
Nonlinear evolution of resistive tearing mode instability with shear flow 
and viscosity 

L Ofmana) and P J Morrison . . 
Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 

R. S. Steinolfson 
Department of Space Sciences, Southwest Research Institute, San Antonio, Texas 78228 

(Received 25 March 1992; accepted for publication 2 October 1992) 

The nonlinear evolution of the tearing mode instability with equilibrium shear flow is 
investigated via numerical solutions of the resistive magnetohydrodynamic (MHD) equations. 
The two-dimensional simulations are in slab geometry, are periodic in the x direction, 
and are initiated with solutions of the linearized MHD equations. The magnetic Reynolds 
number S was varied from lo* to 105, a parameter V that measures the strength of 
the flow in units of the average AlfvCn speed was varied from 0 to 0.5, and the viscosity as 
measured by the Reynolds number S, satisfied S,> 103. When the shear flow is small 
(F’cO.3) the tearing mode saturates within one resistive time, while for larger flows the 
nonlinear saturation develops on a longer time scale. The two-dimensional spatial 
structure of both the flux function and the streamfunction distort in the direction of the 
equilibrium flow. The magnetic energy release decreases and the saturation time increases with 
V for both small and large resistivity. Shear flow decreases the saturated magnetic island 
width, and generates currents far from the tearing layer. The validity of the numerical solutions 
was tested by verifying that the total energy and the magnetic helicity are conserved. 
The results of the present study suggest that equilibrium shear flow may improve the 
confinment of tokamak plasma. 

I. INTRODUCTION 

The resistive tearing instability is an important phe- 
nomenon in laboratory and space plasma and was first 
studied in its linear regime by Furth et al. i The instability 
grows in a narrow layer of the plasma where the resistivity 
term dominates the local magnetic field term in Ohm’s law 
and thereby allows the field lines to tear or reconnect and 
form magnetic islands. The linear growth rate of the tear- 
ing mode scales as S-3’5 where S is the magnetic Reynolds 
number (defined below ) . 

Large shear flows have been observed between the 
magnetic footpoints of solar flares as well as along field 
lines* where tearing and reconnection may occur.3 The an- 
alytic linear theory of the tearing mode with equilibrium 
shear flow and viscosity has been considered by several 
authors.“8 These studies conclude that flows approaching 
the AlfvCn velocity can greatly modify the stability criteria 
of the tearing instability. This was also shown to hold nu- 
merically in the linear regime for the tearing mode.9-‘2 

Nonlinear saturation of the tearing mode without flow 
occurs within one or several growth times, and the growth 
slows from exponential to algebraic.13 Numerical evolution 
of the nonlinear tearing mode (without flow) in slab ge- 
ometry was studied by Schnack14 and Schnack and 
Killeenls using the finite-difference alternative-direction 
implicit (ADI) approach. The energetics, growth rate, and 
spatial behavior for several values of resistivity and for 
both constant-@ and nonconstant+ regimes of the tearing 
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mode without flow were investigated by Steinolfson and 
Van Hoven. I6 

The efI’ect of plasma rotation on the nonlinear tearing 
mode was considered recently by Persson and Bondeson17 
and Persson.‘*‘19 They solved the reduced magnetohydro- 
dynamic (MHD) equations with the spectral approach us- 
ing up to seven modes, and found that when flow is suffi- 
ciently strong, the viscosity sufficiently small, and only the 
m=2/n= 1 and m=4/n =2 modes are present, the non- 
linear evolution of the tearing mode can lead to nonlinear 
oscillatory behavior. A single value of the magnetic Rey- 
nolds number (S= 106) was used in their studies. These 
nonlinear oscillations were obtained analytically by Chen 
and Morrison*’ using center manifold reduction. 

The effect of shear flow on the nonlinear evolution of 
the tearing mode is investigated numerically in the present 
study via solution of the incompressible two-dimensional 
resistive MHD equations in slab geometry (rather than 
reduced MHD equations) using the finite-difference AD1 
method. The nonlinear tearing mode (without shear flow) 
studies by Steinolfson and Van Hoven16 are extended to 
include the effects of shear flow. The work of Persson’**i9 
and Persson and Bondeson’7 is extended to include the 
higher resistivity range with values of the magnetic Rey- 
nolds number 102<S<105. The finite difference approach 
in this work is not limited to the small number of modes 
used in the previous works and enables us to study the 
effect of shear flow on the energy distribution, the energy 
dissipation, and the nonlinear growth rate of the tearing 
mode. 

This is a first study of the effect of both symmetric and 
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antisymmetric (with respect to the resonant magnetic sur- 
face) shear flow profiles on the nonlinear energy release, 
and on the saturated magnetic island width of the tearing 
mode for wide parameter range. This is also a first study of 
the effect of the shear flow on the nonlinear growth rates 
and energy dissipation. We tind that the presence of equi- 
librium shear flow can reduce the amount of magnetic en- 
ergy release, increase the saturation time (reduce the non- 
linear growth rate), and reduce the saturated magnetic 
island width. The nonlinear saturation of the tearing mode 
with shear flow in the higher resistivity and viscosity range 
(S< 105,S,> 103) is generally monotonic in time, and no 
sustained nonlinear oscillations are found in our studies. 

