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The interaction of two near-marginal tearing modes in the presence of shear flow is studied. To 
find the time asymptotic states, the resistive magnetohydrodynamic (MHD) equations are 
reduced to four amplitude equations, using center manifold reduction. These amplitude 
equations are subject to the constraints due to the symmetries of the physical problem. For the 
case without flow, the model that is adopted has translation and reflection symmetries. 
Presence of flow breaks the reflection symmetry, while the translation symmetry is preserved, 
and hence flow allows the coefficients of the amplitude equations to be complex. Bifurcation 
analysis is employed to find various possible time asymptotic states. In particular, the 
oscillating magnetic island states discovered numerically by Persson and Bondeson [ Phys. 
Fluids 29, 2997 ( 1986) ] are discussed. It is found that the flow-introduced parameters 
(imaginary part of the coefficients) play an important role in driving these oscillating islands. 

I. INTRODUCTION 

Resistive tearing instability is important in many 
aspects; it concerns problems such as confinement in labora- 
tory plasmas and conversion of magnetic energy to thermal 
and kinetic energy. The nonlinear evolution of a single tear- 
ing mode has received much attention.‘-’ Saramito and 
Maschke6 applied bifurcation theory for compact operators 
to the general problem of the nonlinear solution of the three- 
dimensional (3-D) incompressible viscoresistive magneto- 
hydrodynamic (MHD) equations, and they proposed that 
there exists a saturated tearing mode state when S, (the 
magnetic Reynolds number) exceeds the critical value, 
where the original equilibrium loses stability. Recently, 
Grauer’ has studied the nonlinear interactions of two tear- 
ing modes near marginal stability. Applying center manifold 
reduction, the resistive MHD equations were reduced to 
four amplitude equations, which are significantly easier to 
analyze. Compared with the usual small-amplitude expan- 
sion, center manifold expansion has two advantages.* First, 
the center manifold has been rigorously shown to be locally 
attractive,“” i.e., any solutions that stay sufficiently close to 
the original equilibrium must eventually converge to the 
center manifold. Thus local time-asymptotic states, such as 
steady states and periodic solutions, must lie in the center 
manifold. Here, “local” means that the solution is close to 
the original equilibrium. Second, unlike the usual small-am- 
plitude expansion in which the dependence upon small pa- 
rameters must be specified, in center manifold expansion the 
order of magnitude of all variables is naturally expressed in 
terms of the (small) distance from the marginal equilibrium 
state. However, the calculation of the coefficients in the cen- 
ter manifold reduction is as tedious as the small-amplitude 
expansion and usually numerical evaluation is required. 

If the model considered possesses certain symmetries, 
the reduced equations can be discussed in general terms 
without knowing the coefficients. Even though the presence 
of symmetry may complicate the problem by forcing the 
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marginal modes to have a multiplicity larger than unity, it 
can greatly simplify the reduced equations by selecting only 
the terms satisfying symmetry constraints.“*‘2 Recent stud- 
ies of mode interactions for systems possessing symmetries 
have been very successful in explaining complicated behav- 
ior in some experiments; for example, Taylor-Couette 
flow,13 and Faraday’s experiment.14 The model used by 
Grauer possesses O(2) symmetry: rotations, elements of 
5’0(2), act by translation of X-+X+ X0, and reflections, 
elements of Z( 2)) act by flipping X-+ - X, where X denotes 
a coordinate of the system. This O( 2) symmetry is common 
for systems with circular or periodic slab geometry. Features 
of O(2) symmetry-constrained amplitude equations have 
been well studied by Dangelmayr,15 Armbruster et uZ.,‘~ 
and many others. “~‘2 In these references it is shown that 
such systems can saturate at various types of symmetry- 
broken states depending on the parameter domain. The pre- 
dicted solutions of mixed mode and traveling and standing 
waves have been observed in Grauer’s simulations.’ 

In many circumstances the plasma equilibrium is not 
static. For example, in recent tokamak experiments, shear 
flow plays an important role in the transition from low- to 
high-confinement mode. When shear flow is present, the re- 
flection symmetry in Grauer’s model will be broken, while 
the translation symmetry survives. Consequently, shear flow 
is expected to affect the nonlinear evolution of tearing 
modes. In recent numerical simulations, based on straight- 
cylinder-reduced magnetohydrodynamic equations, Pers- 
son and Bondeson” have discovered nonlinear oscillating 
island states for the evolution of tearing modes, which are 
driven unstable by shear flow. They also found that the oscil- 
lating island states remain when the spectrum is limited to 
include only the modes m/n = 2/l and 4/2. 

