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The nonlinear evolution of the tearing mode instability with equilibrium shear flow is
investigated via numerical solutions of the resistive magnetohydrodynamic (MHD) equations.
The two-dimensional simulations are in slab geometry, are periodic in the x direction,

and are initiated with solutions of the linearized MHD equations. The magnetic Reynolds
number S was varied from 10° to 10°, a parameter ¥ that measures the strength of

the flow in units of the average Alfvén speed was varied from O to 0.5, and the viscosity as
measured by the Reynolds number S, satisfied S, > 10°. When the shear flow is small
(¥'<0.3) the tearing mode saturates within one resistive time, while for larger flows the
nonlinear saturation develops on a longer time scale. The two-dimensional spatial

structure of both the flux function and the streamfunction distort in the direction of the
equilibrium flow. The magnetic energy release decreases and the saturation time increases with
V for both small and large resistivity. Shear flow decreases the saturated magnetic island ’
width, and generates currents far from the tearing layer. The validity of the numerical solutions
was tested by verifying that the total energy and the magnetic helicity are conserved.

The results of the present study suggest that equilibrium shear flow may improve the

confinment of tokamak plasma.

I. INTRODUCTION

The resistive tearing instability is an important phe-
nomenon in laboratory and space plasma and was first
studied in its linear regime by Furth ez L' The instability
grows in a narrow layer of the plasma where the resistivity
term dominates the local magnetic field term in Ohm’s law
and thereby allows the field lines to tear or reconnect and
form magnetic islands. The linear growth rate of the tear-
ing mode scales as S~ where S is the magnetic Reynolds
number (defined below).

Large shear flows have been observed between the
magnetic footpoints of solar flares as well as along field
lines” where tearing and reconnection may occur.’ The an-
alytic linear theory of the tearing mode with equilibrium
shear flow and viscosity has been considered by several
authors.*® These studies conclude that flows approaching
the Alfvén velocity can greatly modify the stability criteria
of the tearing instability. This was also shown to hold nu-
merically in the linear regime for the tearing mode.*'?

Nonlinear saturation of the tearing mode without flow
occurs within one or several growth times, and the growth
slows from exponential to algebraic.'? Numerical evolution
of the nonlinear tearing mode (without flow) in slab ge-
ometry was studied by Schnack'* and Schnack and
Killeen'® using the finite-difference alternative-direction
implicit (ADI) approach. The energetics, growth rate, and
spatial behavior for several values of resistivity and for
both constant-i and nonconstant-i regimes of the tearing
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mode without flow were investigated by Steinolfson and
Van Hoven.!®

The effect of plasma rotation on the nonlinear tearing
mode was considered recently by Persson and Bondeson!’
and Persson.'®!® They solved the reduced magnetohydro-
dynamic (MHD) equations with the spectral approach us-
ing up to seven modes, and found that when flow is suffi-
ciently strong, the viscosity sufficiently small, and only the
m=2/n=1 and m=4/n=2 modes are present, the non-
linear evolution of the tearing mode can lead to nonlinear
oscillatory behavior. A single value of the magnetic Rey-
nolds number (.S=10%) was used in their studies. These
nonlinear oscillations were obtained analytically by Chen
and Morrison? using center manifold reduction.

The effect of shear flow on the nonlinear evolution of
the tearing mode is investigated numerically in the present
study via solution of the incompressible two-dimensional
resistive MHD equations in slab geometry (rather than
reduced MHD equations) using the finite-difference ADI
method. The nonlinear tearing mode (without shear flow)
studies by Steinolfson and Van Hoven!® are extended to
include the effects of shear flow. The work of Persson!®'*
and Persson and Bondeson'” is extended to include the
higher resistivity range with values of the magnetic Rey-
nolds number 10°<S<10°. The finite difference approach
in this work is not limited to the small number of modes
used in the previous works and enables us to study the
effect of shear flow on the energy distribution, the energy
dissipation, and the nonlinear growth rate of the tearing
mode.

This is a first study of the effect of both symmetric and
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antisymmetric (with respect to the resonant magnetic sur-
face) shear flow profiles on the nonlinear energy release,
and on the saturated magnetic island width of the tearing
mode for wide parameter range. This is also a first study of
the effect of the shear flow on the nonlinear growth rates
and energy dissipation. We find that the presence of equi-
librium shear flow can reduce the amount of magnetic en-
ergy release, increase the saturation time (reduce the non-
linear growth rate), and reduce the saturated magnetic
island width. The nonlinear saturation of the tearing mode
with shear flow in the higher resistivity and viscosity range
(S< IOS,S,,> 10%) is generally monotonic in time, and no
sustained nonlinear oscillations are found in our studies.

