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ABSTRACT

The reconnection and relaxation of two-dimensional stressed (nonpotential) X-type neutral point magnetic
fields are studied via solution of the nonlinear resistive two-dimensional MHD equations and by analytical
solution of the linear eigenvalue problem. Previous linear studies (Craig & McClymont 1991; Hassam 1992;
Craig & Watson 1992), have shown that such stressed fields may relax on a time substantially shorter (i.e.,
~|log 7|2, where n is the resistivity) than the usual time scale for linear reconnection (ie., *°). We have
generalized the linear dispersion relation for azimuthally nonsymmetric perturbations and have found that for
modes with azimuthal mode numbers m > 0, the relaxation can occur at a rate faster than that for n =m = 0,
where n is the radial “quantum” number. All of the results presented are for frozen-in (line-tied) boundary
conditions at some distance from the X-point, and we emphasize that these boundary conditions are essential
in order to obtain our solutions. We find that for nearly azimuthally symmetric magnetic perturbations the
fields relax incompressibly and nonlinearly to the unstressed X-type neutral point at a rate close to that pre-
dicted by linear theory. Also, fully compressible nonlinear MHD simulations have been performed, which
show that the interaction between the plasma flow velocity and the magnetic field is the important physical
effect, while the inclusion of thermodynamics does not affect the evolution considerably. A Liapunov function-
al for the nonlinear incompressible two-dimensional resistive MHD equations is derived to show that the

current-free X-point configuration is a global equilibrium to which general initial conditions relax.

Subject heading: MHD

1. INTRODUCTION

Magnetic reconnection is believed to occur in several
natural phenomena, including solar coronal loops, the magne-
topause boundary, the solar wind, extragalactic jets, and fusion
experiments. Giovanelli (1947) was the first to observe that
solar flares frequently occur near magnetic neutral points.
Based on these observations Dungey (1953, 1958) proposed an
X-type neutral point mechanism for particle acceleration, the
onset of sheet currents, and the energy release in solar flares,
provided that the magnetic field sources are free to move.
Chapman & Kendall (1962) solved the nonlinear ideal MHD
equations for an unbound plasma with the X-type neutral
point and found growth on an Alfvén time scale, while Syro-
vatsky (1966, 1971) included the mechanism in a solar flare
model. Sweet (1958) and Parker (1963) used dimensional argu-
ments for a model involving merging of antiparallel magnetic
fields and concluded that the reconnection rate scales as 5'/2,
while Petschek (1964) predicted an Alfvénic reconnection rate
based on semiquantitative Alfvén shock wave solutions. Furth,
Killeen, & Rosenbluth (1963) developed an analytic boundary
layer theory and derived the #*° linear tearing growth rate
scaling, while Rutherford (1973) considered the nonlinear stage
and found that the reconnected flux ® ~ yt and the reconnec-
tion rate diminishes from an exponential to an algebraic rate.
Biskamp (1986) studied the magnetic reconnection via current
sheets, using the two-dimensional incompressible MHD
approach with plasma and magnetic flux injected at the
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boundaries. His results agree with the Sweet (1958) and Parker
(1963) slow reconnection rate. DeLuca & Craig (1992) used the
two-dimensional incompressible MHD approach with period-
ic boundary conditions and found that the ohmic dissipation
rate is fast (i.e., approximately independent of resistivity) and
reconnection rate scales as n'/4. We would like to emphasize
that the different reconnection rate scalings mentioned above
were obtained with different boundary and initial conditions.