In the present paper, we also study the nonlinear evolu- 
tion of tearing modes in the presence of shear flow. We treat 
a slab geometry model in which the equilibrium profile can 
be adjusted so that two modes with wave numbers a and 2a 
are near marginal, while other modes are stable. Thus the 
nonlinear evolution in this model is dominated by the inter- 
action of modes a and 2a. The slab geometry is adopted for 
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simplicity and to be consistent with our previous linear cal- 
culations.‘8~‘9 Since magnetic reconnection occurs only in a 
very thin layer, slab geometry provides a physical picture for 
understanding more complicated geometries, such as cylin- 
drical and toroidal. To find the asymptotic states of the non- 
linear interaction, the dissipative MHD equations are re- 
duced to four amplitude equations, using center manifold 
reduction. The model that we will use is similar to the one 
used in Ref. 7; however, the breaking of reflection by the 
presence of shear flow allows the coefficients of the reduced 
equations to be complex. Thus the dynamics of the reduced 
amplitude equations is more complicated. Employing bifur- 
cation analysis, various structures in addition to the oscillat- 
ing island states are discovered. Also the roles of the new 
parameters introduced by flow (imaginary parts of the coef- 
ficients) are identified. 

In Sec. II, the basic equations are described, and the 
linear results are briefly reviewed. Section III is devoted to 
the center manifold reduction, in light of the constraints of 
symmetry on the reduced equations. Solutions of the re- 
duced equations are discussed in Sec. V. Finally, Sec. VI 
contains a discussion and a summary. 

II. BASIC EQUATIONS AND LINEAR PROBLEM 
We start from the incompressible dissipative MHD 

equations 

g+VVV= - (F’:/p)VP+ (VXB)XB+S;‘V~V, 

dB 
dt= 

- Vx [S, ‘(VxB)] + VX(VxB,, (1) 

V-V = 0, V*B = 0, 

I 

where all quantities are dimensionless. Space is scaled with 
a, the width of the current sheet; time with the AlfvCn time 
ra = B/e, where B is a characteristic measure of the 
magnetic field; and velocity is scaled with V, z a/r,. The 
quantities S, = 4ra2/vrA s 1, S, = a2/vrA > 1, where 7 and 
Y are, respectively, the resistivity and the kinematic viscos- 
ity. 

Assuming slab geometry and independence of the z co- 
ordinate, the magnetic and velocity fields can be represented 
as follows: B = ix&!&v), V = ixV~#(~,y). ThusEq. (1) 
becomes 

$+V=VCk=BVj+S;‘V$& 

~+2.(vdrxv$) =s,tj--E,, (21 

where s1 and jare, respectively, the vorticity and current in z 
direction, i.e., fl = V: 4 = (d ‘/ax2 + d ‘/c?y*) +j = VZ, $; E, 
is the external electrical field, which is applied to compen- 
sate the magnetic diffusion in the equilibrium state. We as- 
sume that the equilibrium state depends only on y, and mag- 
netic diffusion dominates the vorticity diffusion, i.e., 
S ; ‘/S < ’ < 1. In the equilibrium state, 

S,tio(Y) =q. 
Let Ic = fJo (y) + $I (x,y,t), 4 = #O (y) -I- 4, (x,y,t), where 
the subscripts 0 and 1 denote the equilibrium and perturba- 
tion states, respectively. Equations (2) become 

where 

(31 

L= 
s;y +#;(Y)-&v: -R(v)$ 

( 

- *A -g v: + ‘by(Y) $ 
WI XV, - WI XV% 

-R(V)-& s,*v: +qg-g 
1 

' 
A%4,3,) =i+ 

( -V#l xv'f4 ) * 

Here, prime denotes differentiation with respect to y. We 
assume that the magnetic null plane is at y = 0, i.e., 
B,(O) = -l&(O) =o. 

Assuming periodic boundary conditions in the x direc- 
tion, the perturbed streamfunctions can be expanded as 

$, (x,y,t) = 2 +L (yttPax + c.c., 
n 

4, (x,y,t) = 2 d,, (y,t)einax + cc., 
A 

(4) 

where a = 2r/L, and L is the period in the x direction. 
The linear tearing mode problem with shear flow has 

been studied before.“-” In the region away from the mag- 
netic null plane (external ideal region), the magnetic field is 
frozen into the flow; hence the global flow can dramatically 
change the matching quantity 
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-- 
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In the region around the magnetic null plane, the tearing 
mode is very sensitive to the flow shear. If 
[y/aB;, (O)E~ < 1 Vi (0)/B;(O)}, where yis thegrowth rate 
and E is the resistive layer scale length, then convection 
dominates the inertia term and the scaling of the tearing 
mode growth rate will change.‘* Hence, near marginal sta- 
bility, even small flow shear will cause a significant change in 
the linear problem.” It has also been shown that the stable 
tearing mode can be driven unstable’8*‘9*22 by strong shear 
flow [I’G(O)/B&(O)--8(l)], provided V;(O)V;(O) 
-B~(O)B~(O)#OandS,gS,<l.Inthiscase,thecondi- 

tion of A’> 0 for instability is removed; such destabilized 
tearing modes have been found numerically. I7 
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The magnetic field and shear flow are characterized by 
parameters, such as their magnitudes and shear lengths. 
Near the parameter values, where two modes with wave 
numbers a and 2a are marginally stable (and all other 
modes are stable), the nonlinear evolution can be studied 
analytically. There are many situations where we can find 
such critical parameter values. One example is a piecewise 
continuous magnetic field with a separated double jet flow 

i 

1, Y> 1, 
Bo (Y) = Y, IYI < 1, 

- 1, y< - 1; 

r 

0, IYI > h 
V,(y)= vo, b>lrl>L 

0, IYI < 1. 
Here, flow only exists in the external ideal region and the 
tearing mode is unstable only if A’ > 0. With the assumed 
profiles, A’ is equal to zero at the wave number ao, where 