The paper is organized as follows: In Sec. II the non- 
linear MHD equations in slab geometry, the initial mag- 
netic field configuration, the equilibrium flow profiles, and 
the relevant conservation relations are presented. In Sec. 
III we present the numerical method of solution. Section 
IV is devoted to the numerical results, and a summary is 
given in Sec. V. 

II. MHD EQUATIONS 

We assume that collisional MHD theory is 
applicable,“’ that the plasma is incompressible with con- 
stant isotropic resistivity q and constant perpendicular vis- 
cosity $*,22 and that gravitational effects are negligible. The 
basic equations in cgs units are 

i 
av 1 

p +v*V)v =--VP+~~(vxB)xB+pyv:.~, 
(19 

aB 
z=VX (vxB9 -2 vx (VXB), (2) 

V*v=O, V-B-0, (39 
where c is the speed of light, p is the constant plasma 
density, B is the magnetic field, v is the plasma velocity, 
and P is the plasma pressure. We use Cartesian geometry 
(with unit vectors e,, eY, and e,) and choose equilibrium 
magnetic and velocity fields of the form 

B=&(y9e,-tVl $xe,=VL We,, (49 

v=v&)e,+VL Sxe,=VL Qxe,, (59 
where Y and Q, are the total flux function and streamfunc- 
tion, and $ and d, are the flux function and streamfunction 
relative to the equilibrium quantities Bc and ue. 

Substituting Eqs. (4) and (5) in Eqs. ( I)-( 39, taking 
the curl of Eq. ( 1)) thus eliminating the pressure P, and 
considering the e, - eY components in dimensionless form 
gives the following 2-D (two-dimensional) MHD equa- 
tions 

$--($+G) :+($+F) g+;v; q,, (6) 

a(V; $9 
av 

where Vf =a2/dx2+a2/dy2 and a/&=0. We have also 
assumed that the equilibrium magnetic field is maintained 
by an external electric field, and we imagine that the equi- 
librium flow is similarly maintained. The coordinates are 
referenced to the magnetic shear length scale a,,, the time 
to the Alfvtn time rh (given below), and magnetic field to 
B= I Wv,,,9 I, where-v,, is the distance from the tearing 
layer to they boundary. 

The dimensionless parameters are the magnetic Rey- 
nolds number s=T,/rh, the viscous Reynolds number 
s,,=ry/rh, and the shear parameter R =aJau, where a, is 
the velocity shear length scale. The relevant time scales in 
these definitions are the resistive time 7, the AlfvCn time 
rh, and the viscous time rv given by 

ab(4rp) 1’2 45-a; Pa3 
‘i-h= B ’ 7,=-y--, 

crl 
TV=-. 

V 
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FIG. 1. The initial equilibrium magnetic field and flow. (a) The tanh 
dependence on y of Bn and v,,. (b) Equilibrium flow profiles G(y) and 
their derivatives used in the present work. 
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The quantities F and G are the normalized equilibrium 
magnetic and velocity fields, respectively, in the x direc- 
tion. We assume that F is given by 

F(Y) =tanh(y9 (89 
and present results for each of the following velocity pro- 
files, 

G(y) = V tanh (Ry) Pa9 
or 

G(y) = V[ 1 -sech(Ry) J, (9b) 

where V is the velocity parameter in units of the Alfvtn 
velocity V,. Hereafter we refer to Eq. (9a) as the tanh 
velocity profile and to Eq. (9b) as the sech velocity profile. 
The geometry of the tearing mode in Cartesian coordinates 
and the equilibrium quantities are shown in Fig. 1. In Fig. 
l(a), the tanh velocity profile is shown, thus u. and B. 
have the same dependence on y (although their scales may 
differ). The two flow profiles and their derivatives (i.e., 
flow shear) are shown in Fig. 1 (b). It is evident that the 
tanh flow profile has the largest shear at y= 0 (the tearing 
layer), and the sech flow has the largest shear away from 
the tearing layer. 

Resistive reconnection of the B,, component of the 
magnetic field across the tearing layer is measured by the 
change in the magnetic flux across y=O: 

A&(t) s Xmax s I 0 
$ Ilr(XP,O,?) Idx’, 

where x,,, is one period for the periodic boundary condi- 
tions. The nonlinear growth rate p(t) is given by 

p(t)= 1 a --A&t). 
A&(t) at 

The growth rate calculated from Eq. ( 11) agrees with that 
for linear tearing (when the instability is in the linear re- 
gime) for both V=O and V#0.1”‘6 Additional relevant 
quantities are the changes of the magnetic and kinetic en- 
ergies relative to the equilibrium values, i.e., 

Al&(t) = fzy r [ (F+$)I+ @2-,], dy, 

(124 

AE,W = Jyzr s,“̂  [ ( G+$)~+ g)‘-~]dx +. 