The existence of fast magnetic reconnection in space and
astrophysical plasma is still an open question. Recently,
Hassam (1992) has considered an X-point magnetic field con-
figuration with frozen-in boundary conditions and has ana-
lytically solved the linearized, compressible, low- MHD equa-
tions (where f is the ratio of the gas to the magnetic pressure of
the plasma) for azimuthally symmetric (m = 0) modes. An
independent study by Craig & McClymont (1991, 1993) and
Craig & Watson (1992) finds that the perturbed X-point with
an intermediate decay rate that is slower than the Alfvén rate
but faster than the resistive diffusion rate. Craig & McClymont
(1991, 1993) and Craig & Watson (1992) find that the asymp-
totic reconnection rate for the linearized X-point problem is
always fast and scales as |log 7| in exact agreement with
Hassam (1992), while the nonreconnective modes relax asymp-
totically on the |log n|? time scale. The results of the present
study agree with the above relaxation rates. Experimental
studies by Bratenahl & Yeates (1970), Baum & Bratenahl
(1974a, b), and Baum, Bratenahl, & White (1973) and Baum &
Pollack (1973) found that the initially perturbed X-type mag-
netic field configuration rapidly relaxes to the potential state.
For a detailed review, see, for example, Priest (1981), Syro-
vatsky (1981), and references therein.
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This is a first study of X-point reconnection with the two-
dimensional, nonlinear, resistive MHD equations for both
incompressible and fully compressible (without restrictions on
the value of the pressure) plasma with the frozen-in boundary
condition. Both the linear and nonlinear relaxation rates of the
stressed (perturbed) X-point back to the potential X-point
configuration are obtained. In addition, we have obtained a
general dispersion relation that includes the azimuthally non-
symmetric (m > 0) modes, as well as the m = 0 mode, and have
compared the results of the linear dispersion relation with the
nonlinear simulations. By considering compressible (low-f and
B = 0.1) and incompressible dynamics, we show that the essen-
tial physics is dominated by the coupling of the magnetic field
to the inertial terms, and that gas pressure gradients do not
preclude the relaxation process. Finally, we obtain a Liapunov
functional for the nonlinear, incompressible two-dimensional
resistive MHD equations, which shows that the potential
X-point with the frozen-in boundary conditions is an equi-
librium state to which all initial conditions relax.

The effect of free boundary conditions; i.e., where the plasma
is allowed to flow through the boundary and where the mag-
netic field at the boundary is free to adjust, was considered in
separate studies (Ofman 1992; Steinolfson, Ofman, & Morri-
son 1992). There it was found that the X-point evolves into a
current sheet and the perturbation grows (rather than relaxes)
on an Alfvén time scale.

This paper is organized as follows: In § 2 the basic MHD
equations for our model and the initial magnetic field configu-
ration are presented. In § 3 we derive the linear dispersion
relation. The numerical results of the nonlinear MHD simula-
tions are presented in § 4, and the summary and discussion are
in § 5. The Liapunov relaxation arguments are given in the
Appendix.

2. INCOMPRESSIBLE TWO-DIMENSIONAL MHD EQUATIONS

We assume that collisional MHD . theory (Drake & Lee
1977) is applicable, that the plasma resistivity # is constant and
isotropic, and that gravitational and viscous effects are negligi-
ble. With these assumptions the basic equations in cgs units are

A 2w vple—vP+ LvxBxB, Q1)
ot 47
2
B Ny xwxB-"Vx(VxB), 2.2)
ot 4
P4V (=0 23)
ot pOI=5 )
V-B=0, (2.4)
d(p
- (p) _o, 23)

where c is the speed of light, p is the plasma density, B is the
magnetic field, v is the velocity field, P is the pressure, and y,, is
the polytropic index. We use equations (2.1)—(2.5) with the
equilibrium of equation (2.8) below. Assuming that the evolu-
tion is two-dimensional (0/0z = 0), the above set of equations is
solved using three separate approaches:

1. Solution of the dispersion relation arising from the linear-
ized equations (2.1)—(2.4), with the assumption VP = 0 in equa-
tion (2.1); the low-f approximation.
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2. Numerical solution of the two-dimensional MHD equa-
tions in slab geometry given below in equations (2.9) and (2.10),
which are obtained from equations (2.1)—(2.4) with the assump-
tion of incompressibility (V * v = 0).

3. Numerical solution of the compressible MHD equations
(2.1)-(2.3) and equation (2.5) in the (r, 6) plane without any
further approximations (eq. [2.4] is not solved explicitly).

The linearized equations resulting from the first approach and
their solution will be presented in § 3. In the remainder of this
section we present the equations needed for the second
approach.