[ 1 -a, tanh(a,)] 

a0 

= (l- vi, 
vi + (2 _ JT;p+ 1) 

- p$ + (2 _ p3p+ 1) * 

Assuming 1 < Vi < 2, there exist two solutions for ao, and 
by choosing appropriate values of V, and b, we are able to get 
A, = 0 and A2 = 0, while A,, <O for n>3. Thus the above 
profiles describe the desired multiple instability. Another 
example can be constructed from a magnetic profile where 
all the tearing modes are stable, i.e., AA < 0 for all n, by in- 
cluding a shear flow that drives the tearing mode unstable. 
This is the case treated in the numerical simulations of Pers- 
son and Bondeson. Again, by choosing the parameters 
V’(O)/B’(O),V”(O)/B “(0), andS; ‘/S, ‘appropriately, 
the modes a and 2a can be driven simultaneously unstable 
while the other modes remain stable. 

Ill. CENTER MANIFOLD REDUCTION 

Center manifold reduction and related theorems can be 
found in many references’“*23*24 and we give only a brief de- 
scription. For simplicity and clarity, let us first look at a 
finite-dimensional dynamical system 

x=AX+N(X,Y), (5) 
i’= BY + M(X,Y), (6) 

where matrices A and B describe the marginally stable and 
stable linear modes, respectively. Observe that the matrix A 
need not be diagonalizable, i.e., it can possess a nontrivial 
Jordan form. The matrices M and N denote the nonlinear 
terms and M(O,O) = 0, N(O,O) = 0. Thus (X, Y) = (0,O) is 
an equilibrium state (fixed point). For the equations linear- 
ized about (X, Y) = (O,O), there exists an invariant space 
given by (X, r) = (X,0). When the nonlinear terms are in- 
cluded, the center manifold theorem states that there still 
exists an invariant subspace called the center manifold. The 
center manifold is tangent to the center eigenspace at 
(X, y) = (O,O), as shown in Fig. 1, and has the same dimen- 

FIG. 1. Depiction of the center manifold. 

sion as X. Thus the center manifold can be expressed as a 
“graph of a function”; i.e., as 

(--KY> = [X~GOI, (7) 
with 

h(0) = 0, g (0) = 0. (8) 

Also, if Mand Nare differentiable to order r, then h is differ- 
entiable to order r- ‘. As mentioned earlier in the Introduc- 
tion, the center manifold is locally attractive, and so for the 
purpose of finding the local time-asymptotic states, the sys- 
tem can be reduced to lower dimension, the dimension of the 
center manifold. The dynamics on the center manifold are 
expressed as 

x=AX+N[X,h(X)]. (9) 
It now remains to calculate h(X) , which is achieved by plug- 
ging Eq. (7) into Eq. (6). We have 

(10) 
In most cases, Eq. (10) cannot be solved exactly for h(X) 
(otherwise an exact solution of the original equations would 
be found). However, h(X) can be approximated as a Taylor 
series near (X,3’) = (0,O) satisfying the conditions of Eq. 
(8). Usually only a few terms are needed to describe all of 
the local asymptotic states. 

The technique of center manifold reduction can also be 
extended to partial differential equations. However, the 
main center manifold theorem cannot be applied directly to 
our present problem, since the spectra of the modes a and 2a 
are not exactly on the imaginary axis, but this difference can 
be overcome by shifting parameters. Let Z, denote the dis- 
tance of the parameters from their critical values, discussed 
in the last section, and expand the dynamical system by add- 
ing a new equation 

2, =o. (11) 
Since the modes a and 2a are near marginal, Z, is very 
small. Taking the equilibrium state of the enlarged system as 
($ ) = 0, Z, = 0, the spectrum of this new equilibrium with 
wave number a and 2a lies on the imaginary axis. 

Similar to Eq. (7)) we have in the center manifold 
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41 
0 

4 
!4 

(X$J) = C Z,(t) $nc (y)einax 
n= 1,2 ( 1 nc 

+ C.C. + h(x,y,Zn,~,,Zo 1, (12) 

where (2’ ) with n = 1,2 correspond, respectively, to the 
critical linear marginal eigenfunctions of modes a and 2a, 
Z, are their amplitudes, 2, is the complex conjugate of Z,, , 
and function h is subject to the following constraints: 

h (x,y,O,O,O) = 0, -g (&Y,0,0,0) = 0, 
n 

g- (x,y,O,O,O) = 0, 
n 

g- (x,y,O,O,O) = 0. 
0 

Plugging Eq. ( 12) into Eq. (3), results in the following re- 
duced amplitude equations (see the Appendix for details) : 

