 
equilibria with stationary inflection points, and it is seen that for these special modes 62F= ZfD 
In the case of unstable and corresponding damped modes it is seen that S2F#&5’h in 
fact S2F=0. This failure of the dielectric energy expression persists even for arbitrarily small 
growth and damping rates since gD is nonzero in this limit, whereas S2F remains zero. 
In the case of general perturbations about stable equilibria, the two expressions are not 
equivalent; the exact energy density is given by an expression proportional to 
wlE(km) 121dk4 12/@ ,o , w > h ere E( k,w) is the Fourier transform in space and time of 
the perturbed electric field (or equivalently the electric field associated with a single 
Van Kampen mode) and e(k,w) is the dielectric function with w and k real and independent. 
The connection between the new exact energy expression and the at-best approximate 
gD is described. The new expression motivates natural definitions of Hamiltonian action 
variables and signature. A general linear integral transform (or equivalently a 
coordinate transformation) is introduced that maps the linear version of the noncanonical 
Hamiltonian structure, which describes the Vlasov equation, to action-angle 
(diagonal) form. 

I. INTRODUCTION 

Expressions for the energy contained in the perturba- 
tion away from equilibria are important for, among other 
things, ascertaining stability. If such an energy is positive 
definite then the system is stable, while if the energy is 
indefinite then either the system is unstable or there exist 
negative energy modes. Negative energy modes are of im- 
portance since their presence can lead to nonlinear (finite 
or intinitesimal amplitude) instability and if dissipation is 
added they can become linearly unstable. Therefore, a pre- 
cise understanding of the energy in a perturbation is im- 
portant to have. 

Early work on such electrostatic instabilities in homo- 
geneous plasmas1-5 and their relation to energy were based 
on the well-known expression for the energy of a dispersive 
dielectric medium”’ and generalizations thereof,’ 

gD=iG aw a(weR) ]E(k,o) I 2, 

where eR is the real part of the dielectric function, V is the 
volume of a periodicity box, and E(k,w) is the perturbed 
electric field amplitude for a mode with wave vector k and 

frequency w(k) . This expression is derived for general me- 
dia described by Maxwell’s equations and the dielectric 
function. It is often believed that relation ( 1) is valid if the 
imaginary part of the dielectric function, eI, is negligible, 
but it will be seen that this is not sufficient. 

Another expression was discovered by Kruskal and 
Oberman” for the perturbed energy, which in the case of 
the one-dimensional Vlasov-Poisson system with homoge- 
neous monotonic equilibria, is given by 

where Y is the species label, 6E is the perturbed electric 
field, f”, is the equilibrium distribution function that is as- 
sumed to be a monotonic decreasing function of the square 
of the velocity, and Sf,, is the perturbation of the distribu- 
tion function. 

In previous work’1-‘4 we derived a general expression 
for the energy of arbitrary perturbations of arbitrary three- 
dimensional Vlasov-Maxwell equilibria, an expression that 
does not suffer from having a singularity at external points 
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of the equilibrium distribution function. (The origin of this 
singularity is discussed in Sec. VIII.) The derivation pro- 
ceeds from the general nonlinear Vlasov-Maxwell energy 
expression, which is expanded up to second order in the 
perturbations in such a way as to preserve the constraint of 
dynamical accessibility of the system. Since it preserves this 
constraint we have called it the free energy, and since it is 
a second-order quantity we have denoted it in previous 
work by S2F. 

One purpose of the present paper is to compare S2F, 
specialized to one-dimensional electrostatic perturbations 
of homogeneous magnetic field free plasmas, with the di- 
ekCtrk! energy expression, gD Since the derivation of gD 
is not general, accordingly, it will be seen that this quantity 
is not in general correct. The correct expression is given by 
Eq. (98) below. 

Expression (98) for S2F suggests a transformation to 
action- angle variables. A second purpose of this paper is to 
introduce a general linear integral transform pair that ac- 
complishes this feat. This transform is a coordinate trans- 
formation that maps the linearization of the noncanonical 
Hamiltonian structure (Poisson bracket) I5 that describes 
the Vlasov (and other) systems to the action-angle vari- 
ables, thereby solving the spectral problem for stable equi- 
libria. 

In Sec. II a derivation of the dielectric energy is given, 
a derivation that is more complete than usual. Section III 
contains a simple derivation of the exact Vlasov free energy 
expression for the one-dimensional case, which is similar to 
Eq. (2), but is valid for arbitrary equilibrium distribution 
functions; it does not become singular at velocities for 
which 6’fvo’/& vanishes. The crucial point is, as mentioned 
above, to impose the constraint of dynamical accessibility. 
In Sec. IV we solve the linearized Vlasov equation for the 
distribution function in terms of the electrostatic potential 
and the initial value of the perturbation of the distribution 
function. Two choices of initial conditions and forms for 
the electric field are considered in Sets. V and VI. First we 
consider a special kind of neutral (undamped) model6 that 
occurs at stationary inflection points of stable equilibrium 
distribution functions. It is seen that the energy of these 
modes is identical to the dielectric energy of Eq. ( 1). This 
is followed by showing that for “real” damped and grow- 
ing modes, as distinct from Landau modes, the energy is 
identically zero. In Sec. VII we consider the energy of 
arbitrary perturbations about stable equilibria by expand- 
ing initial conditions of the linear problem in terms of Van 
Kampen modes. After reviewing the Van Kampen decom- 
position, in Sec. VII A, we calculate the energy for such a 
general perturbation and obtain the new energy expression 
given by Eq. (98) of Sec. VII B. In Sec. VII C we show the 
relationship between the new energy and the commonly 
used, although at-best only approximate, dielectric energy. 
In Sec. VIII we discuss dynamical accessibility; in partic- 
ular, we show the consequences that arise if this condition 
is not imposed. As noted above the new energy (of Sec. 
VII B) leads to a natural definition of Hamiltonian-type 
action variables, which is described in Sec. IX A along 
with a discussion of signature and bifurcations. The trans- 

form pair is introduced in Sec. IX B and used in Sec. IX C. 
We conclude with Sec. X. 

II. ?YD FOR ONE-DIMENSIONAL ELECTROSTATIC 
PERTURBATIONS OF HOMOGENEOUS PLASMAS 

In this section the energy is derived in a model where 
the electric field is described by the appropriate Maxwell 
equation, while the “plasma” is described by a phenome- 
nological dielectric function. Comparison to a plasma de- 
scribed by the Vlasov equation is made. 

Consider a gedanken experiment in which a current 
and field free plasma is perturbed by an electric field in the 
x direction. This field is assumed to result from a current 
Sj, in the x direction that flows in an artificial medium that 
spatially coexists with the plasma. The current does not 
arise from an electric field but is imposed by an external 
agent. The only interaction between the artificial medium 
and the plasma is by means of the electric field. The Max- 
well equation that describes this situation is 

C%E 
,,+47r(Sj+Sj,J =o. (3) 

Here SE and Sj are, respectively, the electric field and 
plasma current density of the perturbation. Assuming 

~je,e-iOt+ikX, (4) 
where w=wR+ip and, for now, p > 0 and - CO < t<O. It is 
assumed that SE and Sj are generated solely by Sj,; thus, 
their space and time dependencies are identical to those of 
Sj,, and Eq. (3) becomes 

-iwSE+4r(Sj+Sj,) =O. (5) 
According to usual response theory, the plasma is assumed 
to be adequately described by a dielectric function E( k,o), 

SE+i(4?r/w)Gj=e(k,w)SE, (6) 

and hence, 

Sj,= (iw/4r)e(k,o)SE. (7) 
Now the energy absorbed by the plasma, g:p due to 

Sj,, is calculated from the power absorbed by the plasma. 
The latter quantity, which is equal to that liberated by the 
artificial medium, is given by 

=-f (6j~6E+Sj$E*). (8) 

Here, and henceforth, real quadratic expressions like the 
power are evaluated by inserting real quantities, e.g., in this 
case 

i(Si,+&T), f(GE+SE*). 

Upon making use of (7)) ( 8) becomes 

p,i_v IV2 - [W*e*(k,w)-w(k,o)]. 4 4?r (9) 
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Assuming E( k,WR) possesses real and imaginary parts, i.e., 

dkd =$&h’R) +iE#,~R), (10) 
Eq. (9) can be written as 

P=i( V/16r) ISE12[ W*eR( k&J*) +io*eI( k,w) 

-OER(k,W)-iWEI(k,W)]. (11) 
Also, assuming e( k,uR + ip) can be approximated by 

aE(k,WR) 
&kWR+i/J) ==E(k& +ip aoR > (12) 

yields for ( 11) 

p=ij& ISE12 2& [%$&%)I ( 
(13) 

Since the power is related to the plasma energy by 
P=2p8:p, 

%d’ht) 1 +F E@,WR) . 

.( 14) 
In Eq. ( 14) no connection between k and OR was as- 

sumed; however, now such a connection is established. As- 
suming e,#O the dispersion relation E( k,aR + iy) =0 can 
be approximately solved, in the so-called small growth rate 
expansion, as follows: 

&WR)=O, 

9(k,%) 

y=-,, ,aw . 
R R 

(15) 

Recall p is a property of the current Sj, while in light of 
the above y arises from the dispersion relation. Because of 
the expansions used, both quantities must be small. With 
(15), (14) becomes 

V a 
g:p=G I~E12WR~ER(k,WR) (16) 

R 

For unstable plasmas one can take p = y and obtain the 
result gP=O, a result that is in fact correct for a Vlasov 
plasma, as will be seen below in Sec. V. In this unstable 
case SE#O at t=O is obtained with Sj,=O; i.e., only the 
self-consistent SE and Sj contribute. This case could be 
called self-consistent “adiabatic” turn-on. For a mode with 
y < 0 one can choose p< 0 and in this case the time interval 
O<t < 03 is considered. The energy at t =0 is given by the 
energy that has been transferred to the artificial medium 
during this time interval. If y=p then again Sj,=O and 
gP=O, again a valid result for a Vlasov plasma, as will be 
seen in Sec. V below. This case could be called self- 
consistent “adiabatic” turn-off. 

