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Five action principles for the Vlasov-Poisson and Vlasov-Maxwell equations, which differ by 
the variables incorporated to describe the distribution of particles in phase space, are 
presented. Three action principles previously known for the Vlasov-Maxwell equations are 
altered so as to produce the Vlasov-Poisson equation upon variation with respect to only the 
particle variables, and one action principle previously known for the Vlasov-Poisson equation 
is altered to produce the Vlasov-Maxwell equations upon variations with respect to particle 
and field variables independently. Also, a new action principle for both systems, which is called 
the leaf action, is presented. This new action has the desirable features of using only a single 
generating function as the dynamical variable for describing the particle distribution, and 
manifestly preserving invariants of the system known as Casimir invariants. The relationships 
between the various actions are described, and it is shown that the leaf action is a link between 
actions written in terms of Lagrangian and Eulerian variables. 

1. INTRODUCTION 

In the past, several action principles for the Vlasov- 
Maxwell equations have been presented. In 1958 Low’ gen- 
eralized the action principle for particles in a self-consistent 
electromagnetic field by using a Lagrangian displacement 
variable to describe a continuum of particles. Upon indepen- 
dent variations of this action with respect to the particle vari- 
able and the scalar and vector potentials, i.e., the four-poten- 
tial, evolution equations equivalent to the Vlasov-Maxwell 
equations were obtained. Further discussion, extension, and 
application of this action can be found in Refs. 2-4. Inas- 
much as the Low action is a continuum generalization of 
Hamilton’s principle of the classical mechanics, which pro- 
duces Lagrange’s equations of motion, another action prin- 
ciple is based upon the phase-space action principle, which 
produces Hamilton’s equations of motion. For this action 
the particle continuum is described by the Lagrangian dis- 
placement variable and its canonically conjugate momen- 
tum, while the fields are described by the four-potential, just 
as in the case of the Low action. The phase-space action has 
been applied in the context of self-consistent guiding-center 
and oscillation-center dynamics.‘-’ A third action, called 
the HamiltonJacobi action, was introduced in Refs. 8-10. 
This action describes the particle distribution by two func- 
tions, a mixed-variable generating function and a density 
function, while the fields are again described by the four- 
potential. Variations with respect to these two particle func- 
tions yield equations equivalent to the Vlasov equation, and 
variation with respect to the four-potential produces Max- 
well’s equations in the usual way. 

Unlike the Low and phase-space actions that describe 
the particles in terms of Lagrangian variables, the Hamil- 
ton-Jacobi action can be viewed as a mixed Lagrangian- 
Eulerian variable description.” However, there is yet an- 
other way to describe the particle distribution in a purely 
Eulerian manner, by the introduction of two functions 

known as Clebsch potentials.‘2-‘4 These two functions are 
canonically conjugate Hamiltonian variables and thus lead 
in a natural way to another action principle that we call the 
Clebsch action. 

In this paper we present a new action principle for the 
Vlasov equation. We call this new action the leaf action be- 
cause the theory is described in terms of a generating func- 
tion whose dynamics manifestly preserves the so-called Casi- 
mir inuariants of the Vlasov system (which are associated 
with conservation of phase-space volume), and because the 
constraint surfaces determined by these invariants are 
known as the symplectic leaves. In addition to preserving all 
the Casimir invariants, the leaf action has the novel and de- 
sirable feature of being variational with a single function as 
the dynamical variable. Generally speaking, a single func- 
tion description of the particles has advantages for applica- 
tion of approximation methods employing trial functions, 
since one needs only guess one function. 

For each of the action principles for the Vlasov-Max- 
well equations mentioned above, there exists an alteration 
that results in an action principle for the Vlasov-Poisson 
equation, an alteration that to our knowledge is new. In these 
altered action principles the magnetic field is omitted and 
the electrostatic potential is determined self-consistently by 
solving the Poisson equation in terms of the Green’s func- 
tion. The electric field part of the action is then expressed in 
terms of the particle variables, resulting in a change in the 
particle Hamiltonian [e.g., the factor of 1 in the last terms of 
Eqs. (ll), (13), (19), and (20) below]. 