The paper is organized as follows: In Sec. II the non-
linear MHD equations in slab geometry, the initial mag-
netic field configuration, the equilibrium flow profiles, and
the relevant conservation relations are presented. In Sec.
111 we present the numerical method of solution. Section
1V is devoted to the numerical results, and a summary is
given in Sec. V.

Il. MHD EQUATIONS

We assume that collisional MHD theory is
applicable,”! that the plasma is incompressible with con-
stant isotropic resistivity 7 and constant perpendicular vis-
cosity v,%% and that gravitational effects are negligible. The
basic equations in cgs units are

av 1 2
p(5;+ (v-V)v) = VP4 (VXB)XB+pViv,

(1)

cn
27 = VX (YXB) ~7— VX (VXB), (2)
V-v=0, V-B=0, (3)

where c¢ is the speed of light, p is the constant plasma
density, B is the magnetic field, v is the plasma velocity,
and P is the plasma pressure. We use Cartesian geometry
(with unit vectors e, ey, and e,) and choose equilibrium
magnetic and velocity fields of the form

B=BO(y)ex+Vl ¢Xezsvl \pxez ’ : (4)

v=v0(y)ex+vL ¢xez

where ¥ and ® are the total flux function and streamfunc-
tion, and 3 and ¢ are the flux function and streamfunction
relative to the equilibrium quantities By and vy,

Substituting Eqs. (4) and (5) in Egs. (1)-(3), taking
the curl of Eq. (1), thus eliminating the pressure P, and
considering the e,—e, components in dimensionless form
gives the following 2-D (two-dimensional) MHD equa-
tions

) 3¢ ap (3 ¢
a(ar9)ar oty ©

EV,L q)xez’ (5)
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Vi) _ (%, )2 (V2 §) a¢(d2G (V2 )
at \dy ' ) odx < ax\dyf Iy )
A AVEY) By (dF (V)
+(5;+F ) ox  ax (dy TG )

+——V &, )

where V? =8%/9x*+3%/3dy* and 8/9z=0. We have also
assumed that the equilibrium magnetic field is maintained
by an external electric field, and we imagine that the equi-
librium flow is similarly maintained. The coordinates are
referenced to the magnetic shear length scale g, the time
to the Alfvén time 7, (given below), and magnetic field to
B=|By(¥max) | » Wwhere y,,, is the distance from the tearing
layer to the y boundary.

The dimensionless parameters are the magnetic Rey-
nolds number S=+,/7;, the viscous Reynolds number
S,=r,/Ty;, and the shear parameter R=gqa,/a,, where q, is
the velocity shear length scale. The relevant time scales in
these definitions are the resistive time 7,, the Alfvén time
75, and the viscous time 7, given by

7__ab(47rp)1/2 T_41Ta% . P
=T Ty ey

By =By(y) ex

Vo= vo(y) ex

(a)

G, (y)=V(1-sech(Ry)] dy

Equilibrium Flow, G(Va)

G, (y)=Vtanh(Ry)

® y(a,)

FIG. 1. The initial equilibrium magnetic field and flow. (a) The tanh
dependence on y of By and v,. (b) Equilibrium flow profiles G(y) and
their derivatives used in the present work.
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The quantities F and G are the normalized equilibrium
magnetic and velocity fields, respectively, in the x direc-
tion. We assume that F is given by

F(y)=tanh(y) (8)

and present results for each of the following velocity pro-
files,

G(y) =V tanh(Ry) (9a)

or

G(y)=

where V is the velocity parameter in units of the Alfvén
velocity V,. Hereafter we refer to Eq. (9a) as the tanh
velacity profile and to Eq. (9b) as the sech velocity profile.
The geometry of the tearing mode in Cartesian coordinates
and the equilibrium quantities are shown in Fig. 1. In Fig.
1(a), the tanh velocity profile is shown, thus v, and B,
have the same dependence on y (although their scales may
differ). The two flow profiles and their derivatives (i.e.,
flow shear) are shown in Fig. 1(b). It is evident that the
tanh flow profile has the largest shear at y=0 (the tearing
layer), and the sech flow has the largest shear away from
the tearing layer.