(12b) 

The total magnetic and kinetic energy 

-&t(f) =Wdt9 +.h&(t9 +&,+EK,, (12c9 
where EM0 and EKo are the initial magnetic and kinetic 
energies stored in the equilibrium shear flow and magnetic 
field. Because of resistive and viscous dissipation ,!&, sat- 
isfies 

+2 1:: j-F (-5 (J-F’) -&a-G')), 

(134 

where J= -V2$ is the nonequilibrium current in the z 
direction, and w= -V2~ is the nonequilibrium vorticity. 
The resistive dissipation of the magnetic helicity as given 
by 

d Ymax Xmax 
z 

Lrnin s, $dxdy=-; s”“” ~;m”Jdxdy (I=) 
Ymin 

is also of interest. Equations ( 13a) and ( 13b) are valid for 
periodic x and zero y boundary conditions and are used as 
a means of estimating the quality of the numerical solu- 
tions by comparing the calculated values of the rhs and the 
lhs of the equations. Equation ( 13a) is also used to esti- 
mate the effective viscous dissipation that arises in the nu- 
merical solution of the MHD equations. 

Ill. METHOD OF SOLUTION 

We initiate the nonlinear computations with the solu- 
tions of the linearized version of Eqs. (6) and (7).” The 
amplitude factors of the linearized growing solutions are 
chosen so that the nonlinear terms as calculated from the 
linear 4, and Z,!J become comparable in magnitude to the 
linear terms. This procedure insures that the nonlinear 
code is initiated at an amplitude where the subsequent ev- 
olution of the mode is in the nonlinear regime.16 In this 
study the normalized spatial wave number a=2~/,% was 
0.5, which implies that the size of the longest wavelength ,l. 
in the x direction is 47r in units of ah An alternating- 
direction implicit (ADI) finite-difference technique was 
used to obtain the nonlinear evolution. The solutions are 
first advanced one half time step in the x direction using 
the initial linear solutions. Next, the solutions are ad- 
vanced another half time step in the y direction using the 
finite difference results in the x direction from the previous 
half time step. This procedure for a single time step is 
repeated until the full temporal evolution is obtained. In 
the x direction the finite difference form of Eqs. (6) and 
(7) is given by the following: 

- O” f “* + (a@&+ Gj) (s@‘/T 1’2 + ( Gy - Sy~zj) S&$ 1’2 At ‘91 

+ (Sy~j+Fj)S~,f1’2-(F;I-S~,j)‘x,f”2 

=-$ o;j++ (S;+s;)w;j, Y 
where At=t,+,-t,, and 

(14b9 
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~ j= - (S~+$>~ ,~  O~ j= - ( (6~+S~)~~ i .  

T h e  gr id  spac ing  in  the x d i rect ion is uni form, thus the 
finite d i f ferences a re  g iven  by  

s ~  =&+ l , j -G-1J  
x L i  2 A x  ’ 

621//t  .= fl+  l,jv2flfi+ fl- IJ 
x b j  (Ax j2  ’ 

w h e r e  Ax=b (X i+ r  -xI-r), wh i le  in  the y d i rect ion 

l  $ j+ l -  
4 4 $ , = ~  

( 

4{ j+f l j -$ j - l  

Y j +  l -Y j  1  Y j -Y j -1  ' 

$ lq j=  2  
(  

f l j+l-$j-Rj-$/- I  

Y j+ l -Y j -1  Y j+ l -Y j  )  Y j -Y j -1  . 

T h e  var iab le  gr id  spac ing  Ayj=yj+l -y j  expands  f rom a  
m i n i m u m  of A y m i n = 1 0 - 3  at the tear ing layer  to 
A Y ,,, -  -0 .5 n e a r  the computa t iona l  boundar ies  accord ing  
to the prescr ipt ion 

w h e r e  j,,,,, deno tes  the b o u n d a r y  gr id  point .  U p  to 2 0 0  gr id  
points  in  the y d i rect ion a n d  u p  to 6 4  gr id  points  in  the x 
d i rect ion w e r e  used.  Constant  gr id  spac ing  in  the y d i rec-  
t ion was  a lso u s e d  for low S  values.  Four th -order  
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smooth ingz3  was  app l ied  to the solut ions a w a y  f rom the 
tear ing layer.  E q u a t ions (14a)  a n d  ( 1 4 b )  a re  wri t ten in  
t r id iagonal  form 

--A; U$; ,$” +  B ; U$-  “’ - q  q:;,F =  o;;i, (15)  

w h e r e  A , B , a n d  C  a re  2x2  m a trices, a n d  U  a n d  D  a re  
two-d imens iona l  vectors. E q u a t ion (15)  is so lved for U  
us ing  Gauss ian  el iminat ion.  For  the next  hal f  tim e  step 
n -n+ ;  a n d  n+i - tn+ l  in  the a b o v e  E q . (15) ,  a n d  the 
solut ions a re  a d v a n c e d  o n e  tim e  step. T h e  b o u n d a r y  con-  
di t ions a re  @ b =  fy,,,,,) = 0  a n d  # (y=  fy,,,) = 0 , w h e r e  
Y  m a x  is the d is tance to the b o u n d a r y  f rom the tear ing layer,  
a n d  bo th  IJ a n d  $J  a re  per iod ic  in  the x direct ion. B e c a u s e  of 
the p resence  of the symmetry  b reak ing  equ i l ib r ium shear  
f low, o n e  cannot  use  the simpl i fy ing symmetry  assump-  
t ions that e n a b l e  the solut ions of the M H D  equat ions  to b e  
compu ted  in  one-quar te r  of the present  domain .  l6  Also,  the 
impos ing  of the per iod ic  b o u n d a r y  condi t ions requ i res  o n e  
to pass  th rough  the m e s h  three tim e s  for e a c h  in tegrat ion 
in  the x d i rect ion.14 On ly  two passes  th rough  the m e s h  a re  
necessary  in  the nonper iod ic  y direct ion. 