The natural question of how the five action principles 
are related arises. In the past only the usual Legendre trans- 
form relationship between the Low and phase-space actions 
was known. However, one expects that there exist transfor- 
mations between all the various quantities used to describe 
the particle dynamics. Here we will discuss the relationships 
between the various actions for the Vlasov-Poisson equa- 
tion; we will show that the leaf action provides a link between 
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the actions written in terms of Lagrangian and Eulerian vari- 
ables. Since these transformations involve only the particle 
variables, they apply to the actions for the Vlasov-Maxwell 
equations as well. 

The paper is organized as follows. The remainder of the 
Introduction reviews the Hamiltonian structure of the Vla- 
sov-Poisson equation, and the concepts of Casimir invar- 
iants and symplectic leaves. This background material facili- 
tates the discussion of the leaf action. In Sec. II we describe 
the self-consistent Vlasov-Poisson action principles ob- 
tained by altering the Low, phase-space, Clebsch, and Ham- 
ilton-Jacobi actions. Section III is devoted to the discussion 
of the new leaf action in the context of the Vlasov-Poisson 
equation. In Sec. IV the relationships between the five ac- 
tions is explored in detail. In Sec. V, we display the action 
principles for the Vlasov-Maxwell equations. The Low, 
phase-space, and Hamilton-Jacobi actions were previously 
given, but are included here for completeness. The Clebsch 
and leaf actions for the Vlasov-Maxwell equations are new. 
Finally, in Sec. VI we conclude. 

It is well known by now that the Vlasov equation is a 
Hamiltonian system with the so-called Lie-Poisson bracket 
structure. Traditionally the Vlasov equation is written as a 
partial differential equation in the six-dimensional particle 
phase space [we use z= (q,p) to denote the phase-space co- 
ordinates, and suppress the species label] : 

where f(z,t) is the smooth Vlasov distribution function, 
H(z,t) = p2/2m + e&(q,t) is the single particle Hamilto- 
nian, and 

(2) 

is the canonical Poisson bracket. Now we can also consider 
the system in terms of the (infinite-dimensional) space of 
distributions, and the physical observables F w, which are 
functionals on this space. It can be shown’3s’5 that the Vla- 
sov equation ( 1) is equivalent to the Hamiltonian equation 

where Zis the system Hamiltonian whose functional deriv- 
ative is H, i.e., &W/kif = H, and {s;} is a Lie-Poisson 
bracket, defined by 

W,,F,) +fhzf [%,!g . (4) 

Considering the distribution itself to be a functional, 
f(z,t) = Jd’z’f(z’,t)S(z - z’), Eq. (4) produces Vlasov’s 
equation directly as follows: 

!$={f;-“r)= -[AH]. 

For a derivation of this Lie-Poisson bracket from the ca- 
nonical Hamiltonian formalism for the particle motion, see 
Refs. 12 and 16. The geometrical setting is developed in Ref. 
17. 

An important property of the Lie-Poisson bracket (4) 

is its infinite degeneracy, in the sense that there exists an 
infinite number of observables of the form 

%‘I = d6zC(f ), 
I 

(6) 

where C(f) is an arbitrary smooth function, which com- 
mutes with all functionals off: 

{%,Y}= 
f [ 

d6zf C!(f,,E 
Sf 1 

= d6z~[JC~(f)l=O. 
s 

(7) 

In particular, % commutes with any Hamiltonian X and 
thus constitutes an infinite number of invariants of motion, 
one for each choice of C( f ) . These invariants are known as 
the Casimirs; their level sets foliate the space of distributions 
into invariant subspaces, called the symplectic leaves, on 
which the dynamics is constrained. The physical meaning of 
the Casimir invariants has been discussed in Refs. 1 I and 18- 
20. Roughly speaking, it is as follows. Imagine that we parti- 
tion the particle phase space into small cells of equal volume, 
and to each cell attach a certain value of$ Then specifying all 
Casimir invariants (thus a symplectic leaf) is equivalent to 
specifying the number of cells that have a given value off. 
The latter is conserved by Liouville’s theorem. 