Resistive reconnection of the B, component of the
magnetic field across the tearing layer is measured by the
change in the magnetic flux across y=0:

Aq,\)(z)EJmax
0

where x,,, is one period for the periodic boundary condi-
tions. The nonlinear growth rate p(z) is given by

V[1—sech(Ry)], (9b)

d
3 V00 |, (10)

p()= b(1). (11)

AD(1) ot
The growth rate calculated from Eq. {11) agrees with that
for linear tearing (when the instability is in the linear re-
gime) for both ¥'=0 and V=£0.'"'® Additional relevant
quantities are the changes of the magnetic and kinetic en-
ergies relative to the equilibrium values, i.e.,

max max 2 atp F2 d d
stuo= [ [ (re) + (3] -l
(12a)
max [ *max 2 a¢ 2
AEK(r)_f f {( ) +(£) —G?|dx dy.
Ymin (12b)
The total magnetic and kinetic energy
Etot(t)=AEM(I)+AEK(I)+EM0+EK0, (120)

where Ej and Ejy, are the initial magnetic and kinetic
energies stored in the equilibrium shear flow and magnetic
field. Because of resistive and viscous dissipation E,, sat-
isfies
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dEtot mas  { *max J J_F 1 G
2™ [ (-5U-Fr-gete-0n)

min (133)

where J= —V?%} is the nonequilibrium current in the z
direction, and w=—V2¢ is the nonequilibrium vorticity.
The resistive dissipation of the magnetic helicity as given
by

Ymax max VYmax  { *max
f Ydxdy=—< f f Jdxdy (13b)
dt 0

Ymin Ymin

is also of interest. Equations (13a) and (13b) are valid for
periodic x and zero p boundary conditions and are used as
a means of estimating the quality of the numerical solu-
tions by comparing the calculated values of the rhs and the
Ihs of the equations. Equation (13a) is also used to esti-
mate the effective viscous dissipation that arises in the nu-
merical solution of the MHD equations.

li. METHOD OF SOLUTION

We initiate the nonlinear computations with the solu-
tions of the linearized version of Egs. (6) and (7)." The
amplitude factors of the linearized growing solutions are
chosen so that the nonlinear terms as calculated from the
linear ¢ and ¥ become comparable in magnitude to the
linear terms. This procedure insures that the nonlinear
code is initiated at an amplitude where the subsequent ev-
olution of the mode is in the nonlinear regime.!® In this
study the normalized spatial wave number a=27/A was
0.5, which implies that the size of the longest wavelength A
in the x direction is 47 in units of @, An alternating-
direction implicit (ADI) finite-difference technique was
used to obtain the nonlinear evolution. The solutions are
first advanced one half time step in the x direction using
the initial linear solutions. Next, the solutions are ad-
vanced another half time step in the y direction using the
finite difference results in the x direction from the previous
half time step. This procedure for a single time step is
repeated until the full temporal evolution is obtained. In
the x direction the finite difference form of Egs. (6) and
(7) is given by the following:

At ‘/”:+1/2+G,3x ,-,}-*'Vz-—-F/Sxthfm—f—S zph;{—l/laﬁﬁj

1
- y'//itja@:;fl/z:m ‘l’:{j—g Jijp (14a)

At nj—l/2+(8y¢”+G )axa)!l+1/2+(GH 5ya)ll)ax¢n+l/2

+ (8 +F )8 A= (F) =801 )8

2 1
=5 @ty (548w, (14b)
¥
where At=t,,,—1t,, and
Ofman, Morrison, and Steinolfson 378

Downloaded 17 Dec 2009 to 128.83.61.179. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp




Ti=— (848D, ofj=— (834 8))¢%,

The grid spacing in the x direction is uniform, thus the
finite differences are given by

. ¢?+1,j“‘%”i'—1, i
TV

where Ax=3(x;,;—x;_1), while in the y direction

5.0 1('//5”1—1//5;_}_%1“ i,f—l),

72 YVir1—Y; Yi—Yi—1

2 (V=¥ YY)
y =Y\ Vie1—Y;  ViVia1 )
The variable grid spacing Ay;=y;;,—y; expands from a
minimum of Ay,,=10"3 "at the tearing layer to
Ay =0.5 near the computational boundaries according

=vsmax

to the prescription

W2

2
H Sx i (Ax)?. H

o2 n
¥,

ij= AYinax (AVmin/ BYmax) Cma =D/ Umax=1),

where j,,,, denotes the boundary grid point. Up to 200 grid
points in the y direction and up to 64 grid points in the x
direction were used. Constant grid spacing in the p direc-
tion was also used for low S wvalues. Fourth-order

y L TG @/ S
/

1
'
1

o

N
A°

(a)

smoothing® was applied to the solutions away from the
tearing layer. Equations (14a) and (14b) are written in
tridiagonal form