It is important to point out that the validity of the 
above results, for both the growing and damped modes, 
depends upon y being the imaginary part of a root of the 
dielectric function. In the case of a Vlasov plasma such 
modes may exist, but these must be distinguished from 
solutions of the Landau problem where the contour of in- 

tegration is deformed. In the latter case the above analysis 
is invalid. For a stable Vlasov plasma a dielectric function 
E( k,w) strictly speaking does not exist; i.e., there does not 
exist a function whose vanishing determines exact expo- 
nential time dependence. The expression with the de- 
formed contour used for obtaining Landau damping pro- 
duces solutions that are only asymptotically valid in the 
limit of large time where the electric field decays exponen- 
tially, and one cannot self-consistently turn off, as in the 
above case of a stable mode, a perturbed electric field that 
is only asymptotically of the form SE-emyt. 

Several authors’ have attempted to obtain energy ex- 
pressions by solving the linearized Vlasov equation with 
the adiabatic turn-on assumption. Generally these expres- 
sions are deficient in two respects. First, they are not con- 
stants of motion so their use in energy arguments must be 
viewed with caution. Second, the presence of resonant par- 
ticles leads to singularities. This is because a finite amount 
of energy is deposited in the plasma in each wave period 
over an infinite interval of time. This behavior is recovered 
from Eq. (16) by keeping y fixed and taking the limit 
p-0. 

The limit where CL> I y I , but still small, is also of in- 
terest, since in this case Eq. ( 16) reduces to gD of Eq. ( 1). 
Although this limit can be appropriate for dielectric media, 
it is onZy valid for a Vlasov plasma when there exist the 
neutral modes described in Sec. IV where e,=O. In the case 
of weakly Landau-damped modes a self-consistent expo- 
nential adiabatic turn-on (or turn-off) is not possible. In 
Sec. VII C we will discuss this point further. 

We conclude this section by remarking that gD as 
given by ( 1) corresponds to the first term of ( 14). This 
quantity is sometimes referred to as the wave energy, while 
the second term, the one involving eI, is sometimes identi- 
fied with the energy of the resonant particles. Such a dis- 
tinction might be useful, but makes sense only for p=y; 
i.e., in the self-consistent case. With Landau damping this 
is not possible for the reasons given above. 

Ill. #F FOR ONE-DIMENSIONAL ELECTROSTATIC 
PERTURBATIONS OF HOMOGENEOUS 
PLASMAS 

Here we present a simple derivation of the Vlasov en- 
ergy expression for homogeneous current and field free 
equilibria. The unperturbed distribution function f’,“‘(v) is 
general except for the requirement that it allow purely elec- 
trostatic perturbations with the electric field vector SE in 
the x direction. The Maxwell equation that describes these 
perturbations is 

where Sj, as in Sec. II, is the current density of the pertur- 
bation in the x direction. From Eq. ( 17) one obtains 

2 
5%+6jE=O. (18) 
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This relation is now integrated over the periodicity box of 
volume V, where the limit V- CO could be taken. The 
second term of the resulting equation can be expressed as 

SjSE d3x= c e, 
Y 

with 

v= (v,mJ,v,v,), 

where f(v’)(x,v,t) is the perturbation of the distribution 
function. Introduction of 

sj-,,= s”1’ dv, dvz (20) 

leads to 

s 
SjSE d3x= 2 e, (21) 

V Y 

The quantity j$‘) obeys the first-order Vlasov equation 

afp afp 
ev SE- 

v?’ 
at+vX=-&, au 3 

from which it follows that 

asf, asf, ev sEgv dt+v-g=-- m, au * 

(22) 

(23) 

In this equation we have introduced the definition 

j-+ j- f”‘dv,, dv,. (24) 

Now the important condition of dynamical accessibil- 
ity is imposedAThis condition stipulates that the initial Sf, 
denoted by Sf, be producible by regular forces SK,, that 
mzst be derivable from a Hamiltonian. The generation of 
Sf,, by SK,, also requires a% initial condition, which by 
definition must be taken as Sf,,=O. It follows then from the 
first-order Vlasov (or Liouville) equation with e,,3E re- 
placed by SK,, that 

a? SfJx,v,r=O) =&(x,v,s) =&,(x,v,s=O) -z 

s 

s 
X SK,[x+v(+-s),T]dT, 

0 (25) 
where we have used a mock time s to generate the real 
initial condition, Sf,,(x,v,t=O), for the dynamics under the 
self-consistent force e,,SE. 

In light of the initial condition S~,,(x,v,s=O) =O, Eq. 
(25) has the form 

where q,,(x,v,t) is regular at the zeros of a&au. This 
quantity qV obeys the equation 

aq,. aq, at+z=-5SE, 
m, 

(27) 

which does not contain apJ&. Relation (26) is a special 
case of the form for j$‘) found in Ref. 14 for general three- 
dimensional equilibria and general three-dimensional per- 
turbations: 

A’)= k%J-t?19 (28) 

where the bracket on the right-hand side means the Pois- 
son bracket, 

da ab i3a ilb 
[a,b]=z*ap-5.x. (29) 

The functions g,( x,v,t) are first-order generating functions 
for canonical transformations. For g,,=gJx,v,t) one also 
finds that 

1 ag,afZ 
Sfv= kvJtl=~ ax x P Y 

and therefore 

(30) 

which also follows directly from (25); since SK,, is a 
Hamiltonian force it must be derivable from a potential. 
The generating function g, obeys the apJav-independent 
equation 

(32) 

where S# is the electrostatic potential associated with SE. 
Equation (32) is a special case of the following general 
equation of Ref. 14: 

ag, at+ ts,H’,“‘l =a& (33) 

where H$‘) is the unperturbed Hamiltonian and SH,, is its 
perturbation. The derivation in Ref. 14 makes use of Lie- 
type canonical transformations that guarantee dynamic ac- 
cessibility in general. This method allows one to obtain the 
perturbations of the distribution functions to arbitrary or- 
der. Especially, the second-order perturbation is given by 

AZ)= k%fi?“‘l +~g,Eg,f(,O)ll~ (34) 

where gb*’ is a second-order quantity while g,,, as men- 
tioned before, is a first-order quantity. This representation 
was used to obtain the following second-order energy from 
the exact nonlinear energy expression, for arbitrary sys- 
tems and arbitrary perturbations: 

S*F= F ; I d3x d3p [ H;‘),g,] [ g,.,f’,o’ ] + & s SE* d3x. 

(35) 

Expression (35) is a free energy since by its derivation the 
perturbed quantities are forced to satisfy the dynamical 
accessibility constraint. One can show explicitly that the 
perturbations given by Eqs. (30) and (34) automatically 
preserve all the well-known invariants, 
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C,[fJ= s, j- WfJd3x d3u, (36) 

to first and second order, respectively. Therefore, writing 
the perturbations in the form of (30) and (34) is a math- 
ematical way of stating the Gardner17 restacking principle 
to first and second order, respectively. 

For the present derivation, which is not possible in 
general, the second-order distribution function is not 
needed. Also, the representation (30) need not be used 
explicitly, but knowledge of this representation allows us to 
solve the first-order Vlasov equation (23) for SE instead of 
for Sf,: 

SE= -2 (37) 

From (30) it is evident that there are no problems where 
apJ& vanishes. Insertion of Eq. (37) in Eq. (2 1) yields 

J SjSEd3x=- cm 
V Y 

.j--vd3xJ~m dvusf,( 2 

(38) 

Since 

asf, 1 a(sf,)* Sf,-=- - 
ax 2 ax 9 (39) 

the integration over x makes the second term of (38) van- 
ish. In a similar way, the &if,/& term leads to 

J SjSEd3x=-& c mv I d3xJm dv v@fJ2 
V v2 v --co qyzF* 

(4) 

Combination of this result with the electric field contribu- 
tion of Es. ( 18) yields 

& Jvd3x( -; T J:.,dv$$$+T)=O. 

(41) 

Therefore, we have obtained the following constant of mo- 
tion: 

a*$‘= Jvd3x( - ; 7 I_s, dv$$$+z) . 

(42) 

According to its derivation this quantity is the energy of 
the perturbation. It is formally the same expression as that 
of Eq. (2), but here Sf, is restricted by the condition of 
dynamical accessibility. Thus, a&c% is allowed to vanish 
at various velocities. Also, f”, can be any function of v and 
is not restricted to depend on v* alone. 

In Sec. VIII we discuss more generally the implications 
of dynamical accessibility. 

IV. S2F IN TERMS OF GE(x,?) AND M(x,w,t=O); 
ENERGY TRANSFER DURING LANDAU DAMPING 

Now we express the energy relation (42) in terms of 
the initial value solution of Eq. (23). This is a first step in 
the task of writing the energy in terms of the field ampli- 
tudes and will be of special interest for explaining the en- 
ergy transport caused by Landau damping. Henceforth, a 
single species and a constant neutralizing background are 
assumed. 