2, =f, (z,,z,1z21~*,zo), 

22 =fi (Z, z, ,z*,~*,z, 1, (13) 

with f,(O) =o, f2 (0) = 0, caf;/azo l(O) = 0, 
(d~/dZ,,)(O) =0, (af;/Jz,,) =0 (n = 1,2 and i= 1,2). 
For the nonlinear evolution with IZ I small, the functions& 
in Eqs. ( 13 ) can be Taylor expanded. One needs only expand 
to some finite order to unfold the new branches of solutions. 
However, to just third order, the number of terms is very 
large, and calculation of all of the coefficients laborious. For- 
tunately in the present model, many terms in the expansion 
will vanish because the constraint imposed by the symmetry 
of the system. Thus the reduced amplitude equations are 
greatly simplified and can be discussed as to the possible 
kind of solutions, even without knowing the coefficients. As 
noted in the case without flow ( 4. = 0) this model possesses 
O(2) symmetry,’ and Eqs. (3) are “equivariant” under the 
following transformations: 

2%*(“,:) (X>YJ) = (Z;) (x + X,,Y,f), 

Y(p) (X,Y,f) = (-$yQ) ( -X,Y,f), 

where Fti arises because of periodic boundary conditions. 
In words, the symmetries imply that if (${ ) (x,y,t) is a solu- 
tion of Eqs. (3), then so are Y,.* ($: ) (x,y,t) and 
9 ($: ) (x,y,t). Inclusion of shear flow breaks the reflection 
symmetry, however, the translation symmetry rti is pre- 
served. Thus the reduced amplitude equations ( 13) are equi- 
variant under translation in x, which acts on the amplitudes 
(4 Z2 1 by 

TX0 (Z, ,Z, ) = (e’“““Z, ,e2iaxoZ2 ) 

[cf. ( 12) 1. The basic monomial invariants for the above 
operations are [Z, I*, IZ, I*, z:Z,, Z:z,, thus the expan- 
sion of Eq. ( 13) must have the form 

2, = (A, +iw,,)Z, +a,Z,Z, 

+ 6, Z, IZ, I* + c, Z, fZ2 I2 + @(Z4), 

2, = (A, + iw2c)Z2 +a,Zf 
(14) 

+ b,Z, IZ, I* + c2Z2 lZ2 I’ -I- @ ‘W”), 

where Ri -I- io, (i = 1,2) are the linear eigenvalues of the 
near marginal modes, wiC are the eigenfrequencies at the 
critical parameters’ values Z, = 0, and /zi = 0 (Z, ) , For- 
mulas for the coefficients of Eqs. ( 14) in terms of the (ad- 
joint) eigenfunctions of the linear problem are calculated in 
the Appendix. Breaking reflection symmetry allows the co- 
efficients a, 6, and c to be complex. Similar equations have 
been discussed in Ref. 25 for studying the interactions of two 
oscillators with 2: 1 resonant frequencies. However, these au- 
thors mainly discussed the equations near a special degener- 
ate parameter regime, where the pure mode solution (cf. Sec. 
IV) has double-zero eigenvalues. Here, we are interested in 
more general parameter regimes. 

Furthermore, the unessential nonlinear term Z, JZ, 1’ 
can be removed by a near identity SO( 2) invariant coordi- 
nate transformation Z, -+Zl,Z2+Z2 - (b,/a, )Z:.Equa- 
tions (14) become 

i, = (2, +iq,)Z, +alZlZ2 +c,Z,~Z2t2+~(Z4), 
(15) 

2, = (2, + iw,,lZ, + a,Z: 

+ bz, IZ, I” t c2Z2 IZ, I* + d’(Z4), (161 
where b = b, i- 26,) and the small modification of the coef- 
ficient a, is neglected. Now let a, = p3 8, a, = p4eie4, 
b = pbeiBb, c, = p, eie,, c, = p2 e”’ and assume ]a, a, c2 I #O. 
We can reduce the number of parameters in Eqs. ( 15) and 
( 16) by doing the following resealing: 

Z, hp” 
Pr 

Al- 

e Z,, Z, -+fi e-‘“‘Z,, f-2 f. 
P4 P2 

The resealed equations are 

i, = (2, + iG,,)Z, + z,Z, +pleie’Z, lZ2 I* + &(Z4), 
(17) 

2, = (2, + G,,)Z, + e’@Z: 

+~6e’6”Z2[Z}2+ei~2Z2(Z2~2+ 8(Z4), (18) 

where 8 = O3 -t- Q4, ;i, = (p,/p: )A,, 2, = (p2/p: )A,, 
q, = cp2/p: b,ct h, = cp*/p: )@zct Pl =P,/P*, 
pb = p3pb/pZp4. For convenience, we drop the tilde in the 
following discussion. In the next section, bifurcation analy- 
sis is employed to find the possible time asymptotic states, 
i.e., branches of nonlinear solutions of the reduced ampli- 
tude equations that result from the linear instability. 

IV. SOLUTIONS OF THE REDUCED EQUATIONS 

Bifurcation analysis is the natural technique for finding 
the possible time asymptotic states when parameters Z, are 
away from but still near their critical values. There are two 
types of bifurcations:23 “ local” and “global.” Local bifurca- 
tion is recognized by a change in the stability of a solution. 
Depending on how the stability is changed, local bifurca- 
tions are again divided into two types: “steady-state” and 
“Hopf bifurcations.” If stability is changed because an eigen- 
value transverses zero, the bifurcation is of the steady-state 
type; if the stability is changed because eigenvalues are pure 
imaginary at criticality, the bifurcation is the Hopf type and 
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new branches of periodic solutions are often found. As for 
the global bifurcation, its existence is not revealed by local 
analysis, and will not be considered here. 