~ UL+ BUT - GUL =D, (15)

i—1,j ™
where 4, B, and C are 2X2 matrices, and U and D are
two-dimensional vectors. Equation (15) is solved for U
using Gaussian elimination. For the next half time step
n—n+3iand n+3-n+1 in the above Eq. (15), and the
solutions are advanced one time step. The boundary con-
ditions are {/(y= % Ypa) =0 and ¢(y= £yn,,) =0, where
Ymay is the distance to the boundary from the tearing layer,
and both ¢ and ¢ are periodic in the x direction. Because of
the presence of the symmetry breaking equilibrium shear
flow, one cannot use the simplifying symmetry assump-
tions that enable the solutions of the MHD equations to be
computed in one-guarter of the nresent domain.!® Also, the

omputed in one-quarter of the present domain. Also, the
imposing of the periodic boundary conditions requires one
to pass through the mesh three times for each integration
in the x direction.!* Only two passes through the mesh are
necessary in the nonperiodic y direction. _

For a fully implicit scheme the time step Az is limited
by At<Ax/V,.. where V., is the maximal Alfvén
velocity anywhere on the grid.24 In our case the terms

(b)

FIG. 2. Spatial dependence of the flux function and streamfunction with S=10% and tanh equilibrium flow profile. (a) The fiux function ¢ with ¥=0.1
(top figure) and ¥'=0.2 (bottom figure). (b) The streamfunction ¢ with ¥'=0.1 (top figure) and ¥'=0.2 (bottom figure).
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FIG. 3. Spatial dependence of the flux function and streamfunction with S= 10% and sech equilibrium flow profile. (a) The flux function ¥ with ¥=0.1
(top figure) and ¥'=0.5 (bottom figure). (b) The streamfunction ¢ with ¥'=0.1 (top figure) and ¥=0.5 (bottom figure).

higher than second order are treated explicitly, and it has
been found that the relation Az <Ax/2 gives satisfactory
results. When nonconstant grid spacing is used, Ax is one
or several orders of magnitude larger than Ay across the
tearing layer. Reasonable computation times on a Cray II
for S as large as 10° are possible with this technique. A
typical run with S=10* takes about 30 min of CPU time.

IV. NUMERICAL RESULTS

We initiate the nonlinear evolution with a single linear
mode in the x direction. The size of the computational
domain in the x direction is determined by the normalized
wavelength a=k,a, of the linear mode. We use
a=0.5(x,,,=27/a=41) to initiate the calculations. The
phase shift between ¢ and ¢ in the linear stage is caused by
the equilibrium shear flow. Detailed treatments of the lin-
ear tearing mode with flow are given in Einaudi and
Rubini®'® and Ofman et al."!

In Figs. 2-12 we examine the spatial structure and the
temporal evolution of the nonlinear tearing mode with
flow. In these runs the parameters were S= 10%, 104, 10°,
R=0.73, a=0.5, and the flow parameter was V=0, 0.1,
0.2, 0.3, 0.5 for the tanh flow profile, while ¥'=0.1, 0.5 for
the sech flow profile.

380 Phys. Fluids B, Vol. 5, No. 2, February 1993

The spatial variations of 1, ¢, ¥, and ®, and the cur-
rent Jy=J—F"' after two resistive times, normalized to
their respective maximal values, are shown in Figs. 2-6. In
Fig. 2 the equilibrium shear flow is the tanh velocity pro-
file, with ¥'=0.1 and ¥'=0.2. In Fig. 3 the equilibrium
shear flow is the sech velocity profile with ¥=0.1 and
V=0.5. The other parameters for both cases are S=10?,
R=0.73, and a=0.5. When V=0, ¢ is symmetric with
respect to the x and y axes, while ¢ is antisymmetric in
both the linear and nonlinear regimes. When flow is
present, this symmetry is broken and the perturbations
align themselves with the equilibrium flow. Namely, in Fig.
2, ¥ and ¢ deform in opposite directions with respect to the
x axis, and the distortion away from the tearing layer in-
creases with V. Similar alignment with the flow occurs for
sech equilibrium in Fig. 3, but for larger ¥ the values of ¢
and ¢ are distorted more near the tearing layer (where the
shear is zero) than away from it, in agreement with the
stabilizing effect of higher shear regions [see Fig. 1(b)] as
expected from the linear theory.”?

The contour lines of the total flux function and stream-
function for the tanh flow profile at t=2007,, with ¥=0.5
and S=100, are shown in Fig. 4. The velocity and the
magnetic field lines are parallel to the contours of ¥ and &.
The magnetic field lines exhibit the saturated island struc-
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PSI total

PHI total

FIG. 4. The total flux function ¥ and the total streamfunctlon & with
¥=0.5, S=10?, and the tanh flow profile.

ture, where the island width is an order of magnitude
larger than the linear tearing layer scale length? ,

e=[aF’'(0)S]~13.- 7 (16)

Similar island structures appear in the contour plot of ®.
The appearance of the streamfunction is different from the
standard case! due to the presence of the equilibrium shear
flow. Namely, instead of the four contra-rotating flow vor-

tices, an island (similar to the magnetic island) is formed' '

in the flow pattern of the plasma. Note that the x pomt in
the center of the contour plot of <1) is distorted in agree-
ment with the structure of ¢ in Fig. 2(b) and smali distor-
tion of the magnetic x point appears in the contour plot of
., e - .