The general solution of Fq. (23)) in light of Eq. (26), 
can be written as 

aP e t 
Sf =- a0 q^(x-vt,v) -; 

J 
SE[x+v(+-t),~]d~ 

0 
(43) 

where ~(x,v)=q(x,v,O). (The caret notation is used 
throughout the paper to denote initial values.) Inserting 
(43) into (42) yields 

s*F= -; d3x 
J J 

- dvv$ [?+2( J;sEdT)* 

-2e;iSEi[+& Jvd3ex SE*tX,tI, (4) 
where the unspecified arguments of z and SE are given by 

&;(x-vt,v), 
(45) 

SE=SE[X+V(T-t),~]. 
Observe that Es. (44) is only partially written in terms of 
SE since it contains terms involving the initial perturbed 
distribution function through 41 Later we will fulfill the 
mentioned task of writing S*F entirely in terms of SE(x,t). 
That this is possible is somewhat surprising, since there 
does not exist a unique perturbed distribution function cor- 
responding to a given initial perturbed electric field (as 
evidenced by Landau damping). This “paradox” will be 
discussed further in Sec. VII B. 

Now we restrict to the case of a single plane wave 
perturbation: 

q^(x,v)=i e h 2 ; Qk(v)eik’+c.c. , 
( 1 

SE(x,t) =i[Ek(r)eih+c.c.]. 
(4) 

More general perturbations can be represented in terms of 
Fourier integrals by simply summing over these plane 
waves and taking the limit Y- CO. The energy for plane 
wave perturbations is obtained from Eq. (44) upon inser- 
tion of Eq. (46), 

S2F=gT IE~~*-&$S_” 
co 

dvv$[ l&l’ 

-i (& J: Eic(T)eik” dr+c.c.) 

(47) 
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where we have defined 

Pznof@ (48) 

The form of the energy given by (47) sheds light on 
the energy transfer for Landau-damped waves. The electric 
field perturbation Ek(t) approaches zero as t-r CO. There- 
fore the first term, which represents the electric field en- 
ergy, vanishes asymptotically. This energy then shows up 
in the terms containing time integrals that are zero at t=O 
but do not necessarily vanish as t -+ 03. These time integrals 
are part of the particle contribution to the energy; i.e., their 
kinetic energy. Kinetic energy is also contained in the con- 
stant term involving I Qkl *, that represents the initial per- 
turbation of the particle energy. Therefore, the energy ex- 
pression (47) provides a clear description of the energy 
flow, a description that cannot be obtained from the dielec- 
tric energy $& In Sec. VII we continue this discussion, 
although in a different way. 

In Appendix A we develop an expression analogous to 
Eq. (47) for general electrostatic perturbations about gen- 
eral three-dimensional equilibria that possess action-angle 
variables for the equilibrium trajectories. Similar argu- 
ments about energy transfer apply. 

V. ENERGY OF NEUTRAL OSCILLATIONS 

With this section we begin investigation of special 
types of perturbations. First, the neutral oscillations with 
real frequency w discussed in Ref. 16 are considered. These 
neutral modes can occur for marginally stable equilibrium 
distribution functions that have a point v, such that 
dfo(v,)/~v=d2fo(v, )/&*=O. We note here that there are 
other kinds of marginally stable equilibria for which neu- 
tral modes do not exist. For these equilibria the limit of 
vanishing damping is only obtained for k = 0, but w/k non- 
zero and finite. Since k=O there exists no perturbation. 
Nonvanishing perturbations of these equilibria are 
Landau-damped modes, which will be treated later in Sec. 
VII. 

The frequency w and wave number k of the neutral 
modes are determined from vC= o/k = u and 

,=I-$ J=‘, $$c,, (49) 

where the integral is along the real v axis (as is the case for 
all v integrals in this paper). For complex perturbations 
proportional to eikxmiwf the quantities Sf and SE are 
uniquely related by 

Sfk=i,k afdav eno SE, - v-u ’ 

The energy expressions require real quantities, i.e., 

Sfk+Sf$ SE,+SG 
- 9 m * 

The dielectric energy then becomes Eq. (53) becomes 

(50) 

aE v 
gD=az16aT IW” 

r+d J m afdav 
=-7 --m (v-u) 

2dv& ISEk12. (51) 

The first term in the energy expression (42) gives the fol- 
lowing contribution to S*F: 

m 
-G& J 

- 4sfkl*dv 
--oo afdav 

2 

E-2 j-:= ;y$dv& jSEJ*, (52) 

where Ek has been introduced according to Eq. (46). Upon 
writing v as 

v=(v-u)+u, 
the v--ll contribution is seen to cancel the electric field 
energy in Eq. (42) because e=O, while the 1( contribution 
yields exactly gD Thus complete agreement exists between 
the two kinds of energy formulas for these neutral modes. 
This is possible because there exists a unique relation be- 
tween Sf and SE at any time. Since el=O according to Eq. 
( 1) gP is exactly gD 

The energy of these neutral modes was previously ob- 
tained in Ref. 16. 

VI. ENERGY OF GROWING AND DAMPED MODES 

The next type of special perturbations are growing and 
corresponding damped modes in an unstable system. The 
perturbations Sf and SE are related to each other in the 
same way as for the neutral modes of the preceding section. 
The relation is given by Eq. (SO), but u is complex since 
the dielectric function e(k,m) now has complex roots 
o/k = u, where 0 = tiR + iy. since E iS a real fUnCtiOn of 
o/k and k, there are always pairs of complex conjugate 
roots u and u* and hence, corresponding growing and 
damped modes. It is worth noting that such damped modes 
must exist for all unstable equilibria of Hamiltonian sys- 
tems like the Vlasov equation (see, e.g., Ref. 13), since for 
these systems discrete eigenvalues occur in pairs or quar- 
tets; i.e., as f OR f iy (see, e.g., Ref. 18). We should like to 
emphasize that these damped modes are normal modes in 
the strict sense and not Landau-damped modes. Normal 
modes being solutions valid for all times, while Landau 
modes are only approximate solutions, valid in the limit 
t++CO. 

Equation (44) with (50) now yields the energy 
2 

S’F=& lE,J* l-2 ( J - afo v --m x Iv-ulfdv * (53) 1 
With 
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J m afdav 
_ m yjIy 

(54) 

Since both u and II* satisfy the dispersion relation e=O, it 
holds that 

afdav -dv=$ JI, sdv=L (55) v-u 

Hence, S*F=O. Although this result was presaged in Sec. 
II, it could have easily been obtained without the foregoing 
calculations: for unstable and corresponding damped 
waves S*F must be at once proportional to e”“, and time 
independent; in order for both properties to be fulfilled 
simultaneously, S*F=O. 

To evaluate the dielectric energy the real part of E, 
2 

+=1-s J -m_ l-~2!$hdl, (56) 

is needed, whence it follows that 

d aeR auR aeR 
z +=~~+~=O. 

R 
(57) 

using (56) for eR and eR =0 one derives 

aeR 2 
-=- 
ak k’ (58) 

and it also holds that 

auR i 
z=z (vg-vp), 

where vg is the group velocity and vp=uR is the phase 
velocity. Combining the above yields the known result” 

(59) 

Expression (59) is also valid for the neutral modes of the 
previous section, where eR=e and @R=a. It is nonzero 
and therefore gD is nonzero (except in a frame of refer- 
ence in which vp=O>. That gD is nonzero is true even for 
y-0, while the exact energy S*F remains zero in this limit. 
As outlined in Ref. 13, the relevant fame of reference for 
homogeneous unperturbed systems is the center-of-mass 
reset frame in which up usually does not vanish. 

The discrepancy between the exact and the dielectric 
energy has its origin in the fact that E(k,u) is not analytic 
at y=O. This is easily seen by shifting the path of integra- 
tion in the E expression (49) such that 

E=l- F$p J ~afo~v’u)dv~j~$%!$. (60) 

The upper sign holds when uz > 0, while the lower sign 
holds when uz < 0. The presence of the two different signs 
displays the nonanalytic character of E as uz-+O. 

The usual procedure for obtaining the small growth or 
damping rate, y, relies on the nonanalyticity of E. Expand- 
ing E, as in Sec. II, in the smallness of y, 

==:R(k& +&(k,WR) +& 
aeRbbR) 

am ZO, (61) 
R 

results in 

dk,@R) 
dkr%d =o, y= -ae ,ao . 

R R 
(62) 

(Although E is not analytic at y= 0 one can Taylor expand 
on each side of y=O.) We emphasize that l z( k,uR) would 
be zero if E were analytic, as is the case, e.g., for tluid 
theories or theories that exclude resonant particles. When E 
is analytic the above procedure is not sufficient to deter- 
mine y; one must expand to second order: 

EzE(kWR)+iyER-f%& , 
awR 2 awR 9 

which in contrast to the above yields the result 

aER "/2a26R iy,=O, E(k,OR)-ys=O. 
R R 

(63) 

(64) 

Note, here &R/&R =0 determines @Rt while the second 
equation determines y. Thus if E were analytic and unstable 
modes existed, &R/&R=O, and this would imply gD=O, 
even for arbitrarily small y, as occurs for S*F. Also, note 
the discrepancy is evident from Eq. ( 14) where it is seen 
that 8&8pD when Ez(k,WR)#O. 

This singular limit between growing and damped 
modes and neutral oscillations is not peculiar to the Vlasov 
equation. It arises in general Hamiltonian systems; e.g., the 
energy in a simple harmonic oscillator is a positive quan- 
tity proportional to the spring constant and the amplitude 
squared. If the spring constant changes sign, purely grow- 
ing and damped modes with zero energy occur. The be- 
havior of the energy in this transition, like that discussed 
above for the Vlasov equation, is nonanalytic, although 
unlike the above the energy is continuous. 

VII. ENERGY OF GENERAL PERTURBATIONS IN 
STABLE PLASMAS 

This section contains the derivation of the general en- 
ergy expression for stable equilibria, an expression that is 
written in terms of the electric field associated with a single 
Van Kampen mode. We emphasize that although the equi- 
librium distribution function is stable it need not be mono- 
tonic. In Sec. VII A the Van Kampen decomposition*’ is 
reviewed and interpreted in light of the dynamical accessi- 
bility condition. In Sec. VII B the new energy expression is 
obtained. This section concludes with Sec. VII C where a 
comparison of the new energy expression and the dielectric 
energy is made. 
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A. Van Kampen mode review 

Consider again the linearized Vlasov equation 

and Poisson’s equation 

am 
==49re Sf dv. 