It is sometimes desirable to restrict the Vlasov equation 
to a symplectic leaf, where presumably all points are dynam- 
ically accessible (i.e., subject only to dynamical constraints 
such as energy conservation). Crawford and Hislop*’ con- 
sidered such a restriction for the one-dimensional electro- 
static case. They used a Lie generating function W(g,p,t) to 
represent all states close to an equilibrium f,(p) : 

f(q,p,t) = e’?f 0’ (8) 
The function Wean be interpreted as a coordinate on the leaf 
[the subset W = W(p,t) is excluded for it results in f =h] , 
Then they derived from the Vlasov equation ( I), by an itera- 
tive scheme, the equation for W: d W/at = X, ( w>, where 
X, is a formal infinite series. In the present work we shall 
consider the restriction of the Vlasov equation to a symplec- 
tic leaf in the general case, by utilizing the power of action 
principles. 

II. FOUR ACTION PRINCIPLES FOR THE VLASOV- 
POISSON EQUATION 

The first action we discuss is the alteration of the well- 
known Low action. *-4 It uses only the particle position, or 
Lagrangian displacement, q(z,,t) as the dynamical variable, 
where zo= (Q,P) labels the particles. For the Vlasov-Pois- 
son equation we can treat the Poisson equation as a con- 
straint because it does not contain any time derivative. The 
electrostatic potential &(q,t) can be solved by the Green’s 
function met.hod 

4(w) = e s d62;, K [ q(z,,t) W&t) ] f,(z;l 1, (9) 

where the sum over species is implied. Here f. ( z. ) is a given 
Vlasov distribution in the labeling space, and 
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K(qjq’) = K(q’(q) is the Green’s function for the Poisson 
equation, 

V’K(qlq’) = - 4dY(q - 4’). (10) 
[In the case of infinite plasma K(qlq’) = e/lq - q’l.] The 
Low action then reads 

d%d(G y ir2 - e&at> 

+ld”qF] 

= 

Here in the last equation 4 is to be viewed as a shorthand for 
the expression given by Eq. (9); the factor t in the second 
term arises from the partial cancellation between the e# and 
lVt,z512 terms of the first equation. Note that ( 11) is just the 
continuum version of Hamilton’s principle. Variation yields 
Lagrange’s equations of motion, 

mij = -eVf$, (12) 
which can be shown to be equivalent to the Vlasov equation 
by the standard manipulations. 

Now consider the&se-space action, a close relative of 
the Low action. It is obtained from the latter by a Legendre 
transform (q,Q)t-+(q,p), where p = ma, and is given by 

d[wl = dt d%, fok,) P.i-&+,+h,o ss ( > 
, 

(13) 
where 4 is again defined by Eq. (9). Variations are made 
with respect to q and p independently, which yield directly 
Hamilton’s equations of motion, 

4 = p/m, i, = -eV+. (14) 

The action ( 13) possesses a geometrical character, viz., the 
integrand is a one-form in the particle phase space; this 
makes it amenable to the powerful Lie transform technique, 
which has been successfully exploited in the guiding-cen- 
te? and oscillation-center theories.’ 

There is also a variant of the two actions just discussed 
that is worth mentioning. One can invert the coordinates 
z( z&) and reexpress the action in terms of the labeling fields 
q( z,t). This kind of action has proven useful in formulating 
variational fluid theories (see, e.g., Ref. 22). 