' 'We present the low-resistivity solutions with = 10%,
¥=0.1, and the sech flow profile at #=-20007,, in Fig. 5. In
Fig. 5(a) contours of ¥ and ® are shown, while in Fig.
5(b) the contours of ¥ and ¢ dre displayed. The saturated
magnetic island structure is evident in the contours of W.
The width of the islands is an order of magnitude larger
than the linear tearing layer scale léngth € with similar
parameters. For S=10* both the tearing layer width and
the island width are smaller than for §=10% as expected
from the linear € scaling with resistivity. The appearance of
sharp features along the y axis indicates the narrow tearing
layer. It is ifiteresting to compare the contours of ¢ in Fig.
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5(b) to the contours of ¥ in Fig. 3(a). In both figures
similar sharp features form along the y axis, indicating that
the tearing layer is narrow compared - to the -high-
resistivity, low-shear-flow cases. In Fig. 5(b) this is due to
the low. resistivity ($§=10* with ¥'=0.1), while in Fig.
3(a) this is due to the high shear flow (¥V'=0.5 with
S= 102). For the sech profile the flow near the y axis is
small compared to the flow away from the y axis, and thus
the contour of @ shows a relatively flat region of width a,
along the y axis, where ¢ and its vortices are dominant.
The effect of the narrow boundary layer is clearly seen in
Fig. 5(b).

The dependence of the saturated magnetic island width
W on the tanh and sech shear flow profiles is shown in Fig.
6. The top two curves are for S= 107, and the bottom two
curves are for §=10°. When V=0 the saturated magnetic
island width W=3.3a,. When the flow is tanh and =10,
V=0.5, the width of the magnetic islands decreases by
50% with respect to the V=0 case. The effect of the sech
flow is smaller for the same S and ¥V, and W decreases by
25%. When S=10 the V=0 saturated island width is
2.4a;,. When small shear flow is present W decreases rap-
idly, while larger flow 7' >0.3 does not affect the island
width considerably. This is consistent with the transition
from the S~%° linear growth rate scaling for the V=0
tearing mode! to the S~ 1“2 linear growth rate scaling when
the shear flow is comparable to the magnetic shear.” The
tanh flow shear profile G’ (») peaks at the resonant surface,-
while for sech flow profile G'(y) has extrema outside the
resonant surface, hence, the island growth is reduced more
effectively by the tanh flow profile [see Fig. 1(b)].

The current J; for ¥=0 and V'=0.3 (tanh velocity
profile), is shown in Fig. 7. When V=0 the current.is sym-
metric w1th respect to the x and » axes and its maximum
Jrmax. OCCUrs near the center of the slab and pomts in the
negat1ve z dlrectlon When V=0.3 the current has ‘a more
complicated two-dimensional structure, again ahgned with

- the’ equlhbrlum flow. Additional regions of significant cur-

rent appear far from the tearing layer, around y= £2.5
with |J7(x,2.5) /JTmax| ~ 0.2, thus the flow generates sig-
nificant currents in the external regions of the- fearing
mode.

Figure 8 depicts the temporal evolutlon of the growth
rate, the reconnected flux, and the perturbed magnetic,
kinetic, and total energies for eight resistive times (8007,)
with =0.1, the tanh flow profile, and S=10% In Fig.
8(a) we present the temporal evolution of the growth rate
(curve A) and the reconnected flux (curve B). Initially the
growth rate calculated from Eq. (11) corresponds to the
linear growth calculated directly from the exponential
growth of the solutions,!! and the reconnected flux grows
exponentially with time. After 107, the growth rate drops
considerably and the reconnected flux grows linearly with
time as expected in the Rutherford regime.!*> After another
1007, the growth of the reconnected flux slows to less than
the linear rate. After 4007, the mode saturates completely,
and the amount of the reconnected flux remains practicalij;

at an exponentlal rate

Ofman, Morrison, and Steinolfson 381.
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FIG. 5. Contours of the flux function and the streamfunction with ¥=0.1, $=10* and the sech flow profile: (a) ¥ and @, (b) ¢ and ¢.

In Fig. 8(b) curve A represents the change of the mag-
netic energy in the x component of the magnetic field
AE,,, [defined by setting d¢¥/dx=0 in Eq. (12a)], while
curve B represents the change of the magnetic energy in
the y component, AEy,, (defined by AEy =AE ., +AEy,,).