(65) 

(66) 

Van Kampen’s procedure begins by assuming a two- 
parameter family of solutions, labeled by real quantities k 
and u = w/k, of the form 

Sf (x,v,t;u) =eikxVikufh(k,u,v), (67) 
where the function h (k,u,v) remains to be determined. In- 
serting (67) into (66) produces the electric field associated 
with a single member of the family of incipient solutions 

SE(x,t) =,!?(k,u)eikx-iku! (68) 

Insertion of (67) and (68) in (65) yields 

aJ” 
ik(v-u)h(k,u,v) = -f E(k,u) aU. 

Since u and v are real there exists a singularity at u = v that 
is handled by solving (69) in a distributional sense accord- 
ing to 

ie -Jp 1 
h(k,Il,v)=;;;T;E,UpU_U+C(k,u)G(v-u), (70) 

where P denotes the principal value, S( v-u) is the Dirac 
delta distribution, and C is yet to be determined. Another 
singularity-exists at k=O, but this is resolved by simply 
requiring E(O,u) =0, a condition that removes a homoge- 
neous perturbed electric field. The unknown C is obtained 
by inserting (67), (70), and (68) into Poisson’s equation, 
giving 

C(k,u) =&i-s EP s 
m 

a.fVau 
-yydv- (71) 

--co 
Now, substitution of this value for C in (70) yields 

- 2 

h(k,u,v)=g SzP 
. 1 

.(I-$P~-:~ Ed,.)] 

=-& E(k,u)3 (k,u,v), (72) 

where the Van Kampen mode is denoted by Y (k,u,v). 
It remains to show that 3 (k,u,v) forms a complete 

basis for expanding the general solution as 

Sf =k T J:m -& E(k,u) Y (k,u,v)eikxmikut du, 

(73) 
which requires that the Y’s be capable of expanding an 
(essentially) arbitrary initial condition. [Note, the factor of 

l/2 is consistent with our convention for representing real 
quantities and the original field amplitudes E(k,u) have 
been replaced by E(k,u)du.] Therefore, it must be possible 
to satisfy the following equation for the Fourier coefficients 
o^f an arbitrary initial perturbed distribution function 
f(b): 

T(k,v)=-& m 
s 

du E(k,u)9(k,u,v). 
co 

(74) 

Given the initial value T( k,v) the expansion requires find- 
ing the amplitudes E( k,u). Since the basis 3 is given by 

.9 (k,u,v) =eI(k,kv) ; P ~+dkk4N-4, 
(75) 

insertion of (75) in (74) leads to the following expression 
that must be solved for E: 

f^(k,v)=&$f$Pj-m $$du+&E(k,v) 
--m 

(76) 

The task of solving for E is accomplished by splitting 
the functions df,,/ilv and E, and the principal value expres- 
sions, into parts that are analytic in the upper and lower 
half complex v plane, respectively. Appealing to (B3) and 
(B4) of Appendix B yields 

?(k,u)=-2 [ (g)++r$f)-] 
x(E--E+l+; (E++E-1 

=-&E+[ l-24 (2 )+] 

+-&E-[ I+2z-i$ (%)-I. (77) 

Observe that f products do not occur, so that f^is the sum 
of terms analytic in the upper- and lower-half planes, re- 
spectively. Defining 

E(k,kv)=l-2ri 

(78) 

and assuming f^ has the splitting described in Appendix B, 
yields 

f^=T+ +T- =-& E+E+& E-E*. (79) 
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Since the splitting is unique (cf. Ref. 20) 

&=&E,E, . Fw=-$ E-E*, 

and since the plasma is assumed to be stable, 

e( k,kv)#O, Im kv > 0, 

E*(k,kv)#O, Im kv<O; 

therefore 

(81) 

47re S; 
h 

EE,=ik-, E-=Tfg. (82) 

The quantities E, and E- are used to construct E(k,u): 

E(k,u)=E,+E- 

47re 1 
=xw [~~(~++~-)-i~~~+-~-)l 

&W-+’ s 
m ?UW dv, 

- --m d-u 

(83) 

Equation J\83) determines E(k,u) in terms of the initial 
condition f. Substituting this result together with (75) into 
(73), one obtains the solution Sf (x,v,t). 

We note here that if the initial condition f^ is chosen to 
be proportional to df,,/&, then 6f(x,v,t) is also propor- 
tional to dfddv and hence fulfills the condition of dynam- 
ical accessibility for all time. 

B. Calculation of the energy of a general perturbation 

Now we are equipped to obtain the energy of a general 
perturbation that is expanded in terms of Van Kampen 
modes. The expansion of the perturbed distribution func- 
tion, as given by Eq. (73), is inserted into the energy ex- 
pression of Eq. (42). The difficulty occurs in the second 
term where there are several integrations that need to be 
performed. First consider the x integration of this second 
term. Since afddv is independent of x, 

=-- “8 5 j-w dvdvh& (&,)” --00 

XE*(k,ul)E(k,u2)Y(k,ul,v)Y(k,u2,v)e-ik(ul-u2)t, 

(84) 

where we have used the reality condition EE(k,u) 
=E( - k,u), which follows from (73) since .Y (k,u,v) 
= Y ( - k,u,v). The v integration amounts to evaluating 
the quantity, 

s 
m Y (k,ug) 9 (k,w)v 

afdav dv, --m (85) 

where 3 is given by (75). This integral is complicated 
because Y possesses singular as well as regular parts. 
However, the energy is time independent and one can do 
the evaluation for t-* co (terms vanishing as t+ CO cancel 
at finite time). Terms that possess bounded, integrable, 
absolute values must phase mix to zero by the Riemann- 
Lebesgue lemma, while singular terms can give rise to non- 
vanishing contributions. We denote the S-function portion 
of Y by 6 and consider the three types of terms separately. 
For convenience let 

2 

E,(U)+$P (86) 

where the k dependence is suppressed. 
Considering first the term that scales as the product of 

the two 6 functions, the 6-S contribution; it behaves as 
follows: 

s co 
-m 

~(~-~,)~(v-u~>~~(u~)E,(u~) &dv V 

=6(u1-u2) [;G;12ul, 
Ul 

(87) 

which clearly gives rise to a nonvanishing term. 
Next consider the two &-non-S contributions. The first 

is given by 
2 

m--u*)Ep(u ) *P 1 afo v - ---dv ' iFpu2--v av afdav 

a; Ul(U,--112) 
=lim EP(Ul) p (u2-u*)2+yz J 

V-40 
(88) 

where the equality follows from the definition of principal 
value given by Eq. (B4) of Appendix B, which amounts to 

P 
&A?=~~ i ( u2--t--iv+u,-i+iv )’ 

The second contribution is simply obtained by interchang- 
ing the subscripts 1 and 2, 

a; u2(u2-u1) 
lim EP(U2) jp (u,-u2)2+yz. 
v-0 

(89) 

Summing (88) and (89) yields 

a; [~,~p,(~*)-~2~p(~2)l(~1--2) 
!%a (wu2)2+v2 ’ (90) 

a quantity that is regular in u1 and u2. Thus, when (90) is 
multiplied by the E’s, which are assumed to be obtained 
from reasonable initial conditions and are thus integrable, 
and multiplied by the factor exp[-ik(u, - u2)t] and then 
integrated, it vanishes in the limit t+ CO. 
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Last, consider the non&non-S contribution: Treatment of the principal values in this expression is 

s 
1 dfom; 1 afo somewhat delicate so several steps are included (below 

-- -- 
U~-V av 7Fp~l-~ au . 

(91) lim Y+ 0 is to be assumed) : 

1 1 1 1 1 1 1 
-u2-v+iv u2-ul+2iv ul--v+iv-u2-v-iv u2-uul-2iv’ (92) 

After performing the necessary v integration, the first two 
terms above are seen to be regular at u, - u2 =0 and there- 
fore yield vanishing contributions when t-+ 00. When the 
last two expressions are decomposed by the well-known 
formula, 

1 
lim -= V60x=l=iv P$Fi?rs(x), 

the 6 functions in these brackets lead to 

-$ [S(u~-v)fc3(u2-v)] 
1 

u2--u,-2iv 

=; [6(u,-v)+s(u~-v)]s(u~-u~); 

whence we obtain 

(94) 

(95) 

Finally, because of Landau damping the electrostatic 
field energy vanishes when t-+ CO. Therefore the only sur- 
viving contributions are Eqs. (87) and (95), which yield 

( 
wp(ud2 

x afd+ 
m; afo 

-+pu,sj;;- a 1 1 
(96) 

Using 

0; afo(o/k) 
&=a dkd=Ep(ul), q(k,+-rq av , 

(97) 
we obtain the following remarkable formula for the free 
energy: 

3047 Phys. Fluids 8, Vol. 4, No. 10, October 1992 

I 

du us I dkku) I 2 
eAk,kU) IELW I2 

=& ; ~doorr’~;;;;;2 IE(k,w)12. (98) , 

The latter equality follows upon introducing the usual 
Fourier-transformed electric field as 

E(k,o)=(l/lkl)E(k,u). 

Although this formula for a2F may seem similar to 
gD, it is not. We emphasize once again that unlike Z?D S2F 
is exact. The quantities k and w that appear in E are real 
and independent; they are not tied together by a dispersion 
relation, and the quantity E(k,w) is the Fourier (not La- 
place) transform of the electric field as described below, 
where k and w are independent. 