For  a  fully implicit  s c h e m e  the tim e  step A t is l imi ted 
by  A t <  A X /V ,,,, w h e r e  V ,,, is the max ima l  A l fven 
velocity a n y w h e r e  o n  the gr id .24 In ou r  case  the terms 
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FIG. 2. Spat ia l  d e p e n d e n c e  of the f lux funct ion a n d  s t reamfunct ion with S =  102,  a n d  tanh equ i l ib r ium f low prof i le.  (a)  T h e  f lux funct ion $  with Y - O . 1  
( top f igure)  a n d  V = O . 2  (bot tom f igure).  (b)  T h e  s t reamfunct ion 4  with V = O .l ( top f igure)  a n d  V = O .2 (bot tom f igure).  
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FIG. 3. Spatial dependence of the flux function and streamfunction with S= lo’, and sech equilibrium flow profile. (a) The flux function $ with Y=O.l 
(top figure) and Y=O.5 (bottom figure). (b) The streamfunction d, with Y=O.l (top figure) and Y=O.S (bottom figure). 

higher than second order are treated explicitly, and it has 
been found that the relation At < Ax/2 gives satisfactory 
results. When nonconstant grid spacing is used, Ax is one 
or several orders of magnitude larger than Ay across the 
tearing layer. Reasonable computation times on a Cray II 
for S as large as lo6 are possible with this technique. A 
typical run with S= lo4 takes about 30 min of CPU time. 

IV. NUMERICAL RESULTS 

We initiate the nonlinear evolution with a single linear 
mode in the x direction. The size of the computational 
domain in the x direction is determined by the normalized 
wavelength a = kpb of the linear mode. We use 
a=O.S(x,,, = 2?r/a = 497) to initiate the calculations. The 
phase shift between J, and 4 in the linear stage is caused by 
the equilibrium shear flow. Detailed treatments of the lin- 
ear tearing mode with flow are given in Einaudi and 
Rubini’*” and Ofman et al. ” 

In Figs. 2-12 we examine the spatial structure and the 
temporal evolution of the nonlinear tearing mode with 
flow. In these runs the parameters were S= lo*, 104, lo*, 
R=0.73, a=0.5, and the flow parameter was V=O, 0.1, 
0.2, 0.3, 0.5 for the tanh flow profile, while Y=O. 1, 0.5 for 
the sech flow profile. 

The spatial variations of t,!t, 4, Y, and Q, and the cur- 
rent J,=J-F’ after two resistive times, normalized to 
their respective maximal values, are shown in Figs. 2-6. In 
Fig. 2 the equilibrium shear flow is the tanh velocity pro- 
file, with V=O.l and V=O.2. In Fig. 3 the equilibrium 
shear flow is the sech velocity profile with V=O.l and 
V=O.5. The other parameters for both cases are S= lo*, 
R=0.73, and a=0.5. When V=O, $ is symmetric with 
respect to the x and y axes, while 4 is antisymmetric in 
both the linear and nonlinear regimes. When flow is 
present, this symmetry is broken and the perturbations 
align themselves with the equilibrium flow. Namely, in Fig. 
2, J, and $J deform in opposite directions with respect to the 
x axis, and the distortion away from the tearing layer in- 
creases with K Similar alignment with the flow occurs for 
sech equilibrium in Fig. 3, but for larger V the values of $ 
and 4 are distorted more near the tearing layer (where the 
shear is zero) than away from it, in agreement with the 
stabilizing effect of higher shear regions [see Fig. 1 (b)] as 
expected from the linear theory.7t8 

The contour lines of the total flux function and stream- 
function for the tanh flow profile at t= 200~~, with V=O.5 
and S= 100, are shown in Fig. 4. The velocity and the 
magnetic field lines are parallel to the contours of Y and Cp. 
The magnetic field lines exhibit the saturated island struc- 
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FIG. 4. The total flux function Y and the total streamfunction Cp with 
V=OS, S= lo’, and the tanh flow profile. 

ture, where the island width is an order of magnitude 
larger than the linear tearing layer scale length’ j 

E= [aF’(0)S]-“3. (16) 
Similar island structures ‘appear in-the contour plot of Q>. 
The appearance of, the streamfunction is different from the 
standard case’ due to the presence of the equilibrium shear 
flow. Namely, instead of the four contra-rotating flow. vary 
tices, an island (similar to the magnetic island) is formecl 
in the flow pattern of the plasma. Note that therx point in 
the center of the contour plot of & is distorted in’agree- 
ment with the structure of 4 in Fig. 2’(b j and S&li distor- 
tion of the magnetic x point appears in the’contour plot of 
Y. 