In two dimensions the magnetic and velocity fields can be
written as

B=VY¥ x e, (2.6)
V=V¢ xe, 2.7
where ¥ and ¢ are the flux and stream functions, respectively,
and ¥ =y + ¢ with the equilibrium stream function Y
given by
Ve = Bo(x* — y%)/2a . 238)
Next, substituting equations (2.6)—(2.8) into equations (2.1) and
(2.2) with p = p, = const, and taking the curl of equation (2.1)
to eliminate the pressure P, yields the following set of equa-
tions, which we write in dimensionless form:

W _ (W W _ )9 _1
E__0y<6x+x>+<6y y>6x SJ @9)

fo_ e deio, (% )0 (%, )0
ot dy ox  Ox dy  \dy ox  \ox ay’
(2.10)
where J = —V?%y is the z-component of the current, w =

—V2¢ is the z-component of the vorticity, and V2 = (82/0x?)
+ (0%/0y?) with 8/0z = 0. The time is normalized to the Alfvén
time 1, = a,(4np,)*/?/B,, the coordinates are scaled by the
characteristic magnetic field length a,, and B, is the average
magnitude of the magnetic field at the boundary. The dimen-
sionless parameter in these equations is the magnetic Reynolds
number S = 1,/1,, where 17, = 4na2/c?n is the resistive diffusion
time. We have also assumed that the equilibrium magnetic field
is maintained by an external electric field (i.e., the equilibrium
magnetic field is not dissipated resistively). In § 4 we present
the numerical results obtained with equations (2.9) and (2.10).

3. LINEAR DISPERSION RELATION

In the present section we extend the compressible low-f
azimuthally symmetric (m = 0) linear dispersion relation for
the X-point (Hassam 1992) to non-azimuthally symmetric
arbitrary m modes. The linearized, low-, MHD equations
combine into a single differential equation for y given by
(Hassam 1992; Craig & McClymont 1991)

62_'/, _ S—l g
ot* ot
where | Vi |?> = r? = x? 4 y2. The diffusion term in equation
(3.1) is dominant when r < r,, where r, = n*/2 = S~ /% is the
skin depth ( is the dimensionless resistivity). Assuming the
following separation of variables in cylindrical geometry

VA = VY PV, (3.1
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Y(r, 0, t) = e~ "f(r)e™®, the eigenvalue equation for f(r) becomes
(Craig & McClymont 1991)

2
r % (r j—{) - (1__yy/—s72 + mz)f, (32)
and the radial variation of the currentj = —V?ye, is given by
-
Jjir) = R fr). (3.3)

The frozen-in boundary condition is given by

fr=1)=yr=10=0. (3.4)

Equation (3.2) is mapped into the hypergeometric equation by
the transformations z = r2S/y, and f = z%¢:

2z — )& + (m+ 1)z — 1)& —y?/4E =0, 3.5)

where we have set o = m/2. The solution of equation (3.5) that
is regular at r = 0 is the hypergeometric function F(a, b, c, 2)
with a=m/2+A/2, b=ml2—A/2, ¢c=m+1, and
A = (m? 4+ y?)*/2. From the boundary condition (3.4) we obtain
the dispersion relation

Fm/2 + A2, mj2 — A2, m+1,8/y)=0. (3.6)
For the cases of interest at r =1, |z| = |S/y| > 1; hence, the
transformation formula (Oberhettinger 1972)
T'(cr'(b — a) _
F = (—p)°
(@b ¢,9) = pi e —g (9
1 I'(c)'(a — b)
Fla, 1- , 1 — ==
X <a c+a b+az>+l"(a)l"(c—b)

X (—z)“’F(b, l1—c+b1—a+b, %)

larg (—z)| <= (3.7)

is needed to obtain the dispersion relation. Substituting the
values of a, b, and c, using the properties of the gamma func-
tion, and using equation (3.6) yields the following linear disper-
sion relation for the X-point:
(m 4+ AT(— A% (m/2 + Af2)
(m — AT(A3(m/2 — A/2)
_ ( N AFm/2 — A2, —mj2 — A/2, 1 — A, y/S)
B y) Fm/2 + A2, —m/2 + A2, 1 + A, y/S)’
(3.8)

Equation (3.8) can be further simplified with the assumption
/S < 1, which results in the following upon asymptotically
expanding the right-hand side of equation (3.8)

(m + AT(— AT %(m)2 + Af2)
(m — AT(A*(m/2 — AJ2)

_<_ §>A 1+ [3/45(1 — A)]
y) 1+ /481 +A)]°

(3.9)

When m =n =0 and in the limit |y| < 1, the dispersion
relation (3.8) can be approximated by the following asymptotic

Vol. 417
expressions (Hassam 1992):
i log (log S)
I ~ 1— N
my logS[ log S (3.10)
v/2 72
Rey ~ ~ . .
7~ log 5 ™7~ Jlog S 3-11)

For an arbitrary m and in the limit of low resistivity, Craig &
McClymont (1993) obtained the following expression by
matching the solutions in the diffusion region (r < r.) to the
outer region solutions (r > r,):

k3
4eon*’

where n* =n+1— 330, n=0,1,2, ..., o* = k* + m?, and
k ~ 2n*n/|log S|. Their asymptotic expression can be derived
from our dispersion relation in the limit of large S by taking
the log on both sides of equation (3.8), noting the phase change
of the left-hand side for m > 0, equating the real and imaginary
parts, and solving iteratively for Re y. The values of y calcu-
lated from equation (3.12) agree with our dispersion relation
(3.8) in the limit of small resistivity.

We have solved the exact dispersion relation (3.8) numeri-
cally for m = 0 and several m > 0 modes, with S varying over
10 orders of magnitude. Values of y from equations (3.10) and
(3.11) were used as initial guesses in our numerical solution of
the exact dispersion relation. The resulting decay rates and
their dependence on S, withm =n=0andn=1,m = 2,4 are
shown in Figure 1. The near linear dependence of Re y for the
various modes is in general agreement with the log S scaling of
the decay rate in equations (3.10)—(3.12). The best-fit powers of
log S are 1.94 for the m = 0 mode, 3.01 for the m = 2 mode, and
3.65 for the m = 4 mode.

The real and imaginary parts of the eigenfunction f(r), and
the radial variation of the current j(r) with m=0, n=1,
S=103and m=1, n =3, S = 10° are presented in Figure 2.
The “quantum” number n determines the number of radial
nodes of f(r) in the interval re(0, 1) and corresponds to distinct
branches of the complex dispersion relation (3.8). When m = 0,

Re y ~ (3.12)

—a&— m=0

N

10
e

%)

£

=

>

o

o

)

[a]

10

1 log S 10

FiG. 1.—Decay rates of the modes with m=n=0,and n=1, m=2, 4
obtained from the solution of the linear dispersion relation (3.8).

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...417..748O

T D DAL J74B0

3A0

I'I_

No. 2, 1993 MAGNETIC
L5 A R L L e L e
........... PO Re(f)

------- tm(f)
1 —e—Re(j)/S
---e---Im(j)/S

05 |

40‘5-
-m=0,n=1

v=0.292+1.248i
_1-....|....|....|....|...
-2.5

log(r)
Fi1G. 2a

F1G. 2—The real and imaginary parts of the eigenfunctions f(r) and the
y = 0.275+2.343i.

Re {f(r)} approaches a constant as r -0 and when m = 1,
flr = 0) - 0. It is evident from equation (3.3) that the current j
becomes proportional to f(r) as r approaches zero; therefore,
for the m = 0 mode j(r — 0) — const, and for the m = 1 mode
j(r = 0) = 0. The m > 0 modes are not associated with recon-
nection at the X-point in agreement with previous studies
(Hassam 1992; Craig & McClymont 1991; Craig & Watson
1992); however, these modes decouple the fluid motion from
the magnetic field, thus generating very large currents in the
vicinity of the X-point [near the extrema of f(r)]. The plasma
motions are heavily damped by the restoring j x B force and
relax on the fast ~(log S)? time scale.

In Figure 3 the solution of the exact dispersion relation for
the n = m = 0 modes is compared with the asymptotic expres-
sion (3.11) for 10 < S < 10'°° and with the decay rates
obtained from the incompressible MHD simulation. For
S = 10* (characteristic of laboratory plasmas) the n=m =0

10
© numerical
1ot - - - -approx. scaling law
dispersion relation
ST E
E
&=
g2
Q 10 -
a
10 _
1

1 10
log S

F1G. 3—Scaling of the decay rate with S for the m = n = 0 mode. The solid
curve represents the solution of the linear dispersion relation (3.8), the dashed
curve is the asymptotic log S scaling (3.11), and the squares represent the decay
times obtained from the incompressible simulations.

100

RECONNECTION 751
1.5 1 T T T ]
Re(f) ]
A R Im(f) ]
—e—Re(j)/S ]
---&--1m(j)/S

a1 [ s=10°
m=1, n=3
¥=0.275+2.343i
as e v v
5 4 3 2 1 0
log(r)
FiG. 2b

current j(r). (@ m=0,n=1,5=10% y=0292+1248i. ()) m=1,n= 3, S = 105,

perturbation decay time is about 20 Alfvén times with a similar
oscillation period. For § = 10'° (a typical value for the solar
coronal plasma) the n =m = 0 perturbation decay time is
about 120 Alfvén times and is longer than two oscillation
periods. Very good agreement is seen between the nonlinear
simulation with 10> < § < 4 x 10%, the exact dispersion rela-
tion, and the asymptotic expression. The nonlinear terms in the
MHD simulations become smaller as the perturbation decays,
and the decay rates approach the linear rate. The asymptotic
nature of equation (3.11) is evident in Figure 3 since agreement

with the dispersion relation is improved at very large values
of S.

4. NONLINEAR SIMULATIONS

4.1. Incompressible MHD

Now we describe results obtained by using the alternative
direction implicit (ADI) method to solve the incompressible
two-dimensional MHD equations (2.9) and (2.10) in slab
geometry. The method of solution was discussed in detail in
Ofman (1992), and the code was applied successfully to study
nonlinear tearing modes (Steinolfson & Van Hoven 1984;
Ofman, Morrison, & Steinolfson 1993). As an additional test of
the code we have obtained solutions with periodic boundary
conditions and recovered the results of DeLuca & Craig (1992)
for magnetic reconnection in incompressible fluids. Here we
have imposed the frozen-in and ideal fluid boundary condi-
tions in x- and y-directions, respectively ; namely,

lﬁ(x = T Xmaxo y) = ¢(X = 1 Xmaxo y)
=YX, Y= L Vmad =P Yy = £Ymad = 0. (4.1)

The calculations are initiated with a small perturbation y that
satisfies the boundary conditions (4.1), and that is nearly azi-
muthally symmetric in the vicinity of the X-point. In particular
we choose

Y(x, y, t=0) = be 3Hx2  — xA)y2,— VY, 4.2)

with b < 1 and x,,, = Ymax = 0.5. In contrast to the previous
incompressible studies (e.g., Biskamp 1986; DeLuca & Craig
1992), our frozen-in and ideal fluid boundary conditions (4.1)
do not allow flux or mass flow through the boundaries.
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FiG. 4—The absolute values of the excess magnetic energies E,,. (solid
line), E,,, (long dashed line), and the excess total energy E,, — E,, (short
dashed line).

Figures 4-5 show the incompressible relaxation of an
X-point with the above boundary and initial conditions for
S = 10*. In Figure 4 plots of the perturbed energies stored in
the x- and y-components of the magnetic field and the total
energy are displayed as functions of time. The perturbed
energy stored in the magnetic field is given by

Xmax Ymax 2
Ey(t) = Epy + Eyy = f j |:<_ - J’>
Xmax Ymax

+<¢+x> -y —x]dxdy, 4.3)
0x

The perturbed kinetic energy is given by

it I (5 R ) U

and the total energy is given by
Eo(t) = Epf(t) + Ex(t) + Epgo » 4.5)

where E,, the energy stored in the initial magnetic field con-

10 T T NI D DA B O B

— v(0,0)]

10-7 | | | | | L 1 I
0 10 20 30 40 50 60 70 80

Time (th)

F1G. 5—The absolute values of Y(0, 0, t) (solid line) and the reconnected
flux (dashed line).
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figuration, is given by
Eyvo = i Jym [y* + x*]dx dy
~Xmax J = ymax

= FXmax YmaxXimax + Vinan) - 4.6)

Because of resistive dissipation E,, satisfies
B _ j o Jxmx S~ YJ%dxdy ; 4.7

Ymax Xmax

we have neglected viscous dissipation since the simulation
algorithm is nearly ideal (Ofman et al. 1991). The energies in
equations (4.3)—(4.7) are scaled by B2/8n. The perturbed ener-
gies are transferred alternately between the x-component (solid
curve) and y-component (long dashes) of the magnetic field. The
total energy (short dashes) is conserved within the anticipated
resistive dissipation rate of 2 Re y ~ 0.1 (see eq. [4.7]) and
most of the energy is dissipated within the first two oscillation
periods (¢ = 507,). It is interesting to note the steplike nature of
the energy dissipation. Similar steplike time dependence of the
total energy was found by Craig & Watson (1992) in their
compressible MHD reconnection studies. This feature is due to
the uncoupling of the fluid motion from the magnetic field in
the presence of small resistivity.

Figure 5 shows the absolute values of (0, 0, t) (solid curve),
and the reconnected flux (dashed curve) defined by

dy' .

AD(t) = jm dx + Jym v(o, v, 1)
- 438)

The decay rate and the oscillation frequency are determined
from (0, 0, t) using the method described in Ofman et al.
(1991). The relaxation rate of the X-point (y = 0.053 +0.297i)
obtained from (0, 0, t) agrees well with the decay rate
(y = 0.048 4-0.292i) obtained from the solution of the disper-
sion relation with m = n = 0. The good agreement with the
linear dispersion relation was found to hold for more than 2.5
orders of magnitude of S that were considered in this study (see
Fig. 3).

F Y(x, 0, 1)

a !

Xmax

4.2. Compressible MHD

Equations (2.1)—(2.3) and equation (2.5) were solved using
the Lax-Wendroff differencing scheme in a manner similar to
that given by Richtmyer & Morton (1967), along with a
smoothing term suggested by Lapidus (1967). The computa-
tion is done in polar coordinates (r, 6) in the domain 0 < 6 < 7,
0 <r < 1. The code was previously tested and successfully
applied to other MHD problems (Steinolfson & Winglee 1993).
Here the code is used with the frozen-in boundary conditions
at the outer boundary r = 1,0 < 6 < #, and symmetry bound-
ary conditions at the diameter 0 < r < 1, = 0, n. The equi-
librium magnetic field in cylindrical geometry is given by

= r(sin 20e, + cos 20e,) , 4.9)

and the corresponding flux function is Yz = — 372 cos (26). We
have initiated the computations with the followmg pertur-
bations: for the m = 0 case

Y = —% [1 4 cos (nr)] (4.10)

is used, while the m > 0 computations are initiated with

Y = br3(1 — r)® cos (mf) , (4.11)
where b is a parameter that controls the magnitude of the
initial perturbation (and hence the “ nonlinearity ” of the initial

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...417..748O

T D AL7. T 74800

R

rT993A

No. 2, 1993

state). The particular choices of  are zero at r = 1, and they
yield a zero current at the boundary. For m > 0 modes y and j
also vanish at the origin.-The simulations are evolved until the
magnetic field configuration reaches a steady state (i.e., relaxes
to the current-free X-point).

The temporal evolution of the magnetic field at r; = 0.02,
0.04, 0.06, 0.08, 0.1, and 6 = /2 is shown in Figures 6a—6¢
(curves A-E, respectively), with S = 10*. The reference = 0.1
and the Alfvén time 7, = 11 s based on the magnetic field at the
boundary. The values shown are ABy = | [By(r;, 0, t) — By(r;, 6,
2)1/By(r;, 0, 2)|, where By = —(0W/0r) with an m = 0 initial
perturbation in Figures 6a—6b and m = 2 initial perturbation
in Figure 6c¢. The fields oscillate almost in phase at r;, and the
frequency agrees well with that predicted by linear theory (with
the period of T = 0.60 minutes and T = 0.42 minutes for
m = 0 and m = 2 modes, respectively). The minor phase differ-
ence and the higher harmonics are due to nonlinear effects and
can be made arbitrary small by reducing the magnitude of the
initiating perturbation. In Figure 6b the initial m = 0 pertur-
bation is two orders of magnitude smaller than that of Figure
6a, and the evolution of AB, at r; approaches that expected
from linear theory. The nonoscillatory decay phase of the
m = 0 mode at large t appears after most of the flux was recon-
nected in the oscillatory phase (see also | A®| at ¢t > 60z, in Fig.
5). The long decay tail of AB, can be identified with similarity
solutions of the linearized low-f MHD equations (see Hassam
1992 for detailed discussion).

The decay rates obtained from the f§ = 0.1 computations are
faster then rates obtained from the low-f linear theory. This
result seems to be in disagreement with previous studies by
Craig & Watson (1992) who claim that finite gas pressure can
preclude the fast reconnection rate. At present we do not fully
understand the differences between our results and those of
Craig & Watson. It should be noted, however, with the two-
dimensional X-point equilibrium B2 ~r? and the radial
dependence of B is f(r) ~ B/r. Therefore, the plasma is domi-
nated by thermal pressure for r < r, even for extremely low
values of B > S™1 at the boundary. For the present example
B(r = r,) = 103! In addition, VP does not even appear in the
basic low-f theory (Craig & McClymont 1991; Hassam 1992),
and to the extent that this assumption approximates the essen-
tial physics, one would expect that the thermal pressure would
not be important. It is evident that additional finite-f studies
are needed in particular with more realistic magnetic field con-
figuration (e.g., including finite B, component).