An interesting feature that is brought out by the above 
derivation is that the initial perturbed distribution function 
determines uniquely the perturbed electric field for all 
times, and conversely. Recall that E( k,w) is given in (82) 
by the initial perturbation of the distribution function. 
From E( k,w) one can clearly obtain SE(x,t) for t>O; how- 
ever, in addition one obtains SE(x,t) for t<O. This artifi- 
cial past history corresponds to solving the linearized Vla- 
sov equation backward in time, which leads to Landau 
damping backward in time. Conversely, it is possible to 
arbitrarilyrprescribe E( k,w) and then obtain the corre- 
sponding f by using Eq. (76). However, for dynamical 
accessibility E( k,o) must be chosen proportional to 
af,-J&. Although the state of the system is completely 
determined by Sf at a single time, its determination re- 
quires SE for all time; SE at a single time is incomplete. 

Equation (98) looks as if it would diverge or would 
not be well defined at places where eI( k,w) vanishes for 
some o/k, i.e., at the zeros of dfo(w/k)/dv. But this is not 
so if the condition of dynamical accessibility is fulfilled, 
since in this case E(k,w) aafo(w/k)/& [see Fq (83)] 
and the integrand of S2F is proportional to dfo(o/k)/tJv. 
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Also, it is evident that the energy must be finite since (98) 
is numerically equal to S’F as given by (42)) an expression 
that is well defined for dynamically accessible perturba- 
tions. 

C. Deficiency of the dielectric energy-The problem 
of Landau damping 

In Sec. II it was argued that the dielectric energy in the 
case of Landau damping does not relate in a well-defined 
way to the exact energy, or to what is commonly called the 
wave energy. In this subsection we demonstrate this explic- 
itly by comparing %‘D with the exact energy of Eq. (98). 
This is done by considering various time dependencies for 
the self-consistent electric field. 

According to Eq. (83), E( k,w) a E/AC ] ’ if the initial 
perturbation of the distribution function f fulfills the con- 
dition of dynamical accessibility. Therefore E(k,w) has 
poles in the complex w plane at the solutions o = we - ir of 
the Landau dispersion relation; i.e., e=O where now the 
contour is deformed into the lower half plane. This means 
that the main contribution to the o integral of Eq. (98) 
comes from the interval 

wo-y<w<oo+y. (99) 
Assuming now the small “damping” rate ordering, we ex- 
pand the dielectric function as before [cf. (61) and (62)] as 

E(k,wo-iy) =:e(k,wo) -i&o; 
0 

(100) 

(101) 

* , 

(102) 

(103) 

whence it follows that 

aeR 
ER('bO)=o, EI(k%)=Y~. 

0 

Taylor expanding ER (k,w ) about wo, 

aeR 1 
ER(k,o)-(o-oo)ao+2(~-~O)2~+ 

0 0 

yields 

. . 

It is then natural to choose an approximate form for 
E(k,o) that is in agreement with its aforesaid property; 
i.e., 

E(k,o) =’ Y 
97 (o-wJ2+ SE(k,oo). 

This corresponds to the following time-dependent field am- 
plitude: 

E(k,t) =SE(k,wo)e-‘“O’e-~l’I, (105) 
which reflects the time behavior of Landau damping, in- 
cluding the backward Landau damping mentioned above. 
This could be viewed as a sort of self-consistent turn-on 
followed by a selfzonsistent turn-off. Of course, for phys- 
ically reasonable f there is a smooth transition from neg- 
ative to positive time, since then E( k,o) vanishes for 

w+ f CXJ at a rate faster than any power of w- ‘. Substitut- 
ing (103) and (104) into the energy expression (98) pro- 
duces 

V aER 2 S*F=--coo- ISE(k,wo) 1 , 32~ iho (106) 

an expression that agrees to within a factor of l/2 with the 
dielectric energy for t=O. However, we note here two ca- 
veats. First, to obtain this formula a number of approxi- 
mations were required. If instead of (104) a form for 
E( k,w) that possesses a more realistic asymptotic behavior 
at t=O is used, then ( 106) is again only reproduced to 
within a numerical factor. Such cases are considered below 
and in Appendix C. Second, the approximate expressions 
so obtained for S*F are, like the exact expression (98), 
constant in time, whereas the dielectric energy has a damp- 
ing factor e-2rr on the right-hand side. This damping fac- 
tor must be present in the dielectric energy expression in 
order for this quantity to describe Landau-damped pertur- 
bations. The presence of a damping factor pinpoints the 
principal deficiency of gp for if gD were an energy it 
would be a constant of the motion. Also, we emphasize 
that the discussion of z%‘~ of Sec. II shows that the deriva- 
tion of this quantity is generally defined only in terms of 
the initial value of the electric field. 

A phenomenon that displays the deficiency of ?ZD in a 
striking way is the plasma echo. Although the echo phe- 
nomenon is nonlinear, linear waves launched with a time 
interval are of central importance. The two linear waves 
are Landau damped in turn, until the dielectric energy of 
both of them is nearly zero and there is no “apparent” 
disturbance in the plasma. If the dielectric energy were 
really the energy of the perturbations, then nothing further 
could happen. But, since S*F is not zero, the two waves can 
still interact nonlinearly and make a phenomenon like the 
echo, whereby it is possible to recover a significant portion 
of the original dielectric energy. 

To illustrate that the factor of l/2 between S*F and 8YD 
seen above is incidental, E( k,o) is chosen instead of ( 105) 
to be 

1 
E(k,o) = 

‘9’ cosh[p(+-wo)/2y] W Go); (107) 

hence, 
e-imot 

E( k,t) = 2 cash yt 
SE(kwo). (108) 

The time dependence again shows forward and backward 
Landau damping for large I t I, but now there is a smooth 
transition from negative to positive times. Because of the 
proportionality between E and er/ I E I *, Eq. ( 103) should 
now be replaced by 

Using (108) and (109), one obtains 

(109) 
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@FE; ’ 8 32T wo 2 I SE(kwo) I *, (110) 

which is smaller by a factor of 7r/8 than ( 106). The pro- 
portionality constant in this case is positive, but in general 
it is determined by the time profile E(k,t). Appendix C 
contains an example where this constant can even have 
either sign. This is an important result since it means that 
the sign of the wave energy is not necessariry correctly given 
by the dielectric energy, even when the damping rate y is 
suficiently small. Hence the distinction between positive 
and negative energy perturbations as well as the magnitude 
of the energy may not be correctly given by the dielectric 
energy in the small growth rate limit. Also, if y is not small 
the exact energy expression must be used in all cases. We 
emphasize, in addition, that the dielectric energy is usually, 
especially for three-dimensional equilibria and three- 
dimensional electromagnetic perturbations, much more 
complicated to use than S*F. 

VIII. DYNAMICAL ACCESSIBILITY 

It was emphasized in several places in the text that the 
condition of dynamical accessibility is a crucial concept. 
First we describe here the ramification if this condition is 
not imposed. The derivation of relation (42) for S*F indi- 
cates that the free energy may not be uniquely defined. 
Now this ambiguity is discussed. We restrict to equilibria 
with simple zeros Vi” of ( l/v) (af,-Jilv), although a similar 
treatment exists for higher-order zeros. 

The ambiguity in the derivation of relation (42) can be 
made explicit by writing 

V V V 
-- 
afdav=Pafdav+Cb ( 1 afdav 9 

where the constants c, are arbitrary. Insertion of ( 111) in 
Eq. (42) yields 

d 
z y s 

d3x Giv[Sfv(X,viv,f) 1 

s 
aG,, asf,, = -- 

vasfv at 

(114) 

which means that the total number of particles at Uiy stays 
constant. The contribution ( 113) to S*F is therefore also a 
constant of motion; of course, otherwise the constants c, 
would not be arbitrary. 

The “energy” expression ( 112) is therefore a mixture 
consisting of a genuine energy and other constants of mo- 
tion. The question is, whether one can separate out the 
genuine energy. The principal value integral in ( 112) ex- 
cludes particles with v = Viva Since these particles as a 
whole, i.e., integrated over x, do not take part in the dy- 
namics they should not be part of the energy. Therefore, 
the energy should only contain the principal value contri- 
bution and not that due to the S function, and the genuine 
energy S2F is given by setting all the constants c,=O. 

Although there is then an energy even without impos- 
ing the condition of dynamical accessibility, violation of 
this condition would nevertheless mean that one has left 
the framework of Vlasov theory. 

As noted above initial perturbations that arise from 
Hamiltonian forces, such as the electromagnetic force are 
dynamically accessible. This includes, for example, self- 
consistent fluctuations in the plasma. However, initial per- 
turbations of the distribution function that violate the con- 
dition of dynamical accessibility are possible with particle 
sources and sinks, such as, ionization, recombination, in- 
jection, and losses through the plasma boundary. Dynam- 
ical accessibility is also violated if phenomenological fric- 
tion (forces a -v) and diffusion in phase space are 
allowed. If such influences lead to an initial distribution 
P v,new and if one can distinguish between new unperturbed 
forces and exact forces (see the example below), then the 
time evolution of this function can be described by (see 
Ref. 14) 

fv,new(x,v,t) =e[gvsnewT ‘l~,“,,(X~o’(X,Vlf),V~o)(X,V,f)), 
(115) 

(112) 
where 

the integration over v in the last term yields 
xi’)(x,v,t) =const, viO)(x,v,t) =const, (116) 

$F C (a,av)[(I/u~a~~av)l,_, 'Y 'Y 

X 
s 

d3X[Sfv(X,viv,t)12* (113) 
V 

For any differentiable function Giy[Sf~(XyUiy,t)] it holds 
that 

describe the “undisturbed” orbits of the “new system” 
(i.e., where the dynamics is relative to an equilibrium lo- 
cated on a new symplectic leaf) and g,,new is a generating 
function for Lie-type canonical transformations from exact 
new orbits to new unperturbed orbits with 
g ,,new( x,v,O) =O. An undisturbed new system can, for in- 
stance, be defined by spatially averaging. To first order the 
distribution functions f y.new are 
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fv,new(X,V,t)=~,“ew[~o)(x,v,t),v~o)(x,v,t)l 

+ kv,newJT,newl . (117) 
Now restrict to the case of a homogeneous undisturbed 

new system, for which the new unperturbed forces vanish, 
introduce the spatial average of &,, 

c!(v) = u$mvL (118) 

and define the perturbation Sf,, by 

SfV=fV,mv- E;D=E,“,,-e+ kv,newJz,“ewl 

rf,h(~“)(X,V,t),V~o)(X,V,t)) 

+ kv,mv9el~ (119) 
Note that I;“, is allowed to deviate considerably from the 
original unperturbed distribution f”, but the new Sf y must 
be small again. 

