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A method is presented for constructing exact solutions to a system of nonlinear plasma fluid 
equations that combines the physics of reduced magnetohydrodynamics and the electrostatic 
drift-wave description of the Charney-Hasegawa-Mima equation. The system has 
nonlinearities that take the form of Poisson brackets involving the fluid field variables. The 
method relies on modifying a class of simple equilibrium solutions, but no approximations are 
made. A distinguishing feature is that the original nonlinear problem is reduced to the solution 
of two linear partial differential equations, one fourth order and the other first order. The first- 
order equation has Hamiltonian characteristics and is easily integrated, supplying information 
about the propagation of solutions. 

I. INTRODUCTION AND OVERVIEW 

In this paper the construction of exact analytic solutions 
for a system of nonlinear plasma fluid equations is discussed. 
The equations occur in a fluid model,’ which combines the 
physics of reduced magnetohydrodynamics** (RMHD) 
and the Charney-Hasegawa-Mima (CHM) equation.4 The 
combined model is of interest because RMHD is an impor- 
tant tool for the interpretation of experimental results and 
for the prediction and theoretical analysis of nonlinear plas- 
ma fluid behavior in tokamaks. (To date, most of this work 
has been done numerically.) In the context of plasma phys- 
ics, the CHM equation has been used in the study of electro- 
static fluctuations in hot, turbulent plasmas; it incorporates 
the physics of electrostatic drift waves, which is not de- 
scribed by RMHD. 

The solutions admitted by this nonlinear system are 
physically interesting because they are fully electromagnet- 
ic, like many disturbances seen in tokamak experiments; and 
they can take the form of solitary waves, which can be long 
lived and very stable to perturbations. Hence they could de- 
scribe plasma behavior that might be detected experimental- 
ly. The method by which a class of solutions is obtained here 
is also of intrinsic mathematical interest: the nonlinear sys- 
tem of governing partial differential equations (PDE’s) is 
reduced to a linear system that is, in principle, exactly solu- 
ble by standard techniques. (If one wishes to be single-mind- 
edly practical, the analytic solutions could also serve as a 
means of verifying the computer codes used for RMHD cal- 
culations.) 

Here is an overview of what follows. In Sec. II the fluid 
equations are presented and their physical content is briefly 
discussed. Their nonlinear character is manifested by Pois- 
son brackets involving the fluid field variables. 

Section III is concerned with finding solutions to the 
fluid equations for the case of a perfectly conducting plasma. 
First, the construction ofexact solutions for the equilibrium 
form of the equations is considered. A simple change of de- 
pendent variables is used to eliminate the Poisson brackets 
and reduce the problem to solving a single linear PDE. This 

provides a foundation and motivation for the more general 
problem of constructing exact solutions to the nonequilibri- 
urn equations. Solutions to the nonequilibrium equations 
based on the change of variables for the equilibrium case are 
seen to be similar to AlfvCn waves. Next, by a slight modifi- 
cation of the change of dependent variables for the equilibri- 
um case, the nonlinear, nonequilibrium equations are re- 
duced to a pair of linear PDF’s, one first order and the other 
fourth order. An algorithm for constructing solutions based 
on this reduction is presented. Finally, the first-order PDE is 
integrated by the method of characteristics. The characteris- 
tics are determined by a system of Hamiltonian ordinary 
differential equations (ODE’s) that constrain the propaga- 
tion of solutions in an interesting way. From a discussion of 
physical properties and some simple examples, these solu- 
tions are seen to be distinct from Alfvkn waves, in general. 

In Sec. IV a summary is presented. The limitations of 
our method, possible modifications to it, and areas for 
further work are discussed. 

II. FLUID EQUATIONS 
A. Geometry and coordinates 

What follows is a description of the geometry and the 
coordinates used. First of all, the presumed geometry is to- 
roidal, that of a tokamak with a circular cross section. How- 
ever, the parameter beta for the plasma is assumed to be 
small-this excludes pressure-driven dynamics and magnet- 
ic curvature from the physics described by the fluid equa- 
tions, thus making them applicable to cylindrical and slab 
geometries, also. Let us introduce a set of normalized coordi- 
nates: 

x=(R-RR,)/a, y=Z/a, and z= -c. (1) 

Here (R,c,Z) represent cylindrical coordinates centered on 
the symmetry axis of the tokamak: R measures radial dis- 
placements away from the symmetry axis, 5 is the toroidal 
angle, and Zmeasures vertical displacements above or below 
the horizontal symmetry plane of the tokamak. Here R, is 
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the major radius of the tokamak. In the context of RMHD, a 
is the tokamak’s minor radius and is thus a scale characteriz- 
ing fluid motions transverse to the magnetic field. If a is 
taken to be of the order of the ion Larmor radius, it serves as 
a useful length scale for the description of electrostatic drift- 
wave physics in the context of the CHM equation. Hence 
(x,y,z) is a right-handed set of local poloidal coordinates 
useful for describing plasma behavior on different length 
scales within the torus. 

6. Important physical quantities and their orderings 

We next introduce the three normalized field variables 
that appear in the equations: (b,$, and ,y. The quantity 4 
represents the electrostatic potential; $ represents the paral- 
lel component of the magnetic vector potential, or the poloi- 
da1 magnetic flux; and x represents a small perturbation of 
the plasma density. The unperturbed plasma density, de- 
noted by n,, is assumed to be constant in both space and 
time. The vacuum magnetic field is assumed to be purely 
toroidal and to dominate any magnetic fields due to the plas- 
ma. Thus r,J represents the addition, due to the plasma, to the 
vacuum field. 

The dimensionless ordering parameter is E, the inverse 
aspect ratio of the tokamak: 

era/R,< 1. (2) 
The electric and magnetic fields are ordered using E to ex- 
press the presumed dominance of the vacuum magnetic 
field: the scalar and vector potentials for the electromagnetic 
fields generated by the plasma are assumed O(E) compared 
to that for the vacuum magnetic field. The plasma beta is 
O(2), a “low beta” ordering. The plasma density is assumed 
to deviate from n, by a quantity O(E). A normalized time 
coordinate r is defined by 

rE(tuA/a), (3) 
which is appropriate for the slow, shear-AlfvCn fluid mo- 
tions of interest. Here t is the usual time coordinate; vA, a 
constant, is a measure of the Alfven speed for the plasma. 
Thus all the important physical quantities are ordered in 
terms of E. 