The Clebsch action * *-I4 is named after its counterpart in 
the fluid theories (see, e.g., Lambz3). Two potential func- 
tions a(z,t) and /3(z,t) are introduced for the particle 
distribution: 

f = [a&? ] = 265 @ da dfl A--_._. 
aq & ap acl 

One can show that if a and fl solve 

P da $+-- 
m Jq 

eVfj& = 0, 
& 

Z!Z+~~~~Vq&=~, ap 

(15) 

(16) 

(17) 

then f as given in ( 15) solves the Vlasov equation ( 1). No- 

tice that in Eqs. ( 16) and ( 17) a andpare actually coupled 
through 4, which is now defined by 

4(q,O =e 
s 

d% K(qlq’)f(z’,t). (18) 

Equations ( 16) and ( 17) arise upon variation of the follow- 
ing action: 

&[a#] =IdtId6z(a$-&[a,fl] 

-- l ~d6z’[aBl~(qlq’)[a’,B’l), (19) 

where a’=a(z’,t) andp’+(z’,f). This action possesses a 
notable feature that all other actions lack: the number of 
particles in a region V of the phase space, given by 
Jr, d 6z f(z,t), is determined by the value of a and p on the 
boundary of I? This suggests a potential application to prob- 
lems that involve variable particle numbers such as beam 
injection. 

The Hamilton-Jacobi action uses as its dynamical vari- 
ables a mixed-variable generating function S( q,P,t) for the 
particle orbits, and a density function p(q,P,t) that repre- 
sents the number of particles on an orbit. It reads as 

&[p,S] = -j-dtj-d’qd’Pp,[$+$-(z) 

++w) -Ho($v)], (20) 

where H,(Q,P,t) is an arbitrary function and 4 is given by 
Eq. ( 18) with f(z,t) defined in terms of S and p by 

P(%PJ) =f(%g,f)l+g-~ . (21) 

Variation with respect to p immediately yields a modified 
Hamilton-Jacobi equation; variation with respect to S yields 
an equation that can be manipulated into the Vlasov equa- 
tion forf( z,t). The detailed calculations can be found in Ref. 
10. The Hamilton-Jacobi action has been applied to the deri- 
vation of unambiguous energy expressions for kinetic guid- 
ing-center theory.‘-” 

III. THE LEAF ACTION 

In this section we derive, from the phase-space action 
( 13 ), the new leaf action. An arbitrarily given reference dis- 
tribution fo(q) determines a unique symplectic leaf. One 
may think of z, as the initial particle position in the phase 
space, 

q(zc,,O) = Q, P(%,O) = P, (22) 
thenfo(z,) would be the initial Vlasov distribution. But, one 
is by no means constrained to such an interpretation, which 
is sometimes too restrictive. Now if we let (q,p) be generated 
by a single mixed-variable generating function S( q,P,t) : 

p=&%, Q=ds 

Jcl JP’ 
(23) 

then as S varies, the Vlasov distribution f( q,p,t), defined by 

f (%$ J) =f,(-g 2) f (24) 
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will always stay on the same symplectic leaf prescribed by fw 
Thus by using S we have in effect restricted the variations to 
a single leaf. Here for explicitness we have chosen the F,-type 
generating function, but one can also use any other type, and 
the whole calculation that follows will carry through with 
only minor modifications. In fact, it is known that a given 
type of generating function will, in general, develop caustic 
singularities, so in practice one may have to switch between 
the various types of generating functions. Locally, a generat- 
ing function always exists, as shown, e.g., by Arnold.24 In 
contrast to the initial value interpretation of Eq. (22), Eq. 
(23) suggests that we view the phase space as foliated by 
Lagrangian submanifolds, i.e., submanifolds labeled by con- 
stant P, where Q serves as coordinate within the submani- 
fold. [A Lagrangian submanifold is an n-dimensional sub- 
space in the 2n-dimensional phase space defined by the first 
of Eq. (23 ); for our problem n = 3. ] Since we want the gen- 
erating function S to represent the actual dynamics, and not 
just a relabeling of the particles, a certain admissibility con- 
dition is required. The precise criterion will be given at the 
end of this section. 