The function f,,h solves the unperturbed Vlasov equa- 
tion, i.e., 

(120) 

Therefore, f,,,, drops out of the linearized Vlasov equation 

aSf, aSf, ast;o 
at+' ax -a'&-& 

m, 
and one can solve this equation in the form 

(121) 

(122) 
The right-hand side has no singularities at the zeros of 
apJ&. Insertion of ( 122) and ( 119) yields the new rela- 
tion 

s 
SjSE d3x 

V 

=- F m, Jv d3x J:a dv &(f Vh + kV,newJ?l ) 

X 
aknew akv,new91;Dvi 

at +’ ax * (123) 

The Poisson bracket in the first parentheses yields again 
(40) with Sf,, replaced by [g,+J$ and fl by I;“, Inte- 
gration by parts of the 

contribution with respect to x transforms this expression 
into - [gv,new,flv( af ,J&) and because of ( 120) further 
into k,,new,F$v (af ,h/at) . Hence, the total f ,,h contribution 
has (a/&) Cfvh[8v,new,fl) in the integrand and therefore 

J SjSE d3x 
V 

=-& T 3 I,d3xIm dv& --m 

x ( kv,ne&!12+2 kv,newJ3fv/I~ - (124) 

Combination with the electric field energy term yields the 
constant of the motion 

j-/f3x( - T 7 s_3, dv& (kv,newtP12 

= const. (125) 

This expression differs from (42) in that its initial value is 
given by the electric field energy only because of g,,,,,=O 
initially. If f,,,,= [g,h,p?, ] then the missing initial particle 
energy perturbation is just given by a term [8yh,F$* in 
addition to the term [gv,.,&$* in (125), leading there to 
a replacement of the quantity in parentheses by 
[g,,new+g,,h,l;(tJ2. This is then again of the form (42) and a 
constant of the motion. If f,,,,#[gv,& one is confronted 
again with the problem described above. The dynamically 
relevant energy is given by (125) with f$ added in the 
parentheses and the integral defined as a principal value 
integral. 

We point out that for general equilibria, where the 
equilibrium distribution function is a function of the en- 
ergy, analysis similar to that described in this section is 
possible. In general the ambiguity occurs at critical energy 
surfaces. 

IX. CANONICAL HAMILTONIAN DESCRIPTION- 
ACTION-ANGLE VARIABLES AND SIGNATURE 

In this section we obtain action-angle variables for the 
linear Vlasov problem. This is done in Sec. IX A by ap- 
pealing to the form of S*F of Eq. (98). Also, in Sec. IX A 
the notion of signature is introduced and a general discus- 
sion of the importance of action-angle variables and signa- 
ture is made by comparison with the case for finite degree- 
of-freedom Hamiltonian systems. In Sec. IX B a general 
linear integral transform is introduced, for which the Van 
Kampen mode development of Sec. VII is a special case. 
New completeness and orthogonality-type relations that 
are needed in Sec. IX C are proven. The transform tran- 
scends the application of this paper and is of general utility 
for solving linear fluid and plasma problems in terms of 
singular eigenfunctions. This is seen in Sec. IX C where the 
transform is used to map the linearized version of the non- 
canonical bracket structure of Ref. 15 to canonical action- 
angle variables. Since noncanonical bracket structures of 
this form describe a plethora of continuum models, the 
transform in effect applies with remarkable generality to a 
variety of linear problems. The general treatment with ad- 
ditional examples will be presented in a future publication. 
A. Discussion of action-angle variables and signature 

It is of interest to compare the energy expression of IQ. 
(98) with the Hamiltonian for a stable, nondegenerate, N 
degree-of-freedom system written in terms of action-angle 
variables: 
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(126) 
a 

where by choice the action variable J, is positive and the 
sign of o, can be positive or negative. Upon defining 
a= (k,u), 

ol,= Ikulsgn(kuq) 

and 
(127) 

v l Ie(k,u) I2 IE(k,*) 12, 
Ja’zz IQ(k,k#) 1 

Eq. (98) takes the form of Eq. (126); i.e., 

S2F= $, j. du oda. 

(128) 

(129) 

By its derivation this expression is valid for stable equilib- 
ria even though eI can have either sign. If the neutral 
modes of Sec. IV are present then a discrete sum over these 
modes must be added to ( 129). The definitions of ( 127) 
and ( 128) are somewhat arbitrary. The definition of the 
action variable J, is incomplete since there is no guarantee 
that this quantity is a canonical variable. Also, we have 
quite arbitrarily attached the signature to o, [for finite 
systems it can also be determined from the Lagrange 
bracket of the linear eigenfunctions (cf. Ref. 18)], but this 
is not important so long as there is a unique sign attached 
to each mode. 

Signature is known to be important for finite systems 
because it can determine the kinds of bifurcations that are 
possible. Stable nondegenerate systems can always be writ- 
ten in the form of Eq. (126), but if a parameter of the 
system is varied so that the frequencies move along the real 
axis of the complex w plane then a transition to instability 
is possible when frequencies collide, at which point the 
Hamiltonian can no longer be written in this form. Since 
for Hamiltonian systems real frequencies must occur in 
pairs f W, two types of collisions are possible. A mode w 
can collide with its mate --w at the origin giving birth to a 
damped and a growing mode. The signature of the collid- 
ing pair is not important for this bifurcation, since the 
signature of the Hamiltonian can change as the frequencies 
go through zero. If the Hamiltonian was originally positive 
definite, and thus stable, it can change signature and be- 
come unstable. However, signature is important for the 
second kind of bifurcation, which occurs when pairs collide 
simultaneously on the positive and negative parts of the 
real axis. The possible outcomes are described by a theo- 
rem due to Krein,21 which states that in order for a tran- 
sition to instability the colliding modes must have opposite 
signature. If the Hamiltonian were initially positive definite 
then a collision of positive signature modes away from the 
origin cannot change the Hamiltonian to indefinite, and 
therefore instability is not possible. 

In infinite dimensional Hamiltonian systems such as 
the Vlasov equation, 13T15*22-24 the situation is more compli- 
cated since in addition to discrete eigenmodes there is a 
continuous spectrum. Equation ( 127) assigns a signature 
to a Van Kampen mode, which can be used to delimit the 

possible bifurcations. For example, two positive signature 
neutral modes (whose presence require a slight generaliza- 
tion of the formalism in this paper) imbedded in a negative 
continuum could collide and become unstable, or perhaps 
unstable modes could be born at the boundaries where 
negative and positive continua meet. Positive definiteness 
of the energy does not rule out these possibilities. However, 
it is energetically impossible for unstable modes to be born 
from positive continua. Classification of bifurcations with 
continua will be the subject of future work. 

In the remainder of this section the heuristic identifi- 
cation of the action variables above is made precise. 

B. A general integral transform pair; orthogonality, 
completeness and other relations 

We introduce the following general linear integral 
transform: 

ik m 
J-k(M) =G s E/c(w) %WWu, _ 00 

where 

1 1 
S;(u,u) =q(k,u) ; P -+ER(k,u)S(u-u). (131) u-v 

This differs from the Van Kampen decomposition since 
(130) is to be viewed as a coordinate transformation between 
arbitrary time-dependent Fourier amplitudes Ek(u, t) and 
fk(v, t). Here the notation has been slightly modified for 
convenience and to emphasize the generality of the trans- 
form. The symbol E=E~ +ieI has been changed to 
E = &R + ieI to emphasize that the identities we are to derive 
are valid for general complex valued functions that do not 
possess zeros for real u. The choice for E depends upon the 
problem at hand, since one desires a 3; that diagonalizes 
the Hamiltonian for the linear dynamics. The prefactor 
(ik)/(4?re) has been retained for cultural heritage. From 
the development of Sec. VII A [cf. in particular (83)] and 
Appendix B it is evident that the inverse of this transform 
exists and is given by 

471-e m 
-&(UJ) =x s 

f/Au) ~'Ek(wM~, (132) --m 

where 

9@,v) = Edk,U) 1 1 
le(k,u) IZ~p-+ I%$6+u)* 

(133) 

In ( 131) and ( 133) symmetry in k is assumed. 
The above transform is a general physical decomposi- 

tion that may apply to a variety of systems. The delta 
function represents free streaming or free particle propa- 
gation, while the principal part represents the effect of in- 
teraction. In Appendix D the transform is used to obtain 
the Van Kampen solution by a traditional integral trans- 
form approach. 