In terms of the E orderings described above, the compo- 
nent of the fluid velocity perpendicular to the magnetic field 
is’ 

VI = EU*2XVI+ + O(2). (4) 
Here V, is the poloidal component of the normalized gradi- 
ent operator aV: 

V,d+B$ 
JY 

(5) 

where f, 9, and Z are just the appropriate unit vectors. The 
first term on the right-hand side of (4) represents the usual 
ExB fluid drift, and the factor EVA emphasizes that the fluid 
motions considered are very slow compared to the Alfven 
speed. 

C. The reduced fluid equations 
To obtain the reduced fluid equations for the combined 

system, the E ordering scheme summarized above is incorpo- 

rated into the appropriate exact, resistive MHD equations. 
To arrive at the approximate equations given below, the 
terms of lowest order in E are kept. A complete derivation of 
the equations is available elsewhere. ’ The following short 
description is provided to make the physical content and the 
mathematical symbolism more transparent. 

Before proceeding with the presentation of the fluid 
equations, we introduce two quantities that will appear quite 
often below. The first is 

UE v: $4, (6) 
the parallel component of the fluid vorticity. The second is 

JES v: $, (7) 
the parallel component of the plasma current. To make the 
fluid equations more compact, it is also useful to introduce 
the Poisson bracket defined by 

Mgl = “3ckcf&=~.VJxV g 
i3x ay ay dx 

I . 

The first of the equations is the “shear-Alfven law,” 

$+ [$&VI = -($ [$A). 

(81 

The left-hand side represents the convective time derivative 
of U the second term, [ #, U] , represents convection of U due 
to the EXB fluid drift. Acting on Jon the right-hand side of 
(9) is the operator d /dz - [ $, - 1, which is essentially B-V. 
The physical content of the right-hand side of (9) is thus 
current-driven dynamics, such as kink modes. 

The second of the equations comes from the parallel 
component of a modified Ohm’s law: 

$-+s- [&#I =w+qg- [&*I). (10) 

Here the left-hand side represents the parallel component of 
the electric field. The quantity 4 is a normalized collisional 
resistivity. The last quantity in parentheses on the right- 
hand side represents pressure effects on parallel electron 
flow. In the combined model it is assumed that electrons 
almost exclusively carry the parallel current. The constant G 
is defined by 

a2 = pz/a2, 
where 

ps’ = T,/m,,R$ (12) 
Here m, is the ion mass, T, is the constant electron tempera- 
ture in energy units, and R, is the ion Larmor frequency: 

ill = eBT/mic, (13) 
where B, is a constant that measures the strength of the 
vacuum magnetic field. In the combined model, a represents 
the marriage of RMHD and electrostatic drift-wave physics: 
a = 0 corresponds to RMHD; a - 1 corresponds to an elec- 
tromagnetic, resistive generalization of the electrostatic 
drift-wave physics described by the CHM equation. 

The last equation we consider, 

g+ [4,x1 +g- [7/u] =o, 
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is derived from the equation for electron conservation and 
quasineutrality. The second term on the left side is just E)(B 
convection of the plasma density. Electron parallel mobility 
is explicit in the last two terms: these come from the diver- 
gence of the parallel electron fluid velocity, which is essen- 
tially proportional to the parallel plasma current J. 

l l i .CONSTRUCTlONOFEXACTSOLUTlONS 
A.Framework 

Having introduced the fluid equations, we next discuss a 
method for arriving at exact solutions of them. 

We denote the partial derivative of a quantity by a sub- 
script, e.g., aU/dT= U,. Then, after rearranging the terms of 
(9) and (10) and subtracting (14) from (9), we can write 

U, + E4,u I + Jz + [J,dl = 0, (15) 
$7 + (4 - q)z + [4-qtql = 0, (16) 

and 

(U-x), + [4,~-xl =o. (17) 
This is the nonlinear system we will study. Note that we are 
taking 4 = 0 in ( 16); the resistivity of the plasma is neglect- 
ed for all that follows. 

To satisfy (17) we take 

x = g(z) + u, (18) 
whereg is an arbitrary function ofz. This is by no means the 
general solution to ( 17); it is simply a special case that satis- 
fies ( 17) with little effort. Defining 

!$=i - Q?(z), (19) 
and recasting (15) and (16) in terms of cgives 

u, + KU1 + Jz + [J,$l = 0 (20) 

and 

*, + cc - au 1, + 15 - awl = 0, (21) 

where ( 18) has been used. We note in passing that from ( 19) 
and (6), the definition of U, we have 

u= v:g, (22) 

a relation that will be used often in what follows. 
Now we have to find solutions to (20) and (2 1) . Let us 

first consider the simpler case of axisymmetric equilibrium. 

B. Axisymmetric equilibrium 
Under the assumption of axisymmetric equilibrium, 

a/&=Oand d/&=0, (20) and (21) reduce to 

[59%q - [wwj =o (23) 
and 

KtiI - a[ WI = 0. (24) 

(Here J=V:qb and U = V:g were used.) We take 

* = Y& (25) 

where yis an arbitrary constant. Then (23) and (24) reduce 
to 

(1 - J) [$5v:g ] = 0 (26) 
and 

ay[&u 1 = 0. 
In the same spirit as (25), we take 

(27) 

u= 66, (28) 
where S is an arbitrary constant. This choice has the virtue of 
satisfying both (26) and (27) with little effort. In addition, it 
imposes the constraint that 

v:c = sg. (29) 
This equation determines the shape of this equilibrium solu- 
tion with ISI - 1’2 setting the scale for the poloidal variation 
of 6 and the field variables 4, $, and x, which depend on ,$ 
through (18), (19), (22), and (25). Thus finding some so- 
lutions of the nonlinear PDE’s (23) and (24) has been re- 
duced to solving the linear PDE (29) : the troublesome non- 
linear Poisson brackets have been eliminated with the 
Ansiitze 9 = r,$ and U = SC. 