From Eq. (23) we have 

as . dS dS 
pil=dq’q=~-~’ (25) 

where dS/dt means total time derivative of S holding z0 
fixed.Inserting thisintoEq. (13), weseethat thedS/dt term 
drops out; upon changing the integration variables from 
(Q,P) to (q,P) in Eq. ( 13) we obtain the desired leafaction, 

&[S] = -,d$d3qd3Pl-=Jf;,(~,P) 

x[$++--(~)2+$C(qA], (26) 

where I$ is a functional of S, defined by 

4(w) = ~~3q’d6+$&,~&,(~ ,P’)K(q,q’). 

(27) 
For the change of variables to be valid, we require the van 
Heck determinant w= 1~9 2S/6’q a P] to be finite. As men- 
tioned earlier this can always be achieved locally by a suit- 
able choice of the generating function. The Jacobian matrix 
of this transformation, 

(28) 

comprises the symplectic two-form (the “Lagrange 
bracket”) in the mixed-variable representation, because by 
Eq. (23) we have 

wy dqi A dPj = dqi A dpi = dQj A dPj. (29) 
Here we have adopted the summation convention over re- 
peated indices. Therefore its inverse J, defined by J%ojk 
= Si, defines the Poisson bracket in the mixed-variable 

coordinates 

(30) 

[Note that the subscript (q,P) only serves to indicate that 

we are using the mixed-variable coordinates; the Poisson 
bracket itself does not depend on which coordinates one 
uses.] A direct calculation can also verify the following 
identities: 

$(uJ”) = 0 = -$(oJ”). 
J I 

It is straightforward to carry out the variation. After 
some algebra, which makes use of Eq. (3 1)) we find 

~=u[J;‘(~,P),~+H(q,~,r)]rq,rr. (32) 

Smce w#O, and the bracket [ .,a] (q,Pt is nondegenerate, a 
general solution (“first integral”) of 6&/B = 0 is 

-$+f+,$f)=c(-$,P,t), (33) 

where C( z,,t) is an arbitrary function that commutes with 
f,( zO). This generalized form of the Hamilton-Jacobi equa- 
tion was introduced in Ref. 10. It has the following interpre- 
tation: if we regard S as the generating function for a canoni- 
cal transformation from the phase space z to the labeling 
space ze, then Eq. (33) states that C( z&) is the transformed 
Hamiltonian in the z,, space. Thus the requirement off0 com- 
muting with C implies that f. is a solution of the Vlasov 
equation in the labeling space. Then the distribution f( z,t) 
defined by Eq. ( 24) is also a solution of the Vlasov equation 
in the original phase space. To see this argument more clear- 
ly, let us differentiate Eq. (23) with respect to time while 
holding z constant; we obtain 

ap ( > -z- (9,P) = 

-,a2s, 
agat (34) 

aQ ( > at 
_ a3 ( a?3 ap -. - 

( > am apap at capj . (35) 
(q+Pt 

Also by the chain rule we have 

(36) 

(37) 

These relationships, together with the definition ofJI lead to 
a (3 ah dQ 
at =-• ( > 

( afo. ap 
(%P) 

= ;gy;) Z,(.“p 

( > 
- 

ai (%*) (38) 

On the other hand, since the Poisson bracket does not de- 
pend on the specific representation, we have 

[jY,(g 3) Zf(qs$f J)],,,,, = V;H 1m.p) . c39) 
Substituting Eqs. (38) and (39) into (32), we see that when 
reexpressed in z space the latter is exactly the Vlasov equa- 
tion ( 1) . Equation (38) also provides a precise criterion on 
the admissibility of the generating functions-we must not 
allow dS/& to commute with f,. In the one-dimensional 
electrostatic problem this requirement completely deter- 
mines C (see Ref. 25). 
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IV. RELATIONSHIPS BETWEEN VARIOUS ACTIONS 

So far in this paper we have discussed how the phase- 
space and the leaf actions can be derived from the Low ac- 
tion. The leaf action uses a single function as its variable, so a 
natural question that arises is whether there exists a canoni- 
cal description. As we shall see momentarily, this leads us to 
the Hamilton-Jacobi action (20). The usual method of go- 
ing to the canonical description, the Legendre transform, 
cannot be applied directly because Eq. (26) is linear in 
dS/dt. One of the standard remedies in this case is the Dirac 
constraint method.26*27 The canonical momentum conju- 
gate to S is still defined by the coefficient of &S/at: 