3.5
3 b .
o
<
— 25 F ————— o 3
e
5
i 2
° 2+
c
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2
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T
5 3
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FIG. 6. The dependence of the saturated island width on ¥ for S$=10?
with sech flow profile (full circles) and tanh flow profile (empty circles),
and for $=10° with sech flow profile (full triangles) and tanh flow profile
(empty triangles).
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Curve C corresponds to the total change of the magnetic
and kinetic energies AE,=AE,,+ AE;. All these quanti-
ties are presented on a log scale, thus their absolute values
are shown—AE,, and AE,, are negative for most of the
evolution time indicating energy loss. The changes of sign
of AE,, and AE,,, appear as sharp minima at =5 and
2230, respectively. Most of the transfer of energy occurs
from the x component of the magnetic field to the y com-
ponent (curve B) and to resistive dissipation. A small frac-
tion of AE),, is transferred to the kinetic energies (see
Table I). The change of the kinetic energies AEy in Fig.
8(c) is initially comparable in magnitude (but opposite in
sign) to AE), but after about one resistive time AEy, sat-
urates at values an order of magnitude smaller than AE,,,
and the transition from exponential to linear growth occurs
in a time #<1007,, when AEg, is an order of magnitude
smaller than AEj,.

In Fig. 9 we compare the change in the magnetic and
total emergies for the cases ¥=0.2 and V=03 with
S=10% For ¥'=0.3 the rate of change of the energies is
initially (#<1007,) lower than for ¥'=0.2, but after the
growth saturates the changes occur at similar rates. The
initial wiggling of the total energy is due to iransient effects
that arise when the nonlinear code is initiated with the
linear solutions. The total energy release of the tearing
mode with F'=0.3 is only 609 of the energy released when
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FIG. 7. Contours of the current J=— Vi with ¥=0.0 (top figure) and -

V=0.3 (bottom figure), and the tanh flow profile with S=10%

V'=0.2. This decrease of energy release with incréasing ¥
is a trend seen in all runs as evidenced in Table I. - -

The case where $=10% ¥'=0.5, with the tanh equilib-
rium flow profile is presented inl Fig. 9 up to a time 20007,
The temporal behavior of the S=10* case is similar to the
S=10% case but, as expected from the lower resistivity,
proceeds on a longer time scale. The absolute values of the
magnetic and total energy changes are shown in Fig.
10(a). Note that the change of sign of E,,; (curve C)
occurs at ~7007, that is about an order of magnitude
smaller than for §=10% This is consistent with the linear
growth rate scaling of ™2
flow. In Fig. 10(b) total energy dissipation (curve A) is
compared to the resistive dissipation (curve B). Due to an

initial transient instability, the total energy dissipation ex- -

hibits rapid oscillations that decay within several hundred
Alfvén times, and the evolution proceeds with the resistive
dissipation being significantly larger than the dissipation
due to numerical viscosity. This is verified by comparing
the calculated resistive dissipation term to the total energy
dissipation term in Eq. (13a). The quantities AEy, and
AEg, are shown in Fig. 10(c¢). The initial exponential
growth slows down after only 5007,, and the nonlinear
effects are evident. The change in the kinetic energies after
1000+, is an order of magnitude lower than the change in

383 Phys. Fluids B, Vol. 5, No. 2, February 1993

for the tearing mode with

the magnetic energies in Fig. 10(a), thus the energy release
is dominated by resistive effects. Nonlinear saturation of
the growth rate (curve A) and the reconnected flux (curve
B) are presented in Fig. 10(d). The growth rate defined in
Eq. (11) decreases by a factor of 2 after 20007, and the
slower than exponential growth of the reconnected flux is

- evident after 5007, This is consistent with the tendency

toward nonlinear saturation of the energies in Figs. 10(a)
and 10(b)."

In Fig. 11 we present the temporal evolution of the
energies for §= 10°%, ¥'==0.5, and the tanh flow profile. The
initial AE),, is 1.5 times larger than AE,,, in the case
where S=10% and it becomes negative after ~17007;. Its
slower evolution is consistent with the $~!/2 linear growth
rate scaling, and, due to the large resistive time, the non-
linear effects are still not significant after 20007, or 0.027,.
The kinetic energies in Fig. 11(b) evolve with the corre-
sponding linear growth rate. From the previous results for
S=10% and S=10% it is evident that the nonlinear satura-
tion becomes significant on a time scale of 0.1, that cor-
responds to 107, for §=10°

The distribution of energies at saturation for several
values of ¥ with the tanh and sech equilibrium flow are
presented in- Fig. 12 and at ¢=2007, (S=10%) and
t=20007; (S= 10*) in Table I. The calculated distribution
of energies for the cases with V=0 agrees with the results
obtained by Steinolfson and Van Hoven. 16 The dependence
of the energies on V with §=10% at t=>500r, is shown in
Fig. 12. When S=10? (as noted above) the change in the
magnetic energy decreases with ¥ [Fig. 12(a)], while the
change in the kinetic energy increases with ¥ [Fig. 12(b)].
When ¥V=0.3 and the tanh flow profile, the release of the
magnetic energy AE,, and the change in total energy
AE,, are more than three times lower than that for ¥'=0.
At the same time, AEy, increased by about one order of
magnitude and AEy, increased by a factor of ~35. When
V is varied in the presence of the sech equilibrium flow
profile, the absolute values of AE,,,, AE;,, and AE,, vary
at a slower rate than in the presence of the tanh equilib-
rium flow profile. When F>0.3 the decrease of energy
release slows down and does not change significantly up to
V'=0.5. This is consistent with the larger saturated mag-

netic island width obtained with the sech flow profile than
“with the tanh flow profile for the same parameter values

and the leveling off of the saturated island width for
V>0.3 (see Fig. 6).

When S=10* (see Table I) and V= 0 5 the release of
the magnetic energy at #==20007, is 25% of AE,,, when
V'=0.1 and less than one-fifth of energy released without
equilibrium flow. When ¥'=0.5 the change in the kinetic
energies is an order of magnitude smaller than the change

in the magnetic energy, and, when F=0.1, AEg i*s‘”gyzo
" “orders of magnitude smaller than AZ,,. The kinetic energy

is even less significant when V'=0.
~ Figure 13 is devoted to the calculation of the conser-

. vation relations of Egs. (13a) and (13b). As a test of the

overall behavior of the numerical code we calculated the
temporal change in the total energy, and the magnetic he-

- licity for ¥=0.3 with the tanh profile, and compared it to
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the resistive dissipation according to Egs. (13a) and  actual viscosity in the code was estimated using the energy
(13b). After an initial transit period of ~20r, a very good conservation relation [Eqgs. (13a) and (13b)] and was
agreement is seen between the calculated energy dissipa-  found to be §,=1.2x 10° for this case. The calculated val-
tion and the resistive dissipation. The initial ( $307,) en-  ues of S, were found to depend strongly on the amount of
ergy discrepancy is due to transient numerical solutions  the numerical fourth-order smoothing applied to the solu-
excited initially in the nonlinear code. The value of the  tions, and were in the range 10°-10°. In the case of helicity

TABLE 1. The change in the magnetic, kinetic, and total energies.

v AEy, AEy, AEy, AEg, AE,
S=10?, t=2007,

0.0 —0.792 0.488 0.94x 1072 0.73x 1073 —0.294

tanh flow profile

0.1 —0.482 0.305 1.24 1072 271x 1073 —~0.162

0.2 —0.296 0.189 1.76 x 102 571x10™? —837x 1072

0.3 —0.237 0.153 2.58x 1072 9.86 1073 —4.83x 1072

S=10% r=20007,

0.0 —9.11x 1072 4.38x 1072 1.44% 1073 4.74 %1077 —4.73x 102
tanh flow profile

0.1 —~4.38%10~? 1.85x 102 6.90x 10*% 14ix10-* —2.45% 102
0.5 —1.27x107? 4.89%x10~? 1.48x 102 8.94x10~* —5.54x10-%
sech flow profile