Insertion of ( 132) in ( 130) yields 
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fk(U) = O” s I m g;( u,u’) 9s;( u,o)fk(u’,t)du do’. 
-co --m 

(134) 
Since the basis 3; is complete and since 3; defines the 
inverse transform, the completeness relation follows from 
(134)s 

s 
m i?‘,(u,v’)Si(u,u)du=8(u--u’). 
-co 

(135) 

Similarly, insertion of ( 130) in ( 132) yields, 

I m sEk(u,v)~~(u’,u)du=~(u--lll). 
--m 

(136) 

Orthogonality relations similar to (135) and (136) appear 
in the works of Case.2’ 

In the remainder of this subsection two additional non- 
trivial orthogonality-type relations [given by (144) and 
( 146) below] are obtained. Because of these relations the 
integral transform of ( 130) defines a class of linear canon- 
ical transformations in that they preserve the diagonal 
form of the Poisson bracket. This is seen in Sec. IX C, to 
where the reader can turn without loss of continuity. 

Consider the integral 

s m Q(u)%( up’) Y:( u,v)du 
-co 

=Q(v)E&LJ-v’) -- ;& [Q(~hhJk~(k,u’) 

-Q(v’>ER(k,U’)El(k,U)] +;; EI(k,o)EI(k,zf) 

X 
s 

m Q(u) ppdu, 
--m u-u d-u (137) 

where the equality follows simply upon inserting (131) 
and performing the S-function integrals. The integral of the 
third term on the right-hand side of ( 137) is evaluated by 
again decomposing the principal value product as in (92). 
This results in 

s m Q&-Pdu 
-co u-u d-u 

* Q(u) 
=~Q(~kW-~‘) +A (P j-, E du 

(138) 

which is a variant of the PoincarbBertrand formula (see, 
e.g., Ref. 26). Combining (137) with (138) yields the fol- 
lowing identity: 

s 
1 Mw)E~(JC,~‘) 

co Q(u)~&zf)Y;(u,u)du=Q(v)IE126(v-zf)+;;Z m 
--m d-v (I 

Q(U) du-p 00 Q(U) du P - 
-.- u-u s- --m d-u 

-&j&j [Q(U)ER(k,U)El(k,U’)-Qe<U’)ER(k,U’)El(k,u)]. (139) 

Now consider the well-known Kramer+Kronig rela- 
tion for causal complex-valued functions, 

@R(u)=l+;P s - @I(U) - du. 
--m u-v (140) 

This relation is valid for functions a(u) that are analytic 
in the upper-half complex u plane and obtain there the 
value unity for I u I -+ CO. A class of functions fulfilling 
these conditions is given by 

du, v>O, (141) 

where R(U) is continuous and satisfies condition (B2). If 
R(u) is real and v--r +O, the Kramer-s-Kronig relations 
(140) for @ are the same relations as obtained directly 
from the definition of <p, which yields 
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@R(u)--l=;P 
I 

m R(u) 
-du, +I(~)=R(~). --m u-v 

Another Kramers-Kronig-type relation exists for the func- 
tion l/@(u). This function fulfills the above-mentioned 
conditions if Q(v) has no zeros in the upper-half u plane, 
including the real axis. Since 

1 @R 
Recp=pp I,;=--+, 

the Kramers-Kronig relations yield 

(142) 

y+=-;P --m 
I 

co %w/l~12du 
u-v (143) 

For completeness we mention that any function of a(u) 
that is analytic in the upper-half u plane and that is unity 
for a= 1 can be used in the Kramers-Kronig relations. 
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Now choosing a= E, Q(u) = E/ I E I 2 and making use of ( 143)) Eq. ( 139) produces 

s 

m E&U) 
IE(k,U) l~ ~~(u,v’)~~(u,u)du=El(k,v)G(u--U’). 

-03 
Another relation like ( 139), but involving .!?E, exists: 

(14.4) 

s 
-m_ Q(u,S;(u,v)S’,(u’,v)du= 

Is(klu) I2 ldkfu’) 1’ [ 
1 Edk,uh(k,u’) 

Q(U) lE(k,u) 12s(u-u’)+;;z u’-u (S 
00 Q(U) dv P - 
--m u-u 

TV [Q(U>ER(k,U)Er(k,U’)-e(toER(k,U))El(k,)l . 1 
(145) 

Upon setting Q=E,, (P=E, and making use of ( 140), mount to dynamical accessibility. For further details we 
(145) yields refer the reader to Refs. 11, 13, 22-24, and 27. 

J- 
m 

EI( k,v) .L?;( up) s;( u’,u)du 
-co 

The Hamiltonian description of the linearized dynam- 
ics of interest here is obtained by expanding both the above 
noncanonical Poisson bracket and the Hamiltonian. As- 
suming f =p(u) +Sf and expanding yields the linearized 
bracket 

q(JC,U) 
= lE(k,u) p-u’). (146) 

This last expression is used in a transformation below; the 
inverse of this transformation requires ( 144). 
C. Transformation to action-angle variables 

The Vlasov-Poisson equation is an infintie dimensional 
Hamiltonian system or field theory, but because the distri- 
bution function does not constitute canonically conjugate 
variables the Poisson bracket is of the following noncanon- 
ical form Ref. 15: 

{F,G)= j-f[$;]d3xd3u, (147) 

where F and G are arbitrary functionals, [ , ] is the ordi- 
nary Poisson bracket of (29), and 6F/6f is the functional 
derivative. In terms of (147) the Vlasov equation is com- 
pactly written as 

(148) 

where the Hamiltonian H is the total energy functional, 

s 1 1 
H= z mv2f d3x d3v+cT 

I 
E2 d3x. (149) 

Two features of the bracket of Pq. ( 147) warrant mention: 
first, the form is obviously not canonical (note, e.g., it is an 
explicit function off) and second, the bracket is degener- 
ate in the sense that 

cwl =Q (150) 
for all functionals F, where C, the so-called Casimir invari- 
ants, are given by (36). Because of the degeneracy the 
bracket { , } can only generate dynamics in constraint 
“surfaces” (sometimes called symplectic leaves) deter- 
mined by the constants C; hence the degeneracy is tanta- 
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I 

CF,GL= j-f’[ -&, &]d3x & (151) 

in terms of which the linearized Vlasov-Poisson equation 
can be compactly written as follows: 

Representing Sf as a Fourier series, 

Sf (w,t) =i ,=$ fk(Wkik’, 
m 

(153) 

the functional derivative has the Fourier series (cf. Ref. 
281, 

-&.= ksm ( &)th=+ kj, &eih, (154) 

and upon insertion of ( 154) and the corresponding expres- 
sion for G in ( 15 1 ), the bracket becomes 

ilp 6F 6G &G 6F 
Xav SfkSf-k-Sfk6f-k dv* ( -4 

(155) 

Note the k=O component vanishes; this is part of the de- 
generacy associated with dynamical accessibility, which 
arises when one assumes the existence of the Fourier trans- 
form of the quantities above. 

In order to transform from the independent coordi- 
nates fk and f--k to Ek and E- k as defined by ( 132), the 
chain rule for functional differentiation must be obtained. 
Varying an arbitrary functional fl fk] =I;tfk[EJ] yields, 
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SF= i 
I 

m dv 
k=-co -aa 

= 
,j, j-Im d” g sEk- 

(156) 

From Eq. (132) 

47re m 
a&(&t> =x s 

afk(bt) %(u,v)dv, (157) 
-02 

which, upon substitution into (156) and noting that 6fk is 
an arbitrary variation, results in the following connection 
between the functional derivatives: 

Ww) 
SF 

a&( U,t) du* 
(158) 

Inserting (158) and a similar formula for &?/aEk into 
(155) yields, 

{F,G-),=;~ k;, ; j-: 
m 

d$= du 
-co 

s 
m aP 

X 
-co 

du’ Y&- t?&u,u) 9?E_k(u’,u) 

SF SG SG SF 
s&(U) 6E_k(U’>-SEk(u’)&!?-k(U) ’ 1 

(159) 

Upon requiring 
2 

q(k,u)=+(k,ku)=-+$?$ (160) 

reverting to the notation E(k,u) =Ek(u), and making use 
of Pq. (146), (159) becomes 

{F,@L= -7 c, k j.:w du 

#,kU 1 SF 
x Ie(k,ku) I2 SE(k,u) aE(:k,u) 

SG SF 
-GE(k,u)SE( -k,u) (161) 

It is clear from (161) [and (155)] that only dynamics with 
af k/at a aj%v is possible. This is the remaining part of 
the degeneracy associated with dynamical accessibility. 
Now this degeneracy is eliminated altogether and the dy- 
namics is defined in terms of canonical coordinates that lie 
within and span the constraint surfaces (symplectic 
leaves). 

From ( 161) the time dependence of E( k,u,t) is gener- 
ated: 

dE 
,={E,a2flL= -ikuE, (162) 

where the last equality follows from S2F of Eq. (98) re- 
written as 

a2F=; k$ j-- du u “(k’ku) I2 I E(k,u) I 2. 
-co ~~(k,ku) 

(163) 
Observe that the time dependence derived in this way is 
precisely that assumed for the Van Kampen mode decom- 
position. 

The action variables given in Sec. IX A, with their 
corresponding angles, follow directly from the transforma- 
tion 

E(k,u) = 43 eeiey 
(164) 

when e1 > 0, and the following when eI < 0: 

E(-k,u)= d-e-‘% 

With the chain rule the Poisson bracket becomes 

(165) 

{F&9,= j, fin du( $g-gg). (166) -co 
The content of this section, which points to the solu- 

tion of the complete spectral problem for a large class of 
operators, can be interpreted either as a diagonalizing co- 
ordinate transformation to action-angle variables or as the 
integral transform technique as expounded in Appendix D. 