II= -a& %,P , 
( > (4.0) 

but since this equation does not involve&i‘/&, it can only be 
used as a constraint (the primary Dirac constraint). Intro- 
ducing a Lagrange multiplier R (q,P,t) for this constraint we 
then obtain a three-variable action, 

.d[rI,S,A I =JdtJd%#P[rr[~+J.-(E) 

++$w] -A [n+~~(g,P)])~ 

(41) 
Variation with respect to ;1 yields the constraint (40); vari- 
ation with respect to Il yields 

$+fz q,$,t -A=O; ( > (42) 

variation with respect to S yields a complicated equation 
that can be simplified, with help from Eq. (42), into 

an 
at= - @J$J&(?g P)-g$] 

+ NE pp> PA I,..,, * (43) 

For the constraint (40) to remain true during the system’s 
evolution, its time derivative must also hold. Taking the time 
derivative of Eq. (40) and using Eqs. (42) and (43), we 
obtain the secondary Dirac constraint: 

[-6(-g 2) .,q,p, = 0. (44) 

This equation can be solved explicitly, and the general solu- 
tion for 2 is just C, the same as that used in Eq. (33). This 
solution makes the secondary Dirac constraint compatible 
with the equations of motion without producing any tertiary 
constraints. So the Dirac constraint procedure terminates at 
this point, and Eqs. (40), (42), and (43) are shown to be 
consistent. 

Replacing R by C in Eq. (41) reduces it to a two-vari- 
able action, 

-d[KI,S] =,,,,d3qd3PlI[++&($) 

++b(s,r) - C($,PJ)] . (45) 

By changing the integration variables back to (Q,P) we can 

show that the last term in Eq. (41) does not contain either S 
or HI, and can thus be omitted. This removes all references to 
f0 from the action (45). Therefore we can relax the Dirac 
constraint (40) and treat it as an initial condition, because 
we have shown that if it holds at one time, then it will hold 
for all times. With this argument we delegate the specifica- 
tion of a leaf to the initial condition, and Il and S can be 
considered as free variables in the variation. The action (45) 
and the Hamilton-Jacobi action (20) are identical, if we 
equate II with - p and C with Ho. The geometrical setting 
of Ref. 17 is of interest for this link between the space of S 
and the space of ( II,S) . 

It remains to establish a relationship between the Ham- 
ilton-Jacobi action (20) and the Clebsch action ( 19). A link 
can only be made when there exists a function g(Q,P) that 
commutes with H,( Q,P,t), in which case we can introduce a 
function cL (q,p,t) by 

a(q,$f,t) =g($$,P). 
By a calculation similar to Eq. (38) we find 

(%),,.,, = Lab2 4 a.,, * 

(46) 

(47) 

So, for any function fl( q,p,t) we have 

s d”z,+ - 
J- 

d3qd3PW 

Therefore, if we choose /? to satisfy 

(49) 

then the right-hand side of Eq. (48) becomes the first term of 
the Hamilton-Jacobi action (20). Solving Eq. (49) for p, 
inserting it into Eq. (20)) and changing the integration vari- 
ables to (q,p), we then obtain the Clebsch action. (The H, 
term vanishes because by assumption H,, and g commute. ) 
Finally, we note that Eqs. (49) and (2 1) give the distribution 
functionfconsistent with Eq. ( 15). 

V. ACTION PRINCIPLES FOR THE MAXWELL-VLASOV 
EQUATIONS 

In this section we display the five actions for the Vlasov- 
Maxwell equations. These actions differ from the Vlasov- 
Poisson actions in that, besides being electromagnetic, the 
particle and field variables [represented by a four-potential 
(A+$)] are to be varied independently. Three of them, the 
Low, phase-space, and Hamilton-Jacobi actions, were pre- 
viously known in this context. Variations of these actions 
with respect to the particle variables yields either the particle 
equations of motion or the Vlasov equation; variations with 
respect to the four-potential (A,+) yields the Maxwell equa- 
tions. We shall omit the detailed calculations here since they 
are either straightforward, or have been given in the 
references. 