This class of solutions for axisymmetric equilibrium has 
an interesting physical interpretation. For the low beta case 
being considered, the magnetic field in the tokamak takes the 
form ’ 

B= [B,/( l+~x)]i- ~l$-&xV~$+O(t?). (30) 
The second term on the right-hand side represents the poloi- 
da1 magnetic field, BP. Operating on the relation $ = ~6 
with .sv,2xV, gives5 

Ev*2XVIq= y(Ev*2XVI(b). (31) 
Comparing this with (30) and the relation (4) for v,, one 
can see that the left side is proportional to BP and the right 
side is essentially proportional to v, . Thus (3 1) can be re- 
written more suggestively as 

vl = ( - v,/yB,)B, + O(&. (32) 
This result is similar to the fluid velocity for a nonlinear 
Alfven wave found by Walen6 However, in our case (32) 
does not describe a propagating wave but rather a stationary 
equilibrium flow. 

C. Allowing for T and z dependence 
Next we complicate the previous discussion somewhat 

with the addition of r and z dependence to g. As for the case 
of axisymmetric equilibrium, we continue to take $ = ~6 
and U = S{ and use these relations in (20) and (2 1) to ar- 
rive at the linear equations 

5, + FL = cl (33) 

and 

y& + (1 - a&gz = 0. (34) 

These two first-order PDE’s in 5 will be consistent with each 
other if we take 

1 -as=y2. (35) 

From (33) one can see that the solution for ,$ must be of the 
form 6 = l(x,y,z - ye), which corresponds to a structure 
propagating toroidally. 
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One can see that the structure is a generalization of the 
AlfvCn wave by repeating here the arguments that led to 
(32) from the relation $ = @in Sec. III B. The result is the 
same and (32) still applies with a small change: in Sec. III B 
the constant y has no obvious interpretation, whereas here it 
is the toroidal propagation velocity of the wave. The distur- 
bance in the poloidal magnetic field BP propagates along the 
direction of the toroidal vacuum field with the following fea- 
tures: if y> 0 then the perpendicular fluid velocity v, and B, 
are antiparallel and the wave propagates in the positive z 
direction; if y < 0 then vI and B, are parallel and the wave 
propagates in the negative z direction. These features are the 
same as for the Alfven wave solutions of WalCn, except that 
(in the dimensionless coordinates) Alfven waves propagate 
with speed unity, whereas from (35) the Alfvin-like solu- 
tion found above propagates with speed 1~1 = ,/m. The 
origin of the Alfven-like solution is the a-dependent term on 
the right-hand side of the parallel component of Ohm’s law 
( 10). As mentioned before, this term accounts for the effects 
of pressure on parallel electron flow, and it allows for a non- 
zero parallel component of the electric field, E,,, in the ab- 
sence of resistivity. The a -0 limit of ( 10) reduces to E ,, = 0 
and (y[ = 1, which, of course, characterizes RMHD and 
AlfvCn waves. 

In addition to the first-order equation (33)) 6 must once 
again satisfy V:c = 66 because of the Ansutz U = &$. As in 
Sec. III B, this second-order equation determines the shape 
of the solution: ISI - ‘I2 again sets the scale for poloidal varia- 
tions in 6. Thus the compatibility relation (35) is a con- 
straint on the toroidal propagation velocity yset by the phys- 
ical parameter a and the poloidal scale ISI - iL2. 

Finally, note that even though there are now two equa- 
tions to solve for 5, they are linear and therefore much more 
tractable than the nonlinear equations (20) and (2 1). 

D. A further generalization 

A more general class of solutions can be obtained with 
the Ansiitze 

q = YRwz,~) +fbwv,~) (36) 
and 

u = ~~kw,~) + m,y,m. (37) 
As before, y and S are arbitrary constants; f and h are arbi- 
trary functions. As in Sets. III B and III C, the physical 
content of the solutions resulting from (36) and (37) will be 
examined; but this is deferred until the end of Sec. III F, 
when the form of the solutions will be more explicit. 

Let us proceed with the construction of solutions. First, 
note that 

J=y&T+yh+Vb= (38) 
from the definition J= V: $, (36), and (37). Using (36)- 
(38) in the nonlinear equations (20) and (2 I), one obtains 
the following two equations linear in 6: 

i5 -I- YL + L ~h+yf-$Vy] 

=(l/s,{[f;yh+V2~]-(yhfV2f).-hh,} 
(39) 

and 

4-T + y6z + [&-!-$@f+ah] 
= (l/y) (ah, - [&ah 1 -A) . (4-O) 

Note that at this stage these equations are as general as (20) 
and (2 1 ), where x has been eliminated in favor of U with the 
use ofx = g(z) + U, ( 18)~j’and hare still arbitrary at this 
point. 

Next we require that these two equations be redundant. 
This is by no means a necessary constraint, and, in fact, we 
have found a class of solutions where (39) and (40) are not 
redundant. However, as will be made apparent below, re- 
quiring redundancy reduces (39 ) and (40) to a truly linear 
PDE for g, which still leads to interesting solutions. 

After some manipulation the conditions for redundancy 
are found to be 

y= (1 -aS)/y, (41) 
vy= - (S/y)p(z,7), (42) 

[ 1 f,th -S[h--Sp(z,r)l,+(~/-h),=O. 

(43) 
Here p is an arbitrary function of z and 7. Once again 

(41) will be a constraint on the toroidal propagation velocity 
E it is the same as (35) in Sec. III B. The application of these 
conditions reduces ( 39) and (40) to the single equation 

fr + yJ’= -I- [$,yf+ ah 1 = (aNyIp, - Cyf+ ah I,, 
(4-4) 

a linear, first-order PDE in 5. From U = V:g and 
U = 86 + h, we obtain the additional relation 

V$$=& +h. (45) 
Again, one can interpret ISI - “2 as setting the scale for poloi- 
da1 variations in 6. Thus the two nonlinear equations in <, 
(20) and (2 1 ), have been transformed into the two linear 
equations (44) and (45 ) ; these linear equations in 6 are sup- 
plemented by the three redundancy conditions, (41)-( 43). 

Next we must ensure that (44) and (45 ) are compatible 
with one another. For convenience we introduce the opera- 
tor 2 defined by 

~2’~ - Y-$ + [yf+ ah;]. (46) 

Operating on (44) with V: and making use of (45) and 
(46), one obtains the compatibility condition 

&L + h, -V:L?S:= -Vf(yf+ah),. (47) 

Introducing the commutator (V: ,Y ), defined by 

(V&+.Y) =v:&.!Y - ,Ipv:, (48) 

and using (45 ), one can rewrite (47 ) in the more interesting 
form, 

Qr + h, - 2(&C + h) - (V:,Y’)f 

= -V,2(yffah),. (49) 

834 Phys. Fluids B, Vol. 4, No. 4, April 1992 PrahoviC, Hazeltine, and Morrison 834 

Downloaded 17 Dec 2009 to 128.83.61.179. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



In the interest of simplicity, we impose the constraint 
that 

(%-qeo, (50) 
for every “well-behaved” function 6. For compactness we 
define 

HE yf + ah. 

Then 

(51) 

2?= - ,g, [H;]. (52) 

The - y(G’/Jz) term of L? clearly commutes with Vf ; thus 
the crucial issue is to see what 

(V:,EK*l)~=V:[H,gl- [HJQ] =o (53) 
requires of H. After some manipulation, ( 53 ) reduces to 

- ( Hx, + HYW )6x + (Hxxx + Hx,, > .cy 
+ 2(Hxx - Hyy Xx, - 2H,,L + 2H,& = 0. (54) 

Since g is arbitrary, each coefficient of a partial derivative of 
6 must vanish independently of the others, resulting in four 
PDE’s that H must satisfy: 

(ffxx +H,y), = (V:H), =Q (55) 

(Hxx +H,y). = (V:H). =Q (56) 

Hx, - H,, = 0, (57) 
and 

Hxy = 0. (58) 

These require 

H = &z(z,T)(x~ t-y’) + b(z,~)y + C(Z,T)X + d(z,~). 
(59) 

Here a,b,c, and d are arbitrary functions ofz and r. Note that 
f can now be eliminated in favor of h and H through the 
relation 

f= (l/y)W-ah), (60) 
which follows directly from (5 1). 

With (50) and (51), the first-order equation (44), and 
the explicit definition of 2 as given by (46), we can reex- 
press (49 ) as 

[(aS*/y)p+yhl,+(h--H+V:H).=y[~hl. 
(61) 

This relation can be further simplified with the application 
of (60) and the redundancy conditions (41) and (43). The 
result is 

V:H, = - (S/y)p,, (62) 
a much more compact form for the compatibility condition. 

There are two more PDE’s to consider in addition to 
those for 6. Using (60) and (62) in the redundancy relations 
(42) and (43), we obtain the following pair of equations for 
h: 

aV:h=V:H+6p (63) 
and 

h, - sYh = - (y?‘;H--H).. (64) 

The compatibility of these equations is treated in much 
the same way as for thegequations: taking V: ofboth sides of 
(64) and making use of (50), (62), and (63) in the result, 
one obtains the condition 

V:H, = - (S/y)p,. (65) 
It is more enlightening to rewrite (62) and (65) together, 
using 

VfH = ~u(z,T), (66) 
which follows from the definition of H. Doing this, one ob- 
tains the complementary relations 

% = - (WY)P, (67) 
and 

2a, = - (S/y)p,. 
From these equations it is easily found that 

a=a,(z+r)+a*(z-7) 

and 

(68) 

(69) 

P’ - (2y/S)[a,(z+7) -$(z--)l SK, (70) 
where K is an arbitrary constant and a, and a2 are arbitrary 
functions. Thus consideration of the compatibility of the 
PDE’s for h and 6 has yielded information about the struc- 
ture ofp and a and the relationship between them. 

We next distill our four PDE’s for 6 and h to two essen- 
tial equations for 6 alone. We first collect the four equations 
for g and h. Recall from (45) that the second-order equation 
for 6 can be expressed as 

h = V:g - SC. (71) 
Using (46), (5 1 ), and (67), we can rewrite the first-order 
equation for 6, (44), as 

(T-~{= - (2aa+H),. (72) 
With (66) and (70) the second-order relation for h, (63)) 
becomes 

aV:h = 2( 1 - y)a, + 2( 1 + y)a, + SK. 

The first-order relation (64) becomes 
(73) 

h, - e’ifh = - (2742 - SH)., 

with the use of (66). 

(74) 

Now we can eliminate h from (73 ) using (7 1) to obtain 

aVf(VZ-&) =2(1 -yb,+2(1 +yb,+& 
(75) 

a fourth-order relation for {. With the help of (7 1) and (72)) 
it is easy to show that (74)) in fact, reduces to an identity. We 
also note that it is not difficult to directly ascertain that (72) 
and (75) are compatible with each other as they stand; no 
further constraints are needed to ensure their compatibility. 

At this point we have only to integrate the linear equa- 
tions (72) and (75) for { to obtain a complete, explicit solu- 
tion for our original system of nonlinear fluid equations. The 
shape, the spatial variation of (is determined by (75); in Sec. 
III F, the integration of the first-order PDE (72) is consid- 
ered in some detail to determine how solutions propagate. 
The following algorithm summarizes the results of this sec- 
tion. 

835 Phys. Fluids 6, Vol. 4, No. 4, April 1992 Prahovib, Hazeltine, and Morrison 835 

Downloaded 17 Dec 2009 to 128.83.61.179. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



E. An algorithm for constructing solutions 
( 1) Choose values for the constants S and a and thus 

determine y from the relation 

y = c3iJc-a, (76) 
which follows from (41). Here n= & 1. In Sec. III F, it will 
be seen that y is the toroidal propagation velocity of solu- 
tions. As mentioned after (45), ]S[ - “’ sets a scale for the 
poloidal variation of c. The parameter a represents the cou- 
pling of RMHD and CHM-equation physics, and it can take 
values from 0 to - 1; recall ( 1 I)-( 13) and the discussion 
following them. 