We present the low-resistivity solutions with S&i@, .:. 
V-0.1, and the sech flow profile at t=2000Th in Fig. 5. In 
Fig. 5 (a) contours of Y and Cp are shown, while in Fig. 
5(b) the contours of 111 and 4 are displayed. The saturated 
magnetic island structure is evident’in the contours of Y. 
The width of the islands is an order of magnitude larger 
than the linear tearing layer scale length E with similar 
parameters. For S= lo4 both the tearing layer width and 
the island width are smaller than for S= lo* as expected 
from the linear E scaling with resistivity: The appearance of 
sharp features along they axis indicates the narrow tearing 
layer. It is interesting to compare the contours of 1F, in Fig. 

5(b) to the contours of 9 in Fig. 3 (a). In both figures 
similar sharp features form along they axis, indicating that 
the tearing layer is narrow compared to- the high- 
resistivity, low-shear-flow cases. In Fig. 5(b) this is due to 
the low resistivity (S= lo4 with V=O. 1 ), while in Fig. 
3(a) this is due to the high shear flow ( V=O.5 with 
S= 102). For the sech profile the flow near. the y axis is 
small compared to the flow away from the y axis, and thus 
the contour of @ shows a relatively flat region of width ab 
along the y axis, where 4 and its vortices are dominant. 
The effect of the narrow boundary layer is clearly seen in 
Fig. 5(b). 

The dependence of the saturated magnetic island width 
Won the tanh and sech shear flow profiles is shown in Fig. 
6. The top two curves are for S= lo*, and the bottom two 
curves are for S= 103. When V=O the saturated magnetic 
island width W= 3.3ab When the flow is tanh and S= lo’, 
V=O.5, the width of the magnetic islands- decreases by 
50% with respect to the V=O case. The effect of the sech 
flow is smaller for the same S and V, and W decreases by 
25%. When S=103 the V=O saturated island width is 
2.4a,,. When small shear flow is present W decreases rap- 
idly, while larger flow E-O.3 does not affect the island 
width considerably. This is consistent with the transition 
from the S-*” linear growth rate scaling for the V=O 
tearing mode’ to the S-“* linear growth rate scaling when 
the shear flow is comparable to the magnetic shear.7 The 
tanh flow shear profile G’ (y) peaks at the resonant surface, 
while for sech flow profile G’(y) has extrema outside the 
resonant surface, hence, the island growth is reduced more 
effectively by ‘the tanh flow profile [see Fig. 1 (b)]. 

The current JT for V=O and V=O.3 (tanh velocity 
profile), is shown in Fig..7. When V=O the current& sym- 
metric with respect to the x and y axes and its maximum 
Jrmax occurs near, the center of the slab and poi,nts in the 
negative z’direction. When ??=0.3 the current’has,a more 
coml&ated tw&dimensional structure, again aligned with 
the.equilibrium-flow. Additional regionsof significant cur- 
rent appear far from the tearing layer, around y= ~2.5 
with IJT(x,2.5)/JTmax 1 - 0.2, thus the flow generates sig- 
nificant currents in the external regions of the tearing 
mode. 

Figure 8 depicts the temporal evolution of the growth 
rate, the reconnected flux, and the perturbed magnetic, 
kinetic, and total energies for eight resistive times (SOOr,) 
with V=O.l, the tanh flow profile, and S=lO*. In Fig. 
8 (a) we present the temporal evolution of the growth rate 
(curve A) and the reconnected flux (curve B) . Initially the 
growth rate calculated from Eq. ( 11) corresponds to the 
linear growth calculated directly from the exponential 
growth of the solutions,” and the reconnected flux grows 
exponentially with time. After 107, the gro$wth rate drops 
considerably and the reconnected flux grows linearly with 
time as expected in the Rutherford regime.13’After another 
100~~ the growth of the reconnected flux slows to less than 
the linear rate. After 4007, the mode saturates completely, 
and the amount of the’reconnected flux remains practically 
constant with, time. .The growth rate contii;‘ues .to decrease 
at an exponential rate. 
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In Fig. 8 (b) curve A represents the change of the mag- 
netic energy in the x component of the magnetic field 
AEMX [defined by setting +Vdx=O in Eq. (laa)], while 
curve B represents the change of the magnetic energy in 
they component, AEM,, (defined by AEm= AEMx+ AEM,,). 
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FIG. 6. The dependence of the saturated island width on Y for S= 10’ 
with sech Row profile (full circles) and tanh flow profile (empty circles), 
and for S= lo3 with sech flow profile (full triangles) and tanh flow profile 
(empty triangles). 
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Curve C corresponds to the total change of the magnetic 
and kinetic energies hEto,= AE,+ AEk All these quanti- 
ties are presented on a log scale, thus their absolute values 
are shown-AEf, and AE,,, are negative for most of the 
evolution time indicating energy loss. The changes of sign 
of AE,, and AE,, appear as sharp minima at tz5 and 
tzz30, respectively. Most of the transfer of energy occurs 
from the x component of the magnetic field to the y com- 
ponent (curve B) and to resistive dissipation. A small frac- 
tion of AEMY is transferred to the kinetic energies (see 
Table I). The change of the kinetic energies AEK in Fig. 
8 (c) is initially comparable in magnitude (but opposite in 
sign) to AE,, but after about one resistive time AEKX sat- 
urates at values an order of magnitude smaller than AEni, 
and the transition from exponential to linear growth occurs 
in a time t< 100rk, when AEKy is an order of magnitude 
smaller than AEKx. 