We are interested in the local bifurcation near the origi- 
nal equilibrium (Z, ,Z, ,Z, = 0). This problem has been re- 
duced to the amplitude equations ( 17) and ( 18 ), which may 
be rewritten in polar coordinates Z, = r, e@,, Z, = r, e”’ as 

i, = (p, +r, cosq, +p, cose,r:)r,, (19) 
i; =/.f2r2 + cos(p - e,r: +pb cos 8&r, + cos e,r;, 

(20) 
Q =S- [sin(e,-8)(6/r,) +2sinpr,] 

+pb sin O,ti + dr$, (21) 

where p, =Re;li, pi =Im/Zi (i= 1,2), 6=ozc +& 
- 26% + PI 1, P = q-72 - @I 9 and d = sin 0, 
- 20, sin 13,. Since the frequencies wit arise mostly from 

Doppler shifting, and such Doppler shifts are canceled in the 
combination uzc - 20,,, S is a small parameter. In the case 
without flow, 6 = sin 8 = d = sin B,, = 0, and hence these 
are the parameters introduced by flow. Note that what mat- 
ters in the nonlinear evolution is the phase difference, not the 
individual phases of each mode. Thus the original amplitude 
equations ( 17) and ( 18) are reduced to the three indepen- 
dent ones of Eqs. (19)-(21). (This happens because of the 
translation symmetry.) The variation of the individual 
phases of each mode are governed by the equations 

67, =wlc +P, +sinpr, tp, sinQ,4, 

&=utc+P2 -We,-@(rf:/r,) 

+pb sin e,r: + sin e,& 

Small-amplitude solutions of Eqs. ( 19)-(21) have the 
following magnetic flux function near the magnetic null line 
(for the constant-$ tearing mode) : 

$=: - fB: (0)~~ + r, cos(ax + w, t + p, 1 

+r, cos[2(ax+w,t+p,) +q)l, (22) 

where w, =wlc +p, +r, sinq? +p, sine,<, and p, is 
the initial phase. Note in the above expression we have not 
taken into account the resealings of coefficients, but this will 
not change the qualitative physical picture. If w, = 0, it is a 
steady island state, while if w, #O, it is a traveling island 
state. It is interesting to note that a pure mode solution with 
r, = 0, r, # 0 still solves the nonlinear interaction equations, 
even when higher-order terms are included. This is due to 
the symmetry, which has forced many nonlinear interaction 
terms to vanish. However, a pure mode of the form r, = 0, 
r, #O is not a solution. Contour plots of Eq. (22) with 
w, t + 9, = 0 and QJ = 0 are given in Fig. 2. If the stability of 
the bifurcated solution changes, a secondary bifurcation can 
happen. However, a secondary steady-state bifurcation is 
not of much interest, since it does not change the magnetic 
field structure. What is of interest is a secondary Hopf bifur- 
cation. When this happens, Eq. (22) becomes 
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ffk - pxm2 + [r,o + r,, cos(w,t)] 
Xcos(ax+w,t+p,) + [r20 tr,, cos(w,t)] 
Xcos[aa~+qt+p,) +po +qQ, cos(w,t)], 

(23) 
where w,, is the Hopfbifurcation frequency. In this new mag- 
netic field structure, the amplitude and phase differences be- 
tween the two modes oscillate. If it is not far away from the 
secondary bifurcation, then Iv,, I( 1, and Eq. (23) is close 
to a modulated traveling wave state. This is the form of the 
oscillating island state observed in simulations by Persson 
and Bondeson. Below we will discuss the parameter domains 
for the pure mode and the mixed mode solutions with their 
secondary Hopf bifurcations. Since only the stable time 
asymptotic states are practically observable, we also discuss 
stability of the solutions. 

A. Pure mode solution (r, =O,r, #O) 

In this case, the amplitude equations decouple from the 

,I 

phase equation and Eqs. ( 19)-( 21) become 

i, = 0, i2 =p2r2 + c0s e,r;, 
k2 =w2c +P, +sinQ,<, (24 

which have the solution 

6 = -p2k0s e,, if p2/c0s 0, ~0. (25 

This solution is a traveling wave state with phase velocity 

(mlc +P, +sinB,4) 

= [i-I, +P2 - (sine2/cose2)p2)] 
2a 

f 

which differs from the steady-state case when there is no 
flow. The contour plot of magnetic flux corresponding to the 
pure mode is shown in Fig. 2 (a). There are two magnetic 
islands in one period length. From Eqs. (19) and (20), the 
stability of this solution is determined by eigenvalues - 2~, 
and 

p, + J -p2h0s e, COST - (p, cos ~,/COS e2 1~~. 

Since the phase difference p is arbitrary, the pure mode is 
stable when,u2 > 0, and ,u, + ,/ - ,u2 /cos 8, < 0. A second- 
ary bifurcation occurs when the stability changes. The first 
stability change occurs at p2 = 0, which represents the ini- 
tial bifurcation of the pure mode. The second eigenvalue 
comes from the perturbations of the mode ILY, thus the sec- 
ondary bifurcated solution is a mixed mode solution, which 
will be discussed next. 

6. Mixed mode solution (T, r, #O) 

Equations ( 19)~(21) yield 

cospr, +p, cose,r: = -p,, (26) 
UCOS(~ - e)r, + (pb cos eba+ cos 8, jr: = -p2, 

(27) 
- [asin(q,-0) +2sinq,]r, + (pb sine,a+d)r: 

= - 6, (28) 
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lb) 

0.4 
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-0-4 

FIG. 2. Contour plots of the magnetic flux. (a) r, = 0, r, = 0.02; (b) 
r, = O.O2,r, = 0.02; (c) r, = 0.02, r, = 0.01. 

where D = 6 /$ denotes the ratio of amplitudes of the two 
modes. Let us first look at the stability of the solutions, 
which is determined by the solutions of a third-order polyno- 
mial 

A”-d,R’+d,R-d, =0, (29) 

d, = -2[acos(g,-@+cosp]r2 +&‘(I:), 
d2 ={[a--4sinq,sin(g,-B)] 

- (4r,/u)cos cp cos e,lr: + 8(i-fr2 1, 
d, =~[CTCOS~ +2cos(p-f?)]<r, 

+ @of4 I+ b(mfr: 1. 

A stable solution requires that d, < 0, d2 > 0, d, < 0. If the 
three eigenvalues are real, the above conditions are also suffi- 
cient. If two eigenvalues are complex, then d, d2 - dS < 0 
guarantees the stability. For d2 > 0, and d, d2 - d, = 0, 
there exist pure imaginary eigenvalues R = & &.@-. Thus a 
secondary Hopf bifurcation could occur along 
d, d, - d, = 0. Due to the exchange of stability principle,26 
the Hopf-bifurcated solution is stable on the side 
d, d2 - d, > 0, while unstable on the side d,d, - d, ~0. 

The side on which the Hopf-bifurcated solution appears de- 
pends on the sign of the coefficients of higher-order terms. 

Equations (26)-(28) are still very difficult to solve di- 
rectly, so we consider several special cases: 0 = 0,B = VT, and 
B = r/2. For the cases 8 = 0 and 8 = G-, we discuss the dif- 
ference made by flow-introduced parameter S. Note that 
8 = 71/2 is only possible with flow. 

(i) 8 = 0. In this case, Eqs. (26)-(28) imply 

r2= [JC44 +~U2)2+S2/(a+2)][1+c9(r,)], 

cosq= -C&L, +p2V (44 +~~)~+S*+@(r~i), 
sinq,=U (Z/L, +p2)2fST+~(r.2). (30) 

In the case without flow, the solution requires that phase 
differences of the two modes 4, must be 0 or r. Here, CJJ can be 
any value depending on the ratio (2,~~ + p2 )/a, The coeffi- 
cients in the stability eigenvalue equation (29) become 

d, = --(a+ 1)cospr2 + a(4), 

d, = [a- 4sin2e,- (4r2/0)c0s~c0s82]< + @(rfr,), 

d3 =2(a+ 2)cospfr, + &‘(fi$) + B(o<t$). 

Thus a stable solution is possible only if cos CJY- B (r, ), and 
either 0>4 or a<1 with -4- (r2/o)cospcos82>0. 
The secondary Hopf bifurcation is possible also only if the 
above conditions are satisfied. From Eqs. (30), 
cos47-@(r2) requires [(2~, +p2)/S[-B(rz)g1. Since 
S is the parameter introduced by flow, there exist no stable 
solution and secondary Hopf bifurcation in the case 8 = 0 
without flow. From Eq. (27), the amplitude ratio (T of the 
two modes is 

Q-z - p2 +cose,r: 
(cos p /r2 + pb cos eb ) 6 

>o. 

When a( I, it is required thatp, + cos et 6 -+ 0. Obviously, 
this is a solution bifurcated from the pure mode solution 
along 

-dcos e2 = [ (4% +p2 1’ + t?]/d. 
When o> 1, it is required that either Ip2/< I $1 or 
lcosp/r2 -tpb coseb)<<l. 

(ii) B = R. In this case, there exists a special amplitude 
ratio CT = 2, at which the phase difference p can be any value, 
even in the case without flow. We first consider the special 
case where 0 = 2. Equations (26)-(28) yield 
?$ = - (@, +,& )/(2p1 COS 8, i- 2pb ~0s eb + cos e2 ) 

= -&/(2p,sin@,+d)>O, 

cos Q) = -PI/r2 + @V2 1 = -pz/2r2 + 8(r2), 
and the coefficients of the stability eigenvalue equations be- 
come 

d, =2(0- l)cospr, + B($), 

d2 = [or+4sin2q,- (4r,/a)cos~cos8,]$ + b(4r2), 

d, = Z(tr-- Z)cosp<r, + &“(rf<) + B(arf~). 
Thus a stable solution with u = 2 requires cos p < 0. A sec- 
ondary bifurcation is possible only when cos p- (9 (r, ), 
which requires 
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q4/(2p, +p2)-pJ(+l +/J*)-@(l). 
Now for the case 0#2, Eqs. (26)-( 28) yield 

4 =qup, +p2)2+~2]/(~-2)2~[~ f@V2)], 

cosp= f (2p, f&V (2/L, +p2)*+@+~(r2), 
(31) 

sing,=S/J(2p, +puz)2+S2+d(r2). 
If Ir, /cos 9 I( 1, the solution is stable only if either a> 2, 
cose,<Oora<l,cosq,>O.Equations (26)-(28) yieldin 
this case 

r, = - (p,/cosp) [ 1 + 4(r2/cosp)], 

u= -;[l+@(&)]+@(&). 

The assumption that Ir,/cos p I< 1 requires that 
Ip, cY~/( 2,~ i + ,u2 ) * 14 1. A secondary Hopf bifurcation can 
only occur for c < 1, which implies from the above 

-P2/P1 < 1. 
Obviously, flow-introduced parameters are not important in 
this limit. 

If cos e, - d ( r, ), similar to the case discussed in 8 = 0, 
it is required that (2,~~ +,u~)/S-B(~,). 

(iii) 8 = 7~/2. This case is only possible with flow. The 
coefficients of the stability eigenvalue equations become 

d, = -2(asinq, +cosp)r, + 8(G), 

d2 = [a+2sin2q,- (4r2/a)cosq,cos8,]~ +@(er2), 

d3 =2(acosq~ +2sine,)<r, + 8(6r-$) + @(a<<). 
When CT> t4, the solution is stable only if sin p > 0, 
cosp<o, - u/2<tanq,< -I/a, and a+2sin2q,>O. 
When g< ~‘2, the solution is stable only if sin p ~0, 
cosp>o, -0/2>tang,> -l/u, and u + 2 sin 2~ 
- ( 4r2 /C) cos p cos 8, > 0. 

Assuming a) 1, Eqs. (26)-(28) give 

d4(2#4 +p2)2+S2/a, 

cospz -s/ (2/i, +p2)2+s2, (32) 

sin p- -PJJW, tp2 I2 + s2. 

Equations(32)implythat~~,/~,~<l,or~~~/SI~l.Asec- 
ondary Hopf bifurcation occurs when [tan p I- l/a4 1, 
which implies that Ip2/Sl ( 1. 

From the above calculations, we see that flow can signif- 
icantly affect the nonlinear evolution of tearing modes. In 
the case without flow, a secondary Hopf bifurcation can only 
occur with 0 = rr, u < 1, or u = 2. Thus shear flow plays an 
important role in driving the oscillating islands with (a& 1) 
in the simulations of Persson and Bondeson. 

V. SUMMARY AND DISCUSSION 
The nonlinear evolution of plasmas can saturate in time 

asymptotic states, or a transition to turbulence may occur. 
Generally, the governing partial differential equations are 
analytically intractable and so we are unable to predict these 

asymptotic states. However, in recent years, studies of non- 
linear finite-dimensional systems have been successful. Very 
complicated behavior, even chaotic states, have been found 
in finite-dimensional systems. Since finite-dimensional sys- 
tems appear to possess solutions as complicated as those ex- 
pected for the plasma evolution, it is natural to attempt to 
model the dynamics of plasmas by some finite system. This is 
also reasonable physically, since in many situations only a 
finite number of degrees-of-freedom are excited. For exam- 
ple, magnetic island coalescence2’ can be modeled by the 
interaction of two modes a and 2a. Thus the model equa- 
tions are the same as Eqs. ( 14) with the restriction that the 
coefficients be real. Given the pure mode state, i.e., that there 
are two magnetic islands in one period length, the analysis in 
Sec. III A tells us that this pure-mode state is stable only if 
,u~ > 0, ,u, + ,/ - ,u2 /cos 6, < 0. For the magnetic profiles 
chosen in Ref..27, ,LL, > 0 if,u2 > 0. Thus the given pure mode 
is unstable and will evolve to a mixed-mode state, i.e., two 
islands in one period length will coalesce. In another exam- 
ple, Parker et a1.28 studied the nonlinear evolution of tearing 
modes without flow, using the period length as the bifurca- 
tion parameter. When the period length is short, only one 
tearing mode is excited, then the finite time asymptotic state 
is the usual saturation state. When the period length be- 
comes longer and longer, more and more modes will be excit- 
ed. This can be modeled as the interaction of two, three, or 
more modes. The symmetry [O(2) ] will limit the nonlinear 
terms in the model amplitude equations, and enable us to 
discuss the solution in general terms. Even though the above 
suggested reduced models are not rigorously justified, they 
give some qualitative insight into the problem. For the inter- 
action of near-marginal modes, the model can be justified by 
using small-amplitude or center manifold reduction. Strictly 
speaking, these reductions are valid only close to the original 
marginal equilibrium, however, very often results are valid 
well away from marginality. 