X. CONCLUSIONS 

One goal of this paper was to comprehensively con- 
sider energy expressions for perturbations of homogeneous 
Vlasov-Poisson equilibria. To this end the dielectric energy 
and the exact plasma free energy, which respects the im- 
portant constraint of dynamical accessibility, were com- 
pared in special cases. For the case of stable equilibria we 
were led to the general energy expression of (98). Another 
goal of this paper was to obtain in an unambiguous way the 
Hamiltonian action variables for stable linear Vlasov equi- 
libria. This required the introduction of the integral trans- 
form pair, which maps the linearized noncanonical Poisson 
bracket for the Vlasov equation to the desired canonical 
action-angle form. 

Several avenues for future work naturally come to 
mind. One is to obtain the generalization of (98) for elec- 
tromagnetic perturbations about homogeneous equilibria 
and inhomogeneous equilibria with various field configu- 
rations. Also, the action-angle variables are natural vari- 
ables to use for perturbation theory. In the case of unstable 
equilibria Hamiltonian systems no longer possess action- 
angle variables, but other normal forms exist and the tech- 
niques of Ref. 25 can be used to define a transformation to 
these coordinates. Since the Poisson bracket of Sec. IX C 
applies to a variety of fluid and plasma systems, the inte- 
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gral transform pair is a most general transformation. One 
can transform a plethora of systems to these variables for 
diagonalization. This will be the subject of a future paper. 
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APPENDIX A: ELECTROSTATIC ENERGY FOR 
THREE-DIMENSIONAL EQUILIBRIA 

Assuming f’,“’ =f’,” (H(,o) ) alone, where 
H’,o)= (mp2/2) +e,,#‘), Eq. (35) can be written as 

S2F= - c s afo) 
Y 

d3x d3p ; [g,,,H’,o’ ] 2 $ 
Y 

For convenience, below we omit the species label Y and 
assume a volume of size 27r. 

Enroute to eliminating g in terms of SE we write g 
=g(J,e) where (J,0) are equilibrium action-angle vari- 
ables for the particles, which are assumed to exist. Recall 

iwh 

where the individual components Ji are defined in terms of 
the closed contours yP In terms of action-angle variables 

i.e., all the angles conjugate to J are ignorable. The main 
reason for using these variables is that Eq. (33) simplifies 
to 

ag %+“(J) l $=6H, (A21 

where SH=e@[x(&J),t] and fl~dH’~)/aJ. The general 
solutions of Eq. (A2) are given by 

g(J,B,t) =g^(O-nt,J) 

I 

t 
+ 6H(x(f3+a(r-t),J),r)dr. (A3) 

0 

The perturbed distribution function is obtained from (28) 
as follows: 

f’)= k9fol =g$ cg,H’“‘17 (A41 

where 

[g,H’O’] =a l $4 Jot [  (“*~)x]*dE(.,t)dT~A5) 

where x is shorthand for x=x(8+ (r- t)%J). Inserting 
(A5) into (Al) yields 

1 
S2F=-? afo d34d3JP 

2 

+e2 6E*;*fi dr 

-s^ t 
--2ei2*= 

s 
osE ae .%l, +& 1 s SE2 d3x, 

(A61 
where the volume element transforms as d3x d3p=d38 d3J. 

The existence of action-angle variables requires period- 
icity, and so we can expand as follows: 

~(&I)= ~g,,,(Jkhm’e, ” 

x(&J) = c xm(Jkh’et m (A7) 

SE[x(B,J),t] &%(e,J,t) = c E,(J,t)ebm’e. 
m 

Inserting Eqs. (A7) into (A6), and integrating over 8 re- 
sults in the following energy expression: 

(A81 

S2F= -4d c 
m 

d3J $ (m&)21g,12-8?e c Id3J& (~~m)(~~p)g,S(m+l+p)e-in’(m+‘+p)t 
l,m,p 

U- 

t 
X 

0 
xp~E1(r)ein’(‘+P”dr +4$e2 2 

1 
(~~p)(fbm)S(l+p+m+q)e-i(l+P+m+q~t 

q,pJ,m I 
d3J$ 

t t 
X 

(I 
xq*Em( r)ein.cm+s)T dr x,*E, ( r ’ ) e 

0 NJ- 0 
i”‘(l+P)T’ d# +d c E,*EI g S(m+l+p), 

1 Imp I I P 

where 6(m) =0 unless m=O in which case it is unity. 

APPENDIX B: THE f=f+ +f- SPLITTING 

The method used by Van Kampen for solving the initial value problem requires a splitting of a function f(x) of a 
single real variable into the sum of two functions with complex extension that are analytic in the upper and lower half 
planes, respectively. In order to obtain this splitting we represent f(x) as follows: 
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Y 
(X--X,)z+yZf(x’)dx’. (Bl) 

This formula is valid if f (x) satisfies the Holder condition 
If(x)-f(x’)IgMIx-x’l” for all x and x’, with a<1 
and M constant. Jump discontinuities can be allowed, but 
the right-hand side produces the arithmetic mean of the 
values off on each side. 

Assuming further that 

lim f(x) =0, U32) 
Ixl-+m 

Eq. (Bl ) can be decomposed as 

1 
f(x)= lim 7 (J- 

Q) f(x’)dx’ 

v-o+ 2n-1 --oo x’-x-iv 

s 
m f(x’)dx’ - 
--m x’-x+iv 

=f+(x)+f-(x). (B3) 

This defines the splitting needed in the text. 
The extension into the complex plane of the function 

f+(-)(z) has several important properties: (i) it is ana- 
lytic in the upper- (lower-) half plane, (ii) it approaches 
f+(-)(x) asy-+O, (iii) it approaches 0 a~-++(-)w. 
Also, most importantly, the splitting is unique.20 

Similarly the principal value integral can be repre- 
sented as 

J- m f(x’)dx’= lim 
I 

m x’ -x 
P x’ -x 2 

-co v-.0+ --o (x-x') + 
4 f (x’)dx’ 

= lim i 
s 

m f(x’)dx’ 

v-o+ --m x’-x+iv 

=i?r[ f+(x)-f-(x)]. 034) 

For this formula to be valid, the conditions on f (x) are the 
same as those required for Eq. (B3). 

The above decomposition is introduced somewhat dif- 
ferently than that originally given by Van Kampen, which 
beings with the Fourier transform off(x). The compari- 
son can be made by writing f + and f _ in terms of Fourier 
integrals, making use of the following identities: 

1 .O” 
x’-x-iv =I 

s 
ei(x-x’ -tWp dp, 

0 

-1 .o 
=I 

s x’-x+iv --m 
ei(x--x’-iv)p dp. 

Substituting these into (C3), and then interchanging the p 
and x’ integrations yields 

f(x) =-& Jam dp e+QX( J:, f (xt)eic-Xt+i”)Pdx’) 

+& J:, dp e+@( J:a f(x’)eic-X’-iv)Pdx’) . 

P>O, 

‘iX’+“Pdx’=F-(p), p<O, 

we obtain 

f(x)=f+(x)+f-(x) 
0 

= 
s 

m dpe +%‘+ (PI+ 
s 

dp e+@‘xF- (p) 
0 --m 

= r m dpe +‘p”F(p), 
J--a0 

where it is seen that f + and f _ are the positive and neg- 
ative frequency parts of the Fourier transform, respec- 
tively. 

APPENDIX C: PROPORTIONALITY CONSTANT OF 
SEC. VII C 

In this appendix an example is given where the pro- 
portionality constant between S2F, in the small y approx- 
imation, and %‘D can have either sign. To this end we 
choose 

E(b) = ;+? ( 

(Cl) 
The first term on the right-hand side could also be replaced 
by any other function leading to an asymptotic behavior 

E(k,t) -te-‘oote-YltlgE(k,wo). ((-3) 

From (Cl) 

E(k,t) =e-i*t(e--YI’I +~ele-(1’z)~2)~E(k,oo), (C3) 
which also possesses the correct asymptotic behavior. 

The requirements for I E I 2/e1 are 

aER Id2 1 
eI a=0 0 

From (Cl ) one obtains 

E(k,uo) = (+,+$-- )SW,ooh 

One should therefore represent I E I 2/~1 as 

G=; ( ;+$- )SE(k,o,) 2. 

(C4) 

(C5) 

((3) 

Insertion in (98) yields 

V 
S2F=- 16E(k,wo) 1’ 167r 
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The 
P= 
xl-1 

( 1 + /3) obtains its minimum for 
11. Its value there is - a Jw 
the factor ranges in value from 

some finite negative number to + CO. 

APPENDIX D: VAN KAMPEN SOLUTION AS AN 
INTEGRAL TRANSFORM 

Here the Van Kampen solution of the linear Vlasov 
equation is solved by effecting a “traditional” integral 
transform approach. For convenience we define 

&u)=.&(f)= j-w f(u)&u,u)dv, (Dl) 
--m 

f(v)&Q)= 
s m h49 (u,vW, 032) 

--m 
where Y and %’ are given by (131) and (133), with the k 
dependence suppressed, respectively. At this point the 
function E is assumed unknown. The following properties 
of the transform J? can easily be established: 

(D3) 

the first by making use of (146) and the second from a 
standard property of the Hilbert transform (see, e.g., Ref. 
29). Other properties of the JZ transform can similarly be 
obtained. 

Using (D4) the &-transformed linear Vlasov equa- 
tion is seen to be given by 

a7 a,tikuy-ik f$ k 
s 

:a fdu+&( ;Eg)=O. 

(D5) 
Solution of (D4) is hampered by the presence of the last 
two terms, and & (@‘/au) is not in general anything spe- 
cific. However, upon choosing E=E, it is seen that these 
two terms cancel, yielding 

an equation that is trivially solved by 
y= EeikUt, (D7) 

where E is arbitrary and can be used to set the initial value. 
Thus upon inverting the transform (and reinstating the k 
and t dependencies) the solution is obtained 

f(k,u,r)=P(y)= m E(k,u)Y(k,u,u)eikU’du. 
CD81 
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