0.1 —6.35% 1072 2.84%10~? 9.28x10* 4.30x 103 —~3.49% 102
0.5 —1.58% 1072 7.38% 1073 6.13x10~* 1.32x10~* -7.65% 103
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10° — : 3 the conservation was two orders of magnitude better than
] the resistive energy dissipation.
7 V. SUMMARY
2102 . . . .
g0 ] We have extended the nonlinear tearing studies of Stei-
g - ] nolfson and Van Hoven'® to include the effects of shear
£ ) IAEyql V=02 3 flow. We have also extended the studies by Persson'®! and
3 ST ARy, : Persson and Bondeson!” using the finite-difference ADI
§1o" """"" jaE, | 4 method (which is not limited to a small number of modes
u —e—JAE,, ] V=0.3 as in the Persson'®!? and Persson and Bondeson!” studies)
L - e AR £ to solve the 2-D incompressible resistive MHD equations
: e lAR ] in slab geometry. We have studied the effect of both sym-
P T A PR metric and antisymmetric shear flow profiles on the mag-
0 40 80 120 160 200 netic and kinetic energies, and on the saturated magnetic
Time (z,) island width of the tearing mode in the lower resistivity
range. In the parameter range of our studies the tearing
mode was found to saturate monotonically to a quasi-
steady-state rather than an oscillatory state as found by
Persson'®!® and Persson and Bondeson.!” The saturated
FIG. 9. As in Fig. 8(b), but with ¥=0.2 and V=023, island width was found to decrease by 80% when shear
107! 102
tanh
V=0.5
s=10*
102 E
2 g 10° |
2 <
5 0%t 3
2 Ut 5
g :
€ L E
3 A
. 10~4 1 3
g g 10* | -
W w
-5
10 25 I £ AEK
- N y
L !
10—87,.1 |J_L¢_...l 10-5,,‘|..|...|4,.|...
0 400 800 . 1200  1600. 2000 © 0 400 800 1200 1600 2000
@ Time (t ) Time (c,)
10 5 e b 0' 1 1 0-1 —
N
:{,": Te10? L P 4102 &
£ < E
2 s A® 3
£10° L [ 2
£ £ 2
) H :
5 5 10° b —_— 410°? g
g \\\ E
& —— g, /dtl : —]
- - - -|dissipation|
DA N S B I T 10
o 400 800 1200 1600 2000 0 500 1000 1500 2000
(b) Time (t ) (d) Time ()

FIG. 10. The nonlinear evolution of the $==10* and F'=0.5 tearing mode with the tanh equilibrium flow profile. (a) The change in the x component
and in the y component of the magnetic energy AE,,. The change in the total energy AE,,. (b) The total energy dissipation dE,/dt and the dissipation
calculated from the rhs of Eq. (13a). (c) The change in the x component and in the y component of the kinetic energy AEy. (d) The temporal evolution
of the growth rate p and the reconnected flux Ad. '
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flow is present (¥ > 0.3, §=10% and the tanh flow profile).
It has been found that the suppression of the magnetic
island growth due to the tanh flow profile was significantly
larger (up to ~50% more of island width reduction) than
the effect of the sech flow profile.

We have investigated the effect of equilibrium shear
fiow on the evolution of the nonlinear tearing mode, via
numerical solution of incompressible resistive MHD equa-
tions, with ¥V ranging up to 0.5V, and 102<S<10°. The
perturbed flow function and streamfunction lose the sym-
metries of the ¥'=0 tearing mode and are found to distort
in the direction of the equilibrium shear flow. Their mode
structure in the x direction, determined initially by the
linear wave number «, is not greatly affected during the
nonlinear evolution. Additional currents are generated far
from the tearing layer by the presence of relatively small
shear flow, in agreement with the linear result that flow has
a significant effect on the external region of the tearing
mode. The amount of the released magnetic energy de-
creased with increasing ¥V by more than 50%, for both
low-resistivity (S=10% and high-resistivity (S=10?%)
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1= 5007, with §=107 on ¥ for the tanh and the sech flow profiles.

tearing. Exponential decrease of the growth rate with time
occurred in all the calculated cases; its time scale was pri-
marily determined by the resistivity and the shear flow.
Empirically the growth rate can be approximated by

(17)

where py, is the linear growth rate, t,~7,, a=0(1), and
B=B(S,V,S,) for a given q, R, and flow profile. Nonlinear
saturation of the energies was found to become significant
after 0.17,. The change in the kinetic energy was seen to be
two orders of magnitude Jower than the magnetic energy
release for small ¥, and one order of magnitude lower for
large ¥'=0.5. The total energy and helicity dissipation
were calculated and found to agree with Eqs. (13a) and
(13b).

A velocity shear layer was observed to form naturally
at a boundary region of magnetically confined plasma.?*%6
One potential application of the present results is to explain
the experimental observations of the improved confinement

P=apline—ﬁt’ 1>,
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FIG. 13. The energy dissipation as calculated from the lhs of Eq. (13a)
and the rhs of Eq. (13a) with S=10% and V=0.3.

associated with the increase of the velocity shear at the
edge region of the tokamak.?’ An additional potential ap-
plication is to flaring loops, a phenomenon that occurs
when magnetic flux tubes rise through the sheared mag-
netic fields of solar active regions. The loops often have
flows parallel to their axis?® and, hence, most likely parallel
to the magnetic field. It is well known that the growth of
the usual tearing mode without flow and with classical
dissipation is an order of magnitude too slow to explain the
rapid energy release in such loops.?” The growth rate can
be increased, of course, if the dissipative effects are some-
how increased by nonclassical effects, such as turbulence.
However, no generally accepted theory has been developed
for such enhanced diSsipation. Therefore, at least for clas-
sical dissipation, the present results predict that the tearing
mode is even /ess likely to play a role in the energy release
in flaring loops with flows. :
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