In Fig. 9 we compare the change in the magnetic and 
total energies for the cases V=O.2 and V=O.3 with 
S= 102. For V=O.3 the rate of change of the energies is 
initially (t < 100~~) lower than for V=O.2, but after the 
growth saturates the changes occur at similar rates. The 
initial wiggling of the total energy is due to transient effects 
that arise when the nonlinear code is initiated with the 
linear solutions. The total energy release of the tearing 
mode with V=O.3 is only 60% of the energy released when 
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FIG. 7. Contours of the current J= - V’tl, with V=O.O (top figure) and 
V=O.3 (bottom figure), and the tanh flow profile with S=102. 

V=O.2. This decrease of energy release with increasing V 
is a trend seen in all runs as evidenced in Table I. 

The case where S= 104, V=O.5, with the tanh equilib- 
rium flow profile is presented in Fig. 9 up to a time 2000rh. 
The temporal behavior of the S= lo4 case is similar to the 
S= 10’ case but, as expected from the lower resistivity, 
proceeds on a longer time scale. The absolute values of the 
magnetic and total energy changes are shown in Fig. 
10(a). Note that the change of sign of E,,, (curve C) 
occurs at -700~~ that is about an order of magnitude 
smaller than for S= 10’. This is consistent with the linear 
growth rate scaling of S- “’ for the tearing mode with 
flow. In Fig. 10(b) total energy dissipation (curve A) is 
compared to the resistive dissipation (curve B) . Due to an 
initial transient instability, the total energy dissipation ex- 
hibits rapid oscillations that decay within several hundred 
AlfvCn times, and the evolution proceeds with the resistive 
dissipation being significantly larger than the dissipation 
due to numericalviscosity. This is verified by comparing 
the calculated resistive dissipation term to the total energy 
dissipation term in Bq. ( 13a). The quantities AE,, and 
AEKy are shown in Fig. 10(c). The initial exponential 
growth slows down after only 5OOr,, and the nonlinear 
effects are evident. The change [n the kinetic energies after 
1000~ is an order of magnitude lower than the change in 
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the magnetic energies in Fig. lO( a), thus the energy release 
is dominated by resistive effects. Nonlinear saturation of 
the growth rate (curve A) and the reconnected flux (curve 
B)- are presented in Fig. lO( d) . The growth rate defined in 
Eq. ( 11) decreases by a factor of 2 after 2000~~ and the 
slower than exponential growth of the reconnected flux is 
evident after 5007,. This is consistent with the tendency 
toward nonlinear saturation of the energies in Figs. 10(a) 
and 10(b). 

In Fig. 11 we present the temporal evolution of the 
energies for S= lo’, V=OS, and the tanh flow profile. The 
initial AE,, is 1.5 times larger than AE,, in the case 
where S= 104, and it becomes negative after - 17OOrh. Its 
slower evolution is consistent with the S-1’2 linear growth 
rate scaling, and, due to the large resistive time, the non- 
linear effects are still not significant after 20007, or 0.02~~ 
The kinetic energies in Fig. 11 (b) evolve with the corre- 
sponding linear growth rate. From the previous results for 
S= lo2 and S= 104, it is evident that the nonlinear satura- 
tion becomes significant on a time scale of 0.17, that cor- 
responds to 104r/, for S= 105. 

The distribution of energies at saturation for several 
values of V with the tanh and sech equilibrium flow are 
presented in- Fig. 12 and at t=200r, (S=102) and 
t=20007, (S= 10’) in Table I. The calculated distribution 
of energies for the cases with V=O agrees with the results 
obtained by Steinolfson and Van Hoven.16 The dependence 
of the energies on V with S= lo2 at t=500rh is shown in 
Fig. 12. When S= lo2 (as noted above) the change in the 
magnetic energy decreases with V [Fig. 12(a)], while the 
change in the kinetic energy increases with V [Fig. 12(b)]. 
When V=O.3 and the tanh flow profile, the release of the 
magnetic energy AEMX and the change in total energy 
hErot are more than three times lower than that for V=O. 
At the same time, AE,, increased by about one order of 
magnitude and AEKy increased by a factor of -35. When 
V is varied in the presence of the sech equilibrium flow 
profile, the absolute values of AE,,- AEM,,, and AE,,, vary 
at a slower rate than in the presence of the tanh equilib- 
rium flow profile. When C-O.3 the decrease of energy 
release slows down and does not change significantly up to 
V=O.5. This is consistent with the larger saturated mag- 

.netic island width obtained with the sech flow profile than 
with the tanh flow profile for the same parameter valiieS 
and the leveling off of the saturated island width for 
V>O.3 (see Fig. 6). 

When S= 10” (see Table I) and V=O:5 the release of 
the magnetic energy at t=2000rh is 25% of .AE,, when 
V=O.l and less than one-fifth of energy released without 
equilibrium flow. When V=Q.5 the change in the kinetic 
energies is an order of magnitude smaller than the change 
in the magnetic energy, and, when V=O.l, AEK is two 
orders of magnitude smaller than AEM The kinetic energy 
is even less significant when V=O. 