(2) Specify 

H=j[a,(z+~) +a,(z--dl(~~ +y*) 
+ b(.w-)y + c(z,~)x + d(z,~) (77) 

by choosing the functions a,, a,, 6, c, and d. This form for H 
is obtained after incorporating into (59) the information we 
obtained about the function a from (67) and (68). The role 
that H plays in determining the propagation of solutions and 
its physical significance will be discussed in Sec. III F. [In 
fact, (81) below shows that H contributes directly to the 
poloidal flux +. ] 

(3) Choose a value for the constant K and then find 6 by 
integrating 

l, + am& + l-&HI = - @a[~, +a,1 + HI, 
(78) 

and 

aV:(V:p-S{) =2(1 -aJI--ZE2T)a, 

+2(1 +&-=+~,+~K. (79) 
Equations (78) and ( 79) follow from (72), (75), and (76). 
Equation (79) determines the shape of solutions. In Sec. 
III F the integration of (78) is carried out explicitly; there it 
will be seen that (78) determines the propagation of solu- 
tions. 

(4) Choose the function g(z). The solutions for the field 
variables 4, $, and x readily follow: from ( 19)) 

#=l+cug; (80) 

from (36), (60), and (71), 

$ = (l/d-) (f - aV:l + H >; (81 

and from (18) and (22), 

x=g+ v:g. (82) 

Other physical quantities of interest are the vorticity, 

u= Of& (22) 

and the parallel current, 

J= uJmV:g + 2(a, - a,) - (S/qfi?G)~, 

(83) 

Writing the homogeneous form of ( 89) and (90) in 
terms of matrices, we have 

d x 0 x 
ZY= [I [ dz, + YTJ-) - a(z, + p-,7) 0 1 [I Y * 

(91) 

It is interesting to note that if we define a position vector 
r=& +vj; then (91) can be written in the form 

dr 
- = rxk(z, + yT,T), dr 

which follows from the definition Jr V: $, (8 1 ), and (79). which describes a gyration in the (x,y) plane with a time- 
Next the integration of the first-order equation (78) is dependent frequency a(z, + yr,r). Consequently, it is not 

considered. surprising that a fundamental matrix for (91) is 

F. Integration of the first-order equation for 6 
We integrate the first-order PDE for L$ (78) by the 

method of characteristics. The characteristics are deter- 
mined by integrating the following system of ODE’s asso- 
ciated with (78): 

2% = H 
dT 

- a(z 7)y + b(z 7) Y- ’ , t (84) 

dv -= 
dT 

-H, = - a(z,T)x - c(z,T), (85) 

dz - = y, d7. (86) 

and 

df -= 
d7 

- (2m + H),. (87) 

Relation (76) has been used to make (86) more compact for 
the sake of the work to follow; a is given by (69). A dynami- 
cal picture showing that these characteristic equations deter- 
mine how solutions propagate is given toward the end of this 
section; for now we proceed with their integration. 

We can readily integrate (86) to find 

z = zo + p-, (88) 

where z, is a constant of integration. 
We can use ( 88) to replacez wherever it occurs in ( 84), 

(85), and (87) to facilitate the integration of these equa- 
tions. For the moment let us focus upon ( 84) and (85). 
From (84) we obtain 

dx - = HY = a(z, + YT,T)Y f b(z, + ~T,T); 
dr 

(89) 

from (85), 

dv -= 
d7. 

- H, = - a(z, + ~T,T)X - c(zo + YT,T). 

(901 

Note that this pair of equations is Hamiltonian in structure, 
with H playing the role of the Hamiltonian function that 
governs the dynamics ofx and y. This Hamiltonian structure 
has an interesting dynamical consequence for the propaga- 
tion of solutions. 

836 Phys. Fluids 5, Vol. 4, No. 4, April 1992 Prahovib, Hazeltine, and Morrison 836 

Downloaded 17 Dec 2009 to 128.83.61.179. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



1 

cos 
(I 

z 

0 
a(z, + yf,r’)di) sin( I,‘a(zo + y+,#)&?) 

- sin 
L 

fC 
7 

\ Jo 
a(z, + yr’,r’W) cos( fTa(zo + yT~,T~)&-’ 

1 \ Jo > I 
’ 

(93) 

which reduces to the identity matrix at r = 0. gian description of the propagation of the solution 
With the fundamental matrix l.r. at our disposal, we can l,, (xo,yo,zo); l,, (xo,yo,zo) itself supplies the corresponding 

write the solution to (89) and (90) as Eulerian description. 

r = p(7;zo)Nl) 
+ 

+ cL(vo) p - ’ ( r’;z, ) f ( 7’;zo + y7’) d7’. (94) 
Here 

X 
r= [I Y ; 

(95) 

r(0) = xo , [ 1 Yo 
(96) 

where x0 and y0 are arbitrary constants of integration; and 

f(m) + yd = [ 
Mzo + y7,7) 

- c(zo + y7,7) I * (97) 

To construct the most general solution of the homoge- 
neous form of (78), we need three functionally independent 
first integrals. One of these first integrals is 

Zo(X,Y,Z,~) = z - yr, (98) 
which follows from (88). Two additional first integrals are 

= p-‘(qz- y7) X [I Y 

s T - ~-1(7’;z--Y7)f(7’;Z--[7--‘])d7’, (99) 
0 

which follow from (94) upon replacing z, with z - yr. The 
general solution to the homogeneous form of (78) is thus 
,$,, ( xo,yo,zo), an arbitrary function of the first integrals. 

Here one can see the significance of the characteristic 
equations (84)-( 86) for x, y, and z. The function 
c,, (x,,y,,z,) represents a structure propagating in a rather 
complicated way. For concreteness, suppose that at r = 0, 
c,, represents a function that is defined over some finite vol- 
ume of space, V,, and that at r = 0 some point in V, has the 
coordinates (xi,yi,zi ). The value of c,, at this point is 
,$h (xi ,y, ,zi ) =g,, (i) , a constant. The relations 
x~(x,Y,z,~) = x,, Y~(x,Y,z,~) = Y,, and z~(x,Y,z,~) = zi de- 
fine a curve parametrized by r-the curve is a solution of 
(84)-( 86) for the initial conditions (xi,yi,zi ). Along this 
curve the value of c,, remains gh (i). Thus each point in V, 
serves as an initial condition for a curve along which c,, is 
constant, and thus the characteristic equations (84)-( 86) 
determine a flow in (x,y,z) space that maps each point of V. 
and its corresponding value of c,, into another volume at 
time 7, V,. As time varies, the flow determined by (84)- 
(86) carries the volume V, along with it and may deform the 
shape of V, in very complicated ways. This is just a Lagran- 
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Some qualitative information on the propagation of gh 
follows from the Hamiltonian structure of (89) and (90). 
These equations describe motion in the poloidal plane 
z = z, + yr-this plane is moving in the z (toroidal) direc- 
tion with speed y. Equations (89) and (90) provide a La- 
grangian description of a flow confined to this poloidal 
plane: their solution, given by (94), maps the initial condi- 
tion (x,,y,) into the point [x, ( r) ,y( 7) 1. Let So be an area in 
the plane at time r = 0; then each point of this area will be 
mapped into another area S, at time r. Now the Hamilto- 
nian structure of (89) and (90) suggests that one interpret x 
as a coordinate and y as the momentum conjugate to x, so 
that the poloidal (x,y) plane is also a phase space. Thus by 
Liouville’s theorem the flow in the poloidal plane preserves 
area: So and S, span the same area although, in general, they 
may not share the same shape because the flow might deform 
it. 

Consequently, this also guarantees that the three-di- 
mensional flow mapping the volume V, to I’, in (x,y,z) 
space preserves volume: as time r varies, any poloidal cross 
section of V, may undergo area-preserving deformations as 
described in the paragraph above; V, does not suffer any 
elongations or compressions in the z direction because the 
motion in that direction is a simple rigid translation at con- 
stant speed y. 

Finally, we obtain the general solution 6 for the inhomo- 
geneous equation (78). Equation (87) determines how c 
will vary with r along a characteristic curve determined by 
(84)-( 86); 6 is not generally a constant along such a curve 
because the right-hand side of (87) is not necessarily zero. 
Substituting the solutions for x, y, and z found in (88) and 
(94) into the right side of (87) leaves d< /&- equal to a func- 
tion of the initial conditions (xo,yo,zo) and r along a charac- 
teristic curve. Integrating the resulting expression with re- 
spect to r along such a curve gives 

!c = CL (Xo,YoJo) 

- 
s 

haa + m, ~X(XO,Y0,~'),Y(XO,YO,d),Zg + ?+,+)I@. 
0 

(100) 

The first term on the right side is simply a constant of inte- 
gration, an arbitrary function of the initial conditions. Equa- 
tion ( 100) is the Lagrangian form of the general solution for 
(78). One recognizes the first term on the right side as the 
general solution for the homogeneous form of (78) and the 
second term as a “particular integral” that satisfies (78). 

We can now comment on physical characteristics of the 
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more general class of solutions discussed in Sec. III D, and 
we can compare them with the solutions found in Sec. III C. 
First, (81) is rewritten using the relations (80) and (82) for 
4 and x to obtain 

$= (W)(#-q+m, (101) 

an explicit relation between $ and the other fields Q, and x. 
As was done in Sets. III B and III C, EU~~XV~ is applied to 
both sides of ( 101) to obtain the following relation for BP: 

- (yuA/&-Pp = v, + o~,Gxv, ( - ax + H) + WC?). 
(102) 

Here BP = - eB,%XV, 9, from (30), and (4) for vi have 
been used. Clearly for this class of solutions, BP is not neces- 
sarily proportional to v, . It follows from the modified Ohm’s 
law ( 10) that the CZJJ term characterizes pressure effects on 
parallel electron flow. The H-dependent term does not van- 
ish in the RMHD, (2: --+ 0 limit. It is, in fact, H that allows for 
poloidal motion of the solutions-it is the Hamiltonian func- 
tion that governs the poloidal dynamics, as was pointed out 
in the discussion of the characteristic equations in Sec. III F. 
Thus the solutions characterized by ( 102) are quite different 
from the AlfvCn-like (a # 0) and AIfvCn ((r = 0) waves dis- 
cussed in Sec. III C because they do not simply propagate 
toroidally (in the z direction) at constant speed and because 
BP is not necessarily proportional to v, , even for the RMHD 
limit. 

Another comment about H: from ( 101) and ( 102) one 
sees that H makes a contribution to $ and BP. In fact, from 
(84) and (85) the poloidal velocity of a particle moving 
along a characteristic curve is - 4)< V, H. Thus H has the 
dual distinction of determining poloidal propagation char- 
acteristics and determining a part of the poloidal magnetic 
field as well. 

G. Examples 
Here we consider some special cases of ( 100) obtained 

by specializing a, b, c, and d in H of (77). Our choices for 
these four functions will determine the structure of the first 
integrals x0 and y. through (99). For the cases we consider, 
their structure will be easy to discern and will give some 
insight into the behavior ofg. How BP will propagate in each 
case is pointed out to make the discussion more physically 
concrete. To conclude, a physical interpretation for the 
terms of H and the role they play in determining how solu- 
tions propagate are discussed as well. 

1. Case (i) 
The first case we consider is a rather drastic simplifica- 

tion of the general result (99): we take a, 6, c, and d ail to be 
zero, getting rid of H entirely. Then we are simply left with 

x0=x and y,=y. (103) 

Thus, in this case, the general solution for 4 is of the form 

Lf = &X,YJ - VI, (104) 

which corresponds to a structure propagating toroidally 
with speed y. 

In this case (8 1) reduces to 

*= (w)(!$-- a%6 ) CWJ, - yr’r). (105) 
The arguments in parentheses stress that 3 moves in exactly 
the same way as 6: surfaces of constant poloidal flux simply 
propagate in the z direction with constant velocity y. Apply- 
ing BP = - e&&V, $J to ( 105) shows that the distur- 
bance BP also propagates in the same way: if we follow a 
point moving along a characteristic curve, B, at the point 
will be a constant vector. However, from ( 105) and the ar- 
guments given at the end of Sec. III F, the solution is not 
necessarily an Alfven-like wave because, in general, BP will 
not be proportional to v, for this case. 

2. Case (ii 
Next let us take a to bea nonzero constant, still keeping 6, 

c, and d zero. Then 

xo=xcosar-ysinar (106) 
and 

y,=xsinar+ycosa7. (107) 
If we introduce the poloidal polar coordinates r and 8 such 
that 

x=rcos8 and y=rsin0, (108) 
then (106) and (107) may be written as 

x,=rcos(O+a~) and yo=rsin(8+ar). (109) 

Consequently, the general solution for 6 can take the form 

5: = g( r,B + a7;z - ~7). (110) 
Thus f; represents a structure that rotates poloidally with 
speed a, in addition to propagating toroidally. 

Now consider the behavior of BP for this case. With 
regards to propagation there are two distinct pieces of q: 
.$ - crV:g% which propagates according to the characteristic 
equations, and H = $a(~* + y2), which is static. Thus 
- e&f~V, ( l/y)H is a static component of BP, whereas 
- &,fXV, (l/y) (g - crV:l) is the part that will propa- 

gate in the way described below. 
For convenience, define 

G(xo,yo,zo)~(l/y)(~-aV:~), (111) 

where the Cartesian forms ( 106) and ( 107) are used for the 
first integrals x0 and yo. Then 

[ 
( - &xV,G), 
( -2xV,G), = 1 [ 

cos a7 sin ar G, 
- sinar cosar I[ 1 -G, ’ 

(112) 

Here the subscripts x and y on the left side denote the x and y 
components of - kXV, G, and the subscripts 1 and 2 on the 
right side denote the partial derivatives of G(xo,yo,zo) with 
respect to its first and second arguments. Thus G2 and G, are 
functions of the first integrals, and consequently they are 
constant along the characteristic curves, defined by 

x [I [ cos a7 sin a7 x0 = 
Y - sinar cosar I[ 1 y. (113) 
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z = z, + yr, (114) 
where x0, yo, and z, are now constants, the initial conditions 
for the curve. It is clear that the curve represented by ( 113) 
and ( 114) is a helix. If a > 0, then the helix is left handed; if 
a < 0, the helix is right handed. For definiteness in what fol- 
lows, it is assumed that a > 0. 

The behavior of the vector - %XV, G along a charac- 
teristic curve can be described as follows. First, picture a 
point moving along the curve as a function of time according 
to ( 113) and ( 114). Now picture a set of poloidal x’ and y’ 
axes with their origin at this point; they move along with the 
point so that the x’ axis is always parallel to the fixed x axis 
and they’ axis is always parallel to the fixed y axis. Then 
from ( 112) one sees that relative to these primed axes, the 
vector - fxVI G at the moving point will rotate clockwise 
with frequency a. The vector maintains a fixed magnitude 
because it is moving along a characteristic curve and thus the 
components G, and - G, in ( 112) are constants. 

Now note that 

-PxV,H= -f><a(xli+ti) =a(~$-x9) (115) 

defines a vector field whose flow lines are circles centered 
about the origin in the poloidal (x,y) plane. The vectors 
tangent to a given circle point in the clockwise sense, and 
they are all of the same magnitude. For a point moving along 
a characteristic helix, the vector - &V, H always points 
in the clockwise direction and has a constant magnitude be- 
cause as the point moves, it is always at a fixed radial dis- 
tance dm from the z axis in the poloidal plane. Thus 
the behavior of the total poloidal field, 

B, = - dI,fxV, [G + (l/y)H I, (116) 
along a characteristic helix is the same as for - fxV,G 
alone: relative to the x’ and y’ axes, BP has a fixed magnitude 
while it rotates with frequency a. 

3. Case (iii) 
We take a, b, c, and d ali to be nonzero constants. Then 

we lind that 

x,=(x+t)cosar-(y++)sina-r-c (117) 

and 

yo=(x+t)sinar+(y++)cosor--$ (118) 

We can drop the constants at the end of each of these rela- 
tions to obtain another perfectly good pair of first integrals, 

,E,= [x+ (c/a)] COSUT- [y+ (b/a)] sinar (119) 

and 

j&o= [x+ (c/a)] sinar+ [yt (b/a)] cosm. (120) 

Thus we see that as for case (ii) above, the general solution 
for 6 represents a structure exhibiting poloidal rotation with 
speed a, except that now the rotation occurs about the origin 
with (x,y) coordinates ( - c/a, - b /a). To make this more 
explicit, we introduce the polar coordinates r, and 8,, such 
that 

x + (c/a) = rl cos e, and y + (b/a) = rl sin 0,. 
(121) 

Then the general solution for LJ will take the form 

s = &,,B, + QT,Z - p-1. (122) 
For this case the behavior of B, is exactly the same as for case 
(ii), except that now the characteristic helices have their 
symmetry axis passing through ( - c/a, - b /a) rather than 
the origin in the poloidal plane. 

4. Case (iv) 

If we take a = 0 and b, c, and d nonzero constants, then 
we obtain the first integrals 

x0=x-67 and yo=y+c7: (123) 
Therefore the general solution for 6 takes the form 

it = 4(x - bra + cr,z - yr), (124) 
representing a structure that propagates rectilinearly 
through space with the velocity bf - c9 + @. Thus if we 
follow a point moving along a characteristic curve, B, at the 
point will be a constant vector. 

For the special cases considered above, a physical inter- 
pretation can be given to each term of H. We examine the 
form of H given in case (iii), 

H=Ja(x2+y2) +by+cx+d, (125) 
because it has all the terms considered in the various cases. 
Consider the terms quadratic in x and y: 

- WV, [ ;a(x* + y’) ] = a(fi - xf); (126) 

rq$a(x2+y2)] =2a. (127) 

These terms thus contribute the static field (126) discussed 
in case (ii) to BP; ( 127) shows that the source of this contri- 
bution is a static, uniform toroidal current density. Now 
consider the remaining terms in H: 

- WV, (by + cx + d) = bf - cf; (128) 

V: (by + cx + d) = 0. (129) 

These relations show that ( 128) is a static vacuum field con- 
tribution to B, in cases (iii) and (iv). All the above com- 
ments, appropriately generalized, apply when a, b, c, and d 
depend on z and r as well. 

The simple cases we have considered above are suffi- 
cient to show one how the parameters a, b, c, and d deter- 
mine the structure of the general solution for 6, even when 
one generalizes to the case where a, 6, c, and d depend on z 
and 7. The parameter a determines the speed of rotation 
about some origin in the poloidal, (x,y) plane; b and c deter- 
mine the center or origin for that poloidal rotation. In case 
(iv) with only a = 0, the finite shift becomes a rectilinear 
propagation with speed and direction determined by b, c, 
and y. 

Note that for the cases we have considered, with a, b, c, 
and d all constants, the first-order equation for 5 given by 
(78) is homogeneous: the source term - (2aa + H), = 0. 
Thus the remarks of the preceding paragraph-appropri- 
ately generalized for a, 6, c, and d depending on z and r- 
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only apply to the homogeneous part ch (xo,yo,zO) of the gen- 
eral solution for f given in ( 100). Note also that d plays no 
role in determining the structure of the homogeneous solu- 
tion-d only appears in the source term - (2cru + H) r of 
(78). Thus d only plays a role in determining the particular 
integral for (78). 

The next step is to integrate the fourth-order equation 
(79) to completely determine f. We prefer to defer this to a 
future publication. 

IV. SUMMARY AND DISCUSSION 
We have constructed exact analytic solutions to a sys- 

tem of nonlinear plasma fluid equations that combine 
RMHD and CHM drift dynamics. (The resistivity of the 
plasma was neglected: 4 = 0. ) In Sec. III A, with the Ansatz 
( 18) for the relation between the density perturbation x and 
the vorticity U, the problem of finding exact solutions was 
reduced to the integration of the two nonlinear equations 
(20) and (21) . Their integration was further reduced to the 
integration of linear equations for the cases discussed in Sec. 
III; these cases are summarized below. 

In Sec. III B, a class of axisymmetric equilibrium solu- 
tions describing stationary flows was found with the Ansatz 
$ = y[and U = Sf. The spatial behavior of these solutions is 
constrained by the linear, second-order PDE (29). The rela- 
tion for the poloidal flux 3 = & requires that B, be propor- 
tional to v, , as expressed by (32). 

In Sec. III C, Alfvtn-like wave solutions were found by 
relaxing the constraints of axisymmetry and equilibrium. 
Their shape is again constrained by the second-order equa- 
tion (29)) but their propagation is determined by the linear, 
first-order PDE (33). These solutions behave like Alfven 
waves (with B, proportional to v, ), except for the toroidal 
propagation velocity 3: constrained by (35). 

Next, in Sec. III D, the solutions found in Sec. III C 
were generalized by adding arbitrary functions to the forms 
$ = ycand U = SC to obtain (36) and (37). The integration 
of (20) and (2 1) was again reduced to solving two linear 
equations-the fourth-order PDE (79) that determines the 
spatial behavior of solutions and the first-order PDE (78) 
that determines how they propagate. In Sec. III F we inte- 
grated the first-order equation explicitly by solving the asso- 
ciated characteristic ODE’s to obtain a Lagrangian descrip- 
tion of the propagation of solutions. From this and the phys- 
ical implications of relation (8 1) for $, it was found that 
these solutions are distinct from the Alfvtn-like solutions 
found in Sec. III C-they do not, in general, simply propa- 
gate in the toroidal direction at constant velocity y, and B, is 
not necessarily proportional to v,. These traits were made 
more explicit in Sec. III G, where some simple, special-case 
solutions to the first-order PDE and the behavior of B, along 
the corresponding characteristic curves were considered in 
detail. 

We conclude with a discussion of the limitations of our 
method for constructing solutions and where it might be 
modified to obtain classes of solutions distinct from the ones 
thus far presented. 

First of all, one should note that the nonlinearities in the 
fluid equations-( 15)-( 17) in Sec. III A-exhibit a special 
structure: they exclusively take the form of the Poisson 
brackets defined by (8) involving the iield variables 4, $, x, 
and U, and J. The key feature of our method is the elimina- 
tion of these nonlinear Poisson brackets, leaving only linear 
equations to integrate. Thus this approach is by no means a 
general method of constructing solutions for any given non- 
linear system of equations. 

The starting point for the construction of the more gen- 
eral solutions in Sec. III D is the AnsStze ( 18)) (36)) (37)) 
which reduce the nonlinear system ( 15)-( 17) to two equa- 
tions linear in 4, (39) and (40). However, the way we have 
chosen to proceed after this starting point is not unique; 
there are, at least, two principal points in the development 
that can be modified. First, recall that having ( 39) and (40) 
be redundant is a matter of choice: it is possible to construct a 
class of solutions distinct from the one hitherto discussed 
without this condition. Next, note that after imposing the 
redundancy of (39) and (40), having the commutator van- 
ish in (50) is also a matter of choice. Relaxing this constraint 
will result in another distinct class of solutions. 

As mentioned before, the Ansiitze (36) and (37) are 
generalizations of the forms J/ = ~6 and ?J = Sg, which were 
used to solve the system ( 1 S)-( 17) under the assumption of 
axisymmetric equilibrium in Sec. III B. This particular class 
of equilibrium solutions, which serves as the origin of our 
construction, is an especially simple case of the equilibria 
possible for the nonlinear system.5 To serve as the starting 
point for the construction of other propagating solutions, 
perhaps even more interesting equilibrium solutions could 
be generalized by adding arbitrary functions that relax the 
constraints of spatial symmetry and equilibrium. 

Finally, we note that it might also be interesting to inves- 
tigate how our means of constructing solutions fits into the 
framework of symmetry (Lie group) methods for the inte- 
gration of systems of PDE’s. Perhaps the explicit application 
of these methods to the nonlinear system we have considered 
would also yield physically interesting solutions. 
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