The field part of all the actions has the same standard 
form: 
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d,[A,451 =+-Id4x[( -$$-vr+ (VxA)‘], 

(50) 

where d 4x = dt d 3x. The complete actions are listed below. 
The Low actioni 

@‘[wQl =~d+6w3~)(~4z 

+ f il’A(q,O - e&w) 
> 

+ d,; (51) 

the phase-space action, 

~9[wwVl =~d+“z,&(zo)[piI 

- $ P - 5 A(q,f) 
> 

* - eqVq,t) 1 + d,; 

(52) 
the Clebsch action, 

@‘[a&A,+] =Idfld%(az 

- Ia8 I [ &(P - f A)2 + +]) + d,; 

(53) 
the Hamilton-Jacobi action8 

dJqd3Pp 

X[g++-(E-;A(@)) 

+4(W -f&(~,P,t)] +d,; 
(54) 

and the leaf action, 

- e A(w) > 
2 

C 

+ 4(q,t) + a!,. 1 (55) 

VI. CONCLUSION 

We have presented a comprehensive discussion of ac- 
tion principles for the Vlasov-Poisson and Vlasov-Maxwell 
systems, and have introduced a totally new kind of action 
called the leaf action. The paper is compactly summarized in 
Table I. The actions fall into three groups, according to the 
type of variables used to describe the particle distribution. 
The top row of the table indicates the three variable types: 
Lagrangian, mixed Lagrangian-Eulerian, and Eulerian. Be- 
low these variable headings are two rows of actions. The 
second row is distinguished by the fact that the actions have 
two variables, which because of the form of the actions are 
canonically conjugate Hamiltonian variables. Thus this row 
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TABLE I. This table summarizes the action principles presented in the pa- 
per, by the variables used (columns) and the kinds of action (rows). The 
arrows indicate the logical relationships established in the paper. 

Lagrangian Lagrangian-Eulerian Eulerian 

Low action Leaf action 
4(11 .N’[Sl ? 

t f I 
Phase-space action Hamilton-Jacobi action Clebsch action 

d[%Pl ~[S41 - af I &PI 

can be called Hamiltonian. The first row contains actions 
that are written in terms of a single variable, analogous to 
Hamilton’s principle of classical mechanics. Since Hamil- 
ton’s principle gives rise to Lagrange’s equations of motion, 
this row could be termed Lagrangian. The arrows indicate 
the logical relationships that we have established in the pa- 
per between the actions. The transformation between the 
Low and phase-space actions was accomplished by the Le- 
gendre transform; that between the phase-space and leaf ac- 
tions was accomplished by the restriction discussed in Sec. 
III; that between the leaf and Hamilton-Jacobi actions was 
accomplished by the Dirac constraint method of Sec. IV; 
and finally the transformation between the Hamilton-Jacobi 
and Clebsch actions was accomplished by a variable change 
in Sec. IV. The reader may have noticed that there is a miss- 
ing entry in the table, corresponding to an action that uses a 
single Eulerian function as the dynamical variable. We re- 
mark that the leafaction written in terms of a Lie generating 
function (rather than a mixed-variable generating function) 
can fill this position. More precisely, we can express the ca- 
nonical transformation of Eq. (23) by a Lie transform: 
z = ef’*@ze, and then derive (also from the phase-space ac- 
tion) the leaf action in terms of W. The detailed calculation 
requires lengthy algebra that involves delicate manipulation 
of an infinite power series of Lie derivatives, and will be 
presented elsewhere. However, the @‘version of the Vlasov 
equation restricted to a symplectic leaf [i.e., Eq. (33) ] has 
been discussed in Ref. 25. 
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