Figure 13 is devoted to the calculation of the conser- 
vation relations of Eqs. ( 13a) and ( 13b). As a test of the- 
overall behavior of the numerical code we calcuiated the 
temporal change in the total energy, and the magnetic he- 
licity for V=O.3 with the tanh profile, and compared it to 
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the resistive dissipation according to Eqs. (13a) and actual viscosity in the code was estimated using the energy 
( 13b). After an initial transit period of -207, a very good conservation relation [Eqs. ( 13a) and ( 13b)] and was 
agreement is seen between the calculated energy dissipa- found to be S,= 1.2X lo3 for this case. The calculated val- 
tion and the resistive dissipation. The initial ( 6  307,) en- ues of S, were found to depend strongly on the amount of 
ergy discrepancy is due to transient numerical solutions the numerical fourth-order smoothing applied to the solu- 
excited initially in the nonlinear code. The value of the tions, and were in the range 103-105. In the case of helicity 

TABLE I. The change in the magnetic, kinetic, and total energies. 

V 

0.0 
tanh flow profile 
0.1 
0.2 
0.3 

0.0 
tanh flow profile 
0.1 
0.5 
sech flow profile 
0.1 
0.5 

A&X A-%~ A&.X AEiry Wet 

s= 102, t= 2OOQ 

-0.192 0.488 0.94x 10-2 0.73 x 10-3 -0.294 

-0.482 0.305 1.24x 10-J 2.71~10-~ -0.162 
-0.296 0.189 1.76x 1O-2 5.71x10-3 --f&37x10-* 
-0.237 0.153 2.58x lo-* 9.86x W 3  -4.83X 10-z 

s= 104, t=2ocaq 

-9.11 x10-2 4.38x lo-’ 1.44x 10-S 4.74x 10-P -4.73x 10-Z 

-4.38x IO-’ 1.85 x lo--’ 6.90x lo-’ 1.41 x 1o-4 -2.45x 1o-2 
-1.27x IO-’ 4.89x 1O-3 1.48x lo-” 8.94x lO-4 -5.54x lo-3 

-6.35x lo-* 2.84x IO-’ 9.28x IO-’ 4.30x 10-S -3.49x 10-Z 
- 1.58~ 1O-2 7.38~ 1O-5 6.13 x 1O-4 1.32x 1O-4 ---7.65x 1O-3 
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the conservation was two orders of magnitude better than 
the resistive energy dissipation. 

V. SUMMARY 

We have extended the nonlinear tearing studies of Stei- 
nolfson and Van Hoven16 to include the effects of shear 
flow. We  have also extended the studies by Persson18*‘9 and 
Persson and Bondeson” using the finite-difference AD1 
method (which is not limited to a small number of modes 
as in the Persson’8*‘9 and Persson and Bondeson” studies) 
to solve the 2-D incompressible resistive MHD equations 
in slab geometry. We  have studied the effect of both sym- 
metric and antisymmetric shear flow profiles on the mag- 
netic and kinetic energies, and on the saturated magnetic 
island width of the tearing mode in the lower resistivity 
range. In the parameter range of our studies the tearing 
mode was found to saturate monotonically to a quasi- 
steady-state rather than an oscillatory state as found by 
Persson18*‘9 and Persson and Bondeson.” The saturated 
island width was found to decrease by 80% when shear 
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FIG. 10. The nonlinear evolution of the S= IO4 and V=O.5 tearing mode with the tanh equilibrium flow profile. (a) The change in the x component 
and in they component of the magnetic energy AE,,,. The change in the total energy AE,,,. (b) The total energy dissipation dE,,,/dt and the dissipation 
calculated from the rhs of Eq. (13a). (c) The change in the x component and in they component of the kinetic energy AE,. (d) The temporal evolution 
of the growth rate p and the reconnected flux A$. 
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flow is present ( V> 0.3, S= 103, and the tanh flow profile). 
It has been found that the suppression of the magnetic 
island growth due to the tanh flow profile was significantly 
larger (up to - 50% more of island width reduction) than 
the effect of the sech flow profile. 

We  have investigated the effect of equilibrium shear 
flow on the evolution of the nonlinear tearing mode, via 
numerical solution of incompressible resistive MHD equa- 
tions, with V ranging up to OS?‘,, and 10z~S<105. The 
perturbed flow function and streamfunction lose the sym- 
metries of the V=O tearing mode and are found to distort 
in the direction of the equilibrium shear flow. Their mode 
structure in the x direction, determined initially by the 
linear wave number a, is not greatly affected during the 
nonlinear evolution. Additional currents are generated far 
from the tearing layer by the presence of relatively small 
shear flow, in agreement with the Iinear result that flow has 
a significant effect on the external region of the tearing 
mode. The amount of the released magnetic energy de- 
creased with increasing Y by more than 50%, for both 
low-resistivity (S= 104) and high-resistivity (S= IO’) 
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tearing. Exponential decrease of the growth rate with time 
occurred in all the calculated cases; its time scale was pri- 
marily determined by the resistivity and the shear flow. 
Empirically the growth rate can be approximated by 

-m P=aPii@ , t>to, (171 

where piin is the linear growth rate, tozr,, a=CJ(l), and 
/S=P(S,V,S,) for a given a, R, and flow profile. Nonlinear 
saturation of the energies was found to become significant 
after 0.1 r, The change in the kinetic energy was seen to be 
two orders of magnitude lower than the magnetic energy 
release for small V, and one order of magnitude lower for 
large V=O.5. The total energy and helicity dissipation 
were calculated and found to agree with Eqs. (13a) and 
(13b). 