5. SUMMARY AND DISCUSSION

We have derived the linear dispersion relation for the relax-
ation rate of an X-type neutral point with frozen-in boundary
conditions for modes with any value of m. The asymptotic
reconnection rate for m = 0 modes scales as (log S)~ 2 in agree-
ment with previous studies (Hassam 1992; Craig & McCly-
mont 1991). When the m > 0 modes are present, large currents
are generated atr ~ r,, where r, = S~ 1/? and the perturbations
relax through the coupling of the fluid motions to the magnetic
field via the j x B force at an asymptotic rate that scales as (log
S)~3 in agreement with Craig & McClymont (1993). Although
the m > 0 modes do not reconnect at r = 0, they can generate
additional X-points away from the origin at the separatrices.

Numerical solution of the dispersion relation agrees with the
asymptotic expressions for the decay rate. We have solved the
nonlinear incompressible resistive two-dimensional MHD
equations (2.9) and (2.10) in slab geometry using the ADI
method. The computations were initiated with small, nearly
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azimuthally symmetric perturbations of Y, with ¢ =0, for
several values of the magnetic Reynolds number in the range
102 < S <4 x 10*. We have found that the perturbations
decay in agreement with the linear dispersion relation for
n = m = 0 modes. Namely, for large S the decay rate obtained
from the incompressible MHD simulations scales as (log S) 2.

We have solved the compressible resistive two-dimensional
MHD equations in the (r, 0) plane using the Lax-Wendroff
differencing scheme with § =104, $=0.1, and m=0, 1, 2
initial perturbations. We have found that with frozen-in
boundary conditions the perturbed X-point relaxes to the
potential X-point in agreement with the linearly predicted
evolution. By obtaining the Liapunov functional of the
current-free X -point with frozen-in boundaries we showed that
this is an equilibrium configuration to which all perturbed
states must relax (see Appendix).

The reconnection rate obtained from the linear theory and
the nonlinear simulations is faster than the Sweet (1958) and
Parker (1963) n'/? rate, but slower than the Petschek (1964)
Alfvénic driven reconnection rate. The m > 0 modes relax
faster than the m = 0 modes for S < 10*. For typical solar
parameters (S = 10'4), the m = 0 modes reconnect and dissi-
pate most of their energy within a 100 Alfvén times, while the
m = 1, 2 modes have a relaxation time which is an order of
magnitude longer.

It is important to point out that the boundary conditions

‘can play a crucial role in determining the reconnection rate. In

the present study we imposed the frozen-in boundary condi-
tions and obtained the fast reconnection rate in both com-
pressible and incompressible solutions, and the predictions of
the linear model appears to hold even for plasmas of finite gas
pressure. We have shown how a perturbed X-point equi-
librium subject to the frozen-in boundary conditions relaxes
back to an equilibrium. Our linear analytic solutions would
not be obtained without the form of boundary conditions used,
which is also the case for the earlier studies by Hassam (1992),
Craig & McClymont (1991, 1993), and Craig & Watson (1991).
We followed the analytic study with numerical simulations of
the MHD equations with more physics included than was in
the linear study. Our simulations verified the linear results and
also showed that the fast relaxation rate was not substantially
affected by thermodynamic effects, such as pressure gradients.
However, there are a couple of very important points to bear in
mind in attempting to compare these results with other simula-
tion studies (e.g., Biskamp 1986) or to apply them to various
physical phenomena, such as the solar flare. First of all, there is
absolutely no reason to expect that these results for the form of
boundary conditions used would have any relation to other
studies either for open boundaries or for driven reconnection
where an inflow is imposed on the boundary. In fact, the work
by Ofman (1992) and Steinolfson et al. (1992) shows dramat-
ically different results for this problem when the boundary
conditions are open. Similarly, these results would not neces-
sarily apply to steady state reconnection. Finally, a relaxation
phenomenon such as that considered here would not have
immediate application to an explosive phenomenon such as a
solar flare.

One of us (L. O.) would like to thank F. Porcelli for useful
discussions. Another of us (P. J. M.) would like to acknowledge
a conversation with A. Hassam that instigated the calculation
in the Appendix. This work was supported by the US Depart-
ment of Energy contract DE-FGO05-80ET-53088 and the
National Science Foundation contract ATM-90-15705.
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APPENDIX
LIAPUNOV RELAXATION FOR INCOMPRESSIBLE MHD

In this appendix we present a formal Liapunov functional stability argument, which indicates that perturbations about the
X-point equilibrium of equation (2.8) relaxes back to the original equilibrium state. The arguments used are akin to those employed
for the well-known Boltzmann H-theorem of kinetic theory, which demonstrates relaxation to thermal equilibrium. Namely, if one
can find a function, say H, defined on the state space of such a system, where contours of H are nested closed surfaces about the
equilibrium point, which is a minimum, and where the time derivative dH/dt < 0 and vanishes only on the equilibrium point, then
Liapunov’s theorem guarantees asymptotic stability; i.e., the system approaches the equilibrium point as time approaches infinity.

The dynamics considered here is determined by the partial differential equations of incompressible MHD, equations (2.9) and
(2.10), where viscous dissipation is included; i.e., V>w/Sy, where S, is a dimensionless parameter that measures the effect of viscosity
and is added to the right-hand side of equation (2.10). A general two-dimensional fixed spatial domain D is considered here (for the
simulations D corresponds to the box of size 2x,,,,, X 2y,..,)- Recall the ideal fluid boundary condition is

max

A

v'A| =0=>¢

oD

= constant =0, (A1)

oD

where D denotes the boundary of the region D and 7 is the unit outward normal of D. When viscosity is included, the appropriate
additional boundary condition is

vf| =e,xVop- i
oD

=h-V¢| =0, (A2)

oD

oD

where £ is the unit tangent vector to the curve defining D. For the magnetic field we made use of the frozen-in boundary condition

¥

=¥, (A3)
oD

which is equivalent to

Y| =constant =0. (A4)

oD

Now we will show that the following energy-type functional satisfies the above requirements for Liapunov stability:

H[¢,y1 =3 L(IV¢|2 +1Vy [dx . (AS)

The functional H is positive definite with an extremal point satisfying

OH[ ¢, y; 69, Y] = —L(qub 3¢ + V2 sy)d®x + éD(qu 0¢p + Vyoy) -iids=0, (A6)

where the divergence theorem in two dimensions has been used. Note, s denotes the arc length that parametrizes the curve
describing the boundary of D. Since it is assumed that ¢ and s are constant on D, ¢ and 6y vanish on the boundary and equation
(A6) implies

Vi =0

A7

Vi =0. (A7)
In light of the boundary conditions, the solution of equations (A7) is ¢ =0 and ¥ = 0; ie., the extremal point is the unique
equilibrium point ¢ = 0 and ¥ = ;. Evidently, the equilibrium point is a minimum since H is positive definite. (H in fact defines a
norm on the space of functions that satisfy the boundary conditions. Thus, H > 0 assures strong positivity, i.e., convexity.) Now
consider the time derivative of H,

2 2
A = —f <J— + w—)dzx +3€ [<¢>V % +yVv i + ¢Vo — wV¢> A+ (JoVY — wdpVP) * f}ds . (AB)
dt b\S Sy .~ ot ot

Here use has been made of equations (2.9) and (2.10) and again the divergence theorem in two dimensions. Because of the
boundary conditions the surface terms of equation (A8) vanish. The first term vanishes either because of the ideal conditions ¢ = 0
or because of 7i + V¢ = 0, while the second term vanishes because of the frozen condition ¥ = 0. Similarly, the third, fifth, and sixth
terms vanish because of the ideal boundary condition ¢ = 0. However, the fourth term requires the nonideal condition 7 * V¢ = 0.
When these conditions are met, equation (A8) becomes

dH J2 o o?) ,
o —L <§+S—V>d X . (A9)
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Thus we see that dH/dt < 0 and vanishes when J = @ = 0, which are precisely the conditions for the equilibrium point as given by

equation (A7).

We would like to point out that the above derivation will hold for any harmonic (current-free) equilibrium state, provided that the

boundary conditions (A1)—(A4) are satisfied.

In the simulations viscosity is quite small, so that it does not influence the dynamics during relaxation. Since the simulations were
initialized with no perturbed velocity, the role of viscosity is minimal as the current decays resistively.
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