In the present paper, we have studied the interactions of 
two near-marginal tearing modes with wave numbers a and 
2a in the presence of shear flow. This is the simplest case of 
mode interaction that is relevant to the Bondeson and Pers- 
son simulations. Employing the center manifold reduction 
method, the resistive MHD equations were reduced to am- 
plitude equations. The model that we used is similar to the 
one in Ref. 7, however, the presence of shear flow in our 
problem breaks the reflection symmetry, and allows the co- 
efficients of the reduced equations to be complex. The most 
important parameters introduced by shear flow are 6 and sin 
19 #O. The bifurcation analysis was used to find possible time 
asymptotic states in different parameter regimes. Various 
states such as traveling and oscillating magnetic islands were 
found, and their observable parameter domains were also 
discussed. It was shown that shear flow plays an important 
role in driving this oscillating island state with CT) 1, i.e., the 
mode a dominates the mode 2a. Finally, we like to point out 
that we have only studied interactions of tearing modes at 
the same magnetic null plane (single helicity ). For systems 
with multiple magnetic null planes, magnetic islands of dif- 
ferent null planes (different helicities) can overlap and give 
rise to stochastic magnetic structures. 
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APPENDIX: CALCULATION OF COEFFICIENTS 

Let L = L, + AL, where L, corresponds to the linear 
operator at criticality, and 

AL=*1 2,. -- 
UAo IZ,,” 

Here, for convenience, we denote z, and 2, by Z, and Z,, 
respectively. The function h&y) in Eq. ( 12) is expanded in 
powers of the amplitudes 

W,Y) = i z,(t)z,(f) 9 mn 
m,n = 0.4 ( ) zcr mn 

+ i Z,(W,(tZp(t) 
d mnP 

m.n*p = 0.4 ( ) $ + *-** mnP 

Inserting Eqs. ( 12) into Eqs. (3), and equating terms of 
order B ( 12 I) yield the linear problem 

Lc($l) - ifuncf?p) = 0. 

The corresponding adjoint problem is 

with 

s;w: 
Li= ( 

-cp;v: -&2#$& $6 & 

~+2&$& 1 S,‘Vf -4; $ * &V: 

The normalization is defined as 

(&nctv:+L) + (v+!&~nc~ = ss ($fnc VI 4°C + i&c htc 1 dx dv = 4n,~ 

To order d ( IZ I’), we obtain 

= mn 
z,z, L, 

Q, 
[l) 

mn - 
o<mcnc4 fb 

ih, + un)~~~‘)] = (2:) 

(AlI 

(A21 

with 

qSinh= 
K 

$f-ZoZ, +a,Z Z V”$ + LZ,Z, +a,Z$ V:r#,,fc.c. + C 
0 ’ 2) 1 IC (, > 1 Ism-n*4Zmz~ i&I 
4L a@?, an, Qw 4L ?L -------- 
ax ay ay ax 

+ +4nc ?im - - + terms interchanging m and ax ay ay ax 
n 

hnh = K -$- Zo4 + a, z, Z2)k + ($- 
0 0 

zoz2 + a2z:)$2c + ..,.I + ,q~nG4wn & 

a#,, a@“, 
ay ax + terms interchanging m and n 4 dL ----- - C - 

m=, az, zofL. 
Considering, respectively, terms with Z,Z, and ZoZ2, one can obtain the following through the Fredholm solvability 

condition: 

4 z,= 4 -:c $ Ac + &c -$ $,ck dy, 
0 0 

A., 
-= 

zo 
&c g (1szc -I- &c -$- A+ dv. 

0 0 

Actually, if we had already solved the linear problem, il , and il, could be written down immediately. For terms with z, Z, , re- 
write Eqs. (A3) as 

In the linear problem, the eigenfrequencies arise mostly from Doppler shifting, so w = wL - 2w, is a small quantity. Since 
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($; ) + ($’ ) is also a solution of the above equations, the gauge is defined by (&,,V:&, ) + ( I,!$~,$~~ ) = 0. Applying the 
Fredholm solvability condition to the above equation yields 

a4,, w 42c a42c w 4,= a42c w dlc ah, w fb2c a*2c av: fblc a, = --$-----j--+~*+-&--+a,a,- 

+ 4h, av: **= + ati2,, av: kc a4,, +h2, a4,, alit,, -- -- 
ay ax ay ax ay ax 

a42e a*,, + a42c ah -zay+----- -- ax ay ay ax >I dxdy+ B(w). 

(A4) 
Similarly, we obtain 

a2 = + 44,,, m  hc ----____--- -- 
ay ax 

a4,, we a4,, w,, (A51 

So, a, and a, are determined by linear marginal eigenfunctions to order 8 (w ) . 
Continuing the procedure, coefficients of order B ( IZ 13) are calculated: 

b,= ah aj,, a4,, ~~lc a4,, ah, ah3 djlc -- ---- ---- 
ay ay ax ax ay + + ay ax ax ay ay ax ax ay 

+ a4,, ah a4,, ah ----- 
ax ay ay ax ' (A61 

6, = + a+,, aj,, + a4,, w, a4,, ah aq2,, ajlc -- ------ -- 
ay ax ax ay ay ax ax ay 

+ w,, a-,, + a4,, aa,, a4,, aa,, a+,, ai,, -- ------ -- -- 
ay ax ax ay ay ax ax ay 

+ ah3 aj,, 
ay ax 

a4,, a*,, a4,, a*3c 
(A71 

c, = 

(A81 

--- (A91 
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