A velocity shear layer was observed to form naturally 
at a boundary region of magnetically confined plasma.25*26 
One potential application of the present results is to explain 
the experimental observations of the improved confinement 
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FIG. 13. The energy dissipation as calculated from the lhs of Eq. (13a) 
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associated with the increase of the velocity shear at the 
edge region of the tokamak.27 An additional potential ap- 
plication is to flaring loops, a phenomenon that occurs 
when magnetic flux tubes rise through the sheared mag- 
netic fields of solar active regions. The loops often have 
flows parallel to their axis? and, hence, most likely parallel 
to the-magnetic field. It is well known that the growth of 
the usual tearing mode without flow and with classical 
dissipation is an order of magnitude too slow to explain the 
rapid energy release in such loops.“’ The growth rate can 
be increased, of course, if the dissipative effects are some- 
how increased by nonclassical effects, such as turbulence. 
However, no generally accepted theory has been developed 
for such enhanced dissipation. Therefore, at least for clas- 
sical dissipation, the present results predict that the tearing 
mode is even less likely to play a role in the energy release 
in flaring loops with flows. 

ACKNOWLEDGMENTS 

This work was supported by U.S. Department of En- 
ergy Contract No. DE-FGO5-80ET-53088 and National 
Science Foundation Contract No. ATM-90-1 5705. 

‘H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6, 459 
(1963). 

*H. Wang and H. Ziin, BAAS 22, 2 (1990). 
3E. R. Priest, Solar Magnetohydrodynamics (Reidel, Dordrecht, The 
Netherlands, 1985). 

4R. B. Paris and W . N.-C. Sy, Phys. Fluids 26, 2966 (1983). 
‘M. Dobrowolny, P. Veltri, and A. Mangeney, J. Plasma Phys. 29, 303 

(1983). 

6F. Porcelli, Phys. Fluids 30, 1734 (1987). 
‘X. L. Chen and P. J. Morrison, Phys. Fluids B 2, 495 (1990). 
ax. L. Chen and P. J. Morrison, Phys. Fluids B 2, 2575 (1990). 
9G. Einaudi and F. Rubini, Phys. Fluids 29, 2563 (1986). 
*cG. Einaudi and F. Rubini, Phys. Fluids B 1, 2224 (1989). 
“L. Ofman, X. L. Chen, P. J. Morrison, and R. S. Steinolfson, Phys. 

Fluids B 3, 1364 (1991). 
r2L. Ofman, Phys. Fluids B 4, 275 1 (1992). 
13P. H. Rutherford, Phys. Fluids 16, 1903 (1973). 
14D D. Schnack, Ph.D. thesis, University of California, Davis, 1977. 
i5D: D. Schnack and J. Killeen, Nucl. Fusion 19, 877 (1979). 
16R. S. Steinolfson and G. Van Hoven, Phys. Fluids 27, 1207 (1984). 
“M. Persson and A. Bondeson, Phys. Fluids B 2, 2315 (1990). 
‘*M. Persson, Ph.D. thesis, Chalmers University of Technology, Gate- 

berg, 1987. 
19M. Persson, Nucl. Fusion 31, 382 (1991). 
“X. L. Chen and P. J. Morrison, Phys. Fluids B 4, 845 ( 1992). 
*‘J. F. Drake and Y. C. Lee, Phys. Fluids 20, 134 (1977). 
22S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965). 
z3H. R. Strauss, J. Comput. Phys. 28, 437 (1978). 
24P. L. Pritchett, Y. C. Lee, and J. F. Drake, Phys. Fluids 23, 1368 

(1980). 

“C. Hildago, J. H. Harris, T. Uckan, J. D. Bell, B. A. Carreras, J. L. 
Dunlap, G. R. Dyer, C. P. Ritz, A. J. Wotton, M. A. Meier, T. L. 
Rhodes, and K. Carter, Nucl. Fusion 31, 1471 (1991). 

26R. J. Groebner, K. H. Burrell, and R. P. Seraydarian, Phys. Rev. Lett. 
64, 3015 (1990). 

27H. Y. W . Tsui, H. Lin, M. Meier, C. Ritz, and A. J. Wotton, in Pro- 
ceedings of the I8th European Conference on Controlled Fusion and 
Plasma Physics, Berlin (European Physical Society, Geneva, 1991), 
Vol. 15C, Part I, p. 297. 

“E. R. Priest, Solar Flare Magnetohydrodynamics (Gordon and Breach, 
New York, 1981), Chap. 5. 

“P. Sturrock, Solar Flares (Colorado Associated University Press, Boul- 
der, CO, 1980), pp. 83-117. 

387 Phys. Fluids B, Vol. 5, No. 2, February 1993 Ofman, Morrison, and Steinolfson 387 

Downloaded 17 Dec 2009 to 128.83.61.179. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp


