Nonlinear Processes in Physics

Proceedings of the III Potsdam – V Kiev Workshop at Clarkson University, Potsdam, NY, USA
August 1–11, 1991

With 41 Figures

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest
Preface

In 1979, a hist

Kiev, USSR,

proceses, met

vided the uniq

personally and

tance not only

phenomena in

At the end

due to the pol

materialized. I

Workshop. Th

with growing

noted that 40th

workshop on N

was V. Zakhar

Even earlie

meeting) on nc

shop had serv

in the USA. It

was a time in

Except for

nings where a la

turbulent proce

decided to hav

climate, it app

The III Pot

held at Clarks

sored by the Cl

Foundation, the

the US Office o

of Clarkson Ur

A.C. Newell an

This was th

scientists forme

participants out

on the interac
Drift Wave Vortices in Inhomogeneous Plasmas

W. Horton, X. Su, and P.J. Morrison

Institute for Fusion Studies and Department of Physics,
The University of Texas at Austin, Austin, TX 78712, USA

Drift wave turbulence in weakly driven or decaying states possesses strong correlations requiring the concept of a weakly correlated vortex gas. Recent progress on the effects of inhomogeneities on the structure, stability and lifetime of the vortices is reviewed. In particular, two cases (i) of a finite temperature gradient, and (ii) of a shearing of the magnetic field across the vortex structure are analyzed. A new formulation of drift wave turbulence proposed by Zakharov (1991) in terms of the separation of short and long scales is applied.

I. Rossby-Drift Wave Equations

In rotating fluids and magnetized plasmas the vortex state is an important structure that naturally arises. An example of such a long-lived structure is shown in Fig. 1, which is a weather map taken from the April 1, 1985 Los Angeles Times. The figure shows a cyclonic vortex with radius of 1000 km that produced severe cold weather for many days. In plasmas such vortex states are thought to be responsible for part of the anomalous transport measured in confinement systems. The fundamental equations for the dynamics of the slow neutral fluid flows on rotating planets and the $E \times B$ drift flows in inhomogeneous magnetized plasmas are isomorphic problems governed by what is now known as the Charney-Hasegawa-Mima equation (CHM). This important result was established by Hasegawa, McLennan and Kodama (1979) and Petviashvili (1980).

The reason for the coincidence of the two different systems and the conditions for the breakdown of the CHM are seen by considering the conservation laws

$$\frac{\partial n}{\partial t} + \mathbf{v} \cdot \nabla n + n \nabla \cdot \mathbf{v} = 0$$ \hspace{1cm} (1)

and

$$\frac{d\mathbf{v}}{dt} = -\nabla U + \mathbf{v} \times \Omega$$ \hspace{1cm} (2)
1. Large cyclonic vortex structure bringing heavy snow in late spring over the New York-Great Lakes area. The radius is approximately 1000 km and $\lambda = \delta p/p \approx 1/30$.

where for shallow water flows the conserved field $n \rightarrow H(x,y,t)$ — the depth of fluid layer and $U = gH(x,y,t)$ from the hydrostatic pressure $p = \rho g H$, while for plasmas, n is the ion density and $U = e\Phi/m$, where Φ is the electrostatic potential. On the rotating planet Ω is the Coriolis force parameter $\Omega = f = 2\Omega_p \sin \theta$, where θ is the latitude and $\Omega_p = 2\pi/T$ with T the period (day) for rotation, while for plasmas $\Omega = eB/m$ is the cyclotron frequency. Taking the rotational part of Eq. (2) and defining the vorticity as $\omega = \nabla \times v$ we obtain

$$\left(\frac{\partial}{\partial t} + v \cdot \nabla \right) (\Omega + \omega) = -\left(\nabla \cdot v \right) - (\Omega + \omega) \cdot \nabla v$$

and using Eq. (2) yields

$$\frac{1}{n} \frac{dn}{dt} + (\Omega + \omega) \cdot \nabla v = (\Omega + \omega) \cdot \nabla v.$$

Thus using the expansion (8) and

$$\text{where } q \text{ is the } q \text{ velocity, linear w.}$$
often a good approximation to drop this last term in Eq. (3), which describes the parallel compression of the fluid. Assuming \((\Omega + \omega) \cdot \nabla v_x \simeq \Omega \partial_t v_x\) is small, the parallel component of Eq. (3) gives Ertel's theorem

\[
\frac{d}{dt} \left(\frac{\nabla + \omega}{\bar{n}} \right) = 0
\]

(4)

where \(\omega = \partial_x v_y - \partial_y v_x\). The conservation law (4) gives the CHM equation when \(\omega\) is evaluated in the geostrophic or \(E \times B\) drift approximation and only linear gradients are taken into account.

A. Ordering for slow flow motions

For flows that evolve slowly compared with \(\Omega\) we introduce the small ordering parameter

\[
\epsilon = \frac{1}{\Omega} \frac{\partial}{\partial t} = \frac{\nabla}{\Omega} \ll 1 .
\]

(5)

In the first order Eq. (2) yields

\[
v = \frac{\hat{z} \times \nabla U(x, y, t)}{\Omega}
\]

(6)

and the inertial acceleration \(-dv/dt\) correction gives

\[
v = \frac{\hat{z} \times \nabla U}{\Omega} - \frac{1}{\Omega^2} \frac{d}{dt} \nabla U .
\]

(7)

Using Eq. (6) to calculate \(\omega\) and the convective derivative, Eq. (4), leads to the Charney equation

\[
\frac{d q}{d t} = \left(\partial_t + \frac{1}{B} (\Phi,) \right) \left[\frac{\nabla (\Omega + \epsilon \Phi \nabla^2 h)}{H_0 (1 + h)} \right] = 0
\]

(8)

where \(h = (H - H_0)/H_0\) is the relative depth of the shallow fluid. In the case of the plasma we assume that the electrons quickly thermalize in the potential \(\Phi\) giving \(n = N(x) \text{exp}(\epsilon \Phi/T_e)\) and the calculation of \(\omega = (\Omega \rho_e^2/eT_e) \nabla^2 \Phi\) so that the corresponding nonlinear p.d.e. is

\[
\frac{d q}{d t} = \left(\partial_t + \frac{1}{B} (\Phi,) \right) \left[\frac{\nabla (1 + (\rho_e^2/eT_e) \nabla^2 (\epsilon \Phi))}{N(x) \text{exp}(\epsilon \Phi/T_e)} \right] = 0 .
\]

(9)

Thus with the identification of \(\rho_e^2 = m_e T_e/e^2 B^2\) with \(L_e^2 = gH_0/\Omega^2\) and \(e\Phi/T_e\) with \(h\) and the expansion of the Boltzmann distribution as \(\text{exp}(\epsilon \Phi/T_e) \simeq 1 + e\Phi/T_e\) the two equations (8) and (9) are the same and can be written in units of \(\rho_s \equiv L_d\) and \(1/\Omega\) as

\[
(\partial_t + (\Phi,))(\nabla^2 \Phi - \Phi + u \phi) = 0
\]

(10)

where \(q \equiv \nabla^2 \phi - \phi + u \phi\), and \(u \equiv c_s^2/\Omega L_n \rightarrow gH_0/\Omega R_p\) is the linear long wave phase velocity. Here \(x\) is in the direction of the gradient (northward) and \(y\) in the direction of the linear wave propagation (westward).
Equation (10) is the CHM equation which has the following properties:

(1) conserves mass, energy, enstrophy and integrals of arbitrary functions of q
(2) translationally invariant in x, y
(3) possesses the exact Larichev-Reznick (1976) dipole vortex solutions.

The dipole vortex solution is a two-parameter family ($r_0 = \text{radius}, u = \text{speed}$) of solitary vortex solutions. The speed c of the wave components of Eq. (10) are in the range $0 < c < u_0$ and the speed u of the vortex solutions is either $u > u_0$ or $u < 0$. Soliton-like or weakly inelastic collisions with zero impact parameter are given by Makino et al. (1982) and McWilliams and Zabusky (1982), and the strongly inelastic collisions that occur when the impact parameter $b \simeq r_0$ are shown by Horton (1989).

B. Inhomogeneous systems

Now when the size of the vortex r_0 is taken comparable with the variation of the inhomogeneous background of the medium, the structure of the Rossby-Drift Wave equation changes. Petviashvili (1977) and Tasso (1977) have shown that in a plasma the inhomogeneity introduces the KdV nonlinearity $\varphi \partial_x \varphi$ into Eq. (10). This change alone, however, spoils the conservation from (9) of the equation. The correct treatment of the nonlinear-inhomogeneous systems expands Eq. (9) to obtain the generalized q-conserving equation (Su et al. (1991))

$$\left(\frac{1}{T(x)} - \nabla^2 \right) \frac{\partial \varphi}{\partial t} + (v_{\theta 0} + v_\theta x - K_T \varphi) \frac{\partial \varphi}{\partial y} - [\varphi, \nabla^2 \varphi] = 0 \tag{11}$$

where $v_{\theta 0} + v_\theta x$ is the inhomogeneous drift-Rossby speed and $K_T = (d/dx)(1/T) = -T'/T^2$ is the inhomogeneity of the dispersion scale $\beta^2 = T/\Omega^2$ or $L^2 = g H_0 / \Omega^2$. Here $T(x)$ is the dimensionless temperature profile normalized to unity at the center of the vortex. Equation (11) has the following important properties:

(1) mass, energy and moments of q are conserved, but not the usual enstrophy
(2) the dipole vortex is split into monopole vortices with only one sign (cyclone or anticyclone depending on the sign of v_θ) being a long-lived vortex
(3) the equation is not translationally invariant in the x (north-south) direction — there is now a preferred direction for wave propagation which is toward the equatorial zone or to the hot plasma region.

II. PV

A. Vortex

We have the equations

$$\frac{\partial \varphi}{\partial t} + (v_{\theta 0} + v_\theta x - K_T \varphi) \frac{\partial \varphi}{\partial y} = 0 \tag{1}$$

or

$$[\varphi, \nabla^2 \varphi] = 0 \tag{2}$$

In Fig. 2 we have a preferred direction for wave propagation which is toward the equatorial zone or to the hot plasma region.
Properties:

We have shown in Su et al. (1991) that Eq. (11) has monopole vortex solutions given by

$$\nabla^2 \varphi = k^2(u, z) \varphi + \frac{\nu_{\varphi}}{2u^2} \varphi^3$$

(12)

where $k^2 = (1/T(x) - \nu_d(z))/u \sim \varepsilon$. The expansion of $k^2(u, z)$ about the location of the vortex leads to

$$k^2 = k^2_0 + \alpha x$$

where

$$\alpha = (K_T - \nu_{\varphi}/u) \sim \varepsilon^2$$

(13)

and the monopole vortex is given by

$$\varphi(x, y, t) \equiv -4\pi u^2 k^2_0 \nu_{\varphi} \cosh^{-4/3} \left(\frac{3}{4} k_0 \sqrt{x^2 + (y - ut)^2} \right).$$

The speed u of the vortex depends on the amplitude φ_m with

$$u = \frac{1}{2} \left[\nu_{\varphi} + (\nu_{\varphi}^2 + 0.83 \nu_{\varphi} \varphi_m)^{1/2} \right] \approx \nu_{\varphi}(1 + 0.21 \nu_{\varphi} \varphi_m)$$

(15)

for small, positive $\nu_{\varphi} \varphi_m$. Thus the shear in the drift-Rossby speed $\nu_d(z)$ acts to change the solitary solution from a dipole to a monopole. One recalls that the monopole vortex is the natural solution in sheared flows (Horton et al., 1987).

II. Propagation and Collisions of the Monopole Vortices

A. Vortex-vortex interactions

We have established that the monopole vortices in Eq. (14) can behave under collisions either as

(1) soliton-like collisions with the stronger vortex overtaking and passing through the weaker vortex

or

(2) point vortex-like interactions where two strong monopole vortices, which by Eq. (14) must be of the same sign, rotate about one another.

In Fig. 2 we show an example of the soliton-like pass-through collision. In Fig. 3 we show an example of the second case where two nearly equal strength monopole vortices interact like point-vortices rotating around one another.
2. Nearly elastic overtaking collision of a strong monopole vortex with a weaker monopole. The profile of $1/T(x) = 1/L_0^2 = \exp(0.046x)$ gives a variation of 1.6 over the core of the vortex. The gradient in the Rossby speed is $v_0(x) = 1 - x/20$. The solution conserves $\varphi = \nabla^2 \varphi - \varphi/T(x) + \int v_0 \, dx$. The speeds are $u_1 = 1.1$ and $u_2 = 1.7$ giving the expected collision time $\Delta t/\Delta u = 20/0.6 = 33$ compared with observed overlapping at $t = 22$ in frame (b). After separation (c)–(d) the weaker vortex still has 5 closed contours.

B. Wave radiation

As the amplitude φ_∞ of the vortices becomes small, the speed of propagation in Eq. (15) approaches the linear wave speed and the coupling to the wave field radiates energy from the vortex. Su et al. (1991) calculate this radiative decay of the vortex. The local energy conservation equation is

$$\frac{\partial E}{\partial t} + \nabla \cdot S = 0$$

(16)
3. Point vortex type of interaction of two strong monopole vortices with speeds $u_1 = 1.30$ and $u_2 = 1.35$. Although merging might be expected here, instead the vortices rotate around one another after pulling together from the initial separation of 20 L_4.

where

$$\mathcal{E}(x, y, t) = \frac{1}{2} \left[\frac{\varphi^2}{T(x)} + (\nabla \varphi)^2 \right]$$

(17)

and the "Poynting" flux is

$$S = \left(\frac{1}{2} u_4(x) \varphi^2 - \frac{1}{3} K_T \varphi^3 \right) \hat{y} - \nabla \varphi \frac{\partial \varphi}{\partial t} - \nabla^2 \varphi \hat{x} \times \nabla (\varphi^2/2).$$

(18)

The results of a lengthy calculation are that the decay of the vortex energy

$$E_v = \int \mathcal{E} \, dz = \frac{8\pi u^4 k_0^2}{(\nu_0')^2} \left(\frac{4}{3} + k_0^2 \right)$$

(19)

is given by

$$\frac{dE_v}{dt} = -\frac{u_0 |\varphi_m^2|}{16\pi k_0^2} \exp \left(-\frac{4(1 - u_4/u)^{3/2}}{3|\alpha|} \right).$$

(20)

The exponential decay factor is controlled by the strength of the inhomogeneity through α (Eq. (13)) and the closeness of the speed of propagation u to the drift speed u_2 at the center.
of the vortex through \(k_0^2 = (1 - v_d/u)^{2/3} \). Simulations for \(k_0^2 \gg \alpha \) and \(k_0^2 \ll \alpha \) are shown in Su et al. (1991).

The decay of the vortex amplitude in Eq. (20) via the coupling to the radiation field will cause the speed \(u \) to decrease through Eq. (15), and as the speed \(u(t) \) decreases the vortex decay rate increases exponentially through Eq. (20). Thus, the vortex will decay slowly initially and then suffer an abrupt death.

In the case of magnetic shear, which is another form of inhomogeneity that gives rise to a coupling to vertical \(v \), oscillations, Meiss and Horton (1983) show that the decay rate of the dipole vortex soliton is given by

\[
\frac{dE_d}{dt} = -2S\varphi^2 \left(1 - \frac{v_d}{u}\right)^{-1/2} \exp \left(-\frac{\pi L_s}{2L_n} \left(1 - \frac{v_d}{u}\right)^2\right)
\]

(21)

where \(L_s/L_n \) is magnetic shear (inhomogeneity) length over the density gradient scale length \(L_n \). We have also performed simulations for the shear induced decay of the vortex structures.

These vortex structures appear to be a natural or "self-organized" way in which the plasma can feed upon the free energy available in the density gradient and limit the radiation damping inherent in small amplitude waves. Recent simulations indicate that the vortex localization process in systems with rather different linear growth rates (due to damping caused by magnetic or velocity shear) can end up in similar final turbulent states when enough energy is fed into the system. This is because the localization to vortex structures essentially eliminates the shear damping mechanisms. This nonlinear dynamics and the shear damping introduces a form of hysteresis into the system, due to the slow decay rate of the vortices once they are formed.

III. Driving of the Large Scale Vortex Structures by the Small Scale Rossby-Drift Wave Turbulence

Finally, following the suggestion of Zakharov (1991), we consider the interaction of the small scale, weakly correlated Rossby-drift wave fluctuations \(\varphi \) (small scale)

\[
\psi = \sum_k \psi_k(x, t, z)e^{ikx - \omega_k t}
\]

with

\[
\psi_k(x, t) = \frac{\delta_{kk'} N_k(X, T)}{1 + k_1^2 \rho_1^2},
\]

(22)

where the wave density \(N_k(X, T) \) satisfies

\[\frac{\partial N_k}{\partial T} + \frac{\partial \omega_k}{\partial k} \cdot \frac{\partial N_k}{\partial X} + \frac{\partial \omega_k}{\partial X} \cdot \frac{\partial N_k}{\partial k} = 2\gamma_k N_k + T_{k}'(N_k, N_k) \]

(23)

as in HC variation

with large scale

where

This system is a driven wave to be realistic.
\(\alpha \) and \(k_0^2 \ll \alpha \) are shown in

to the radiation field will
dim decreases the vortex
the vortex will decay slowly.

nogeneity that gives rise to
how that the decay rate of

\[
-\frac{\nu_0}{u}
\]

ensity gradient scale length
ay of the vortex structures.
ized way in which the
ent and limit the radiation
icate that the vortex
th rates (due to damping
al turbulent states when
ation to vortex structures
inear dynamics and the
o the slow decay rate of

\section*{Structures by Wave Turbulence}

ider the interaction of the
ations \(\varphi \) (small scale)

\[
(N_k, N_k)
\]

as in Horton (1986), and the local drift wave frequency depends on the large scale \(\varphi_L, \bar{\varphi}_L \)
variations through

\[
\tilde{\omega}_k = k \cdot \dot{z} \times \nabla \varphi_L + \frac{k \cdot \dot{z} \times \nabla (n_0 + \bar{\varphi}_L)}{1 + k^2 \rho^2},
\]

with large scale motions governed by \(\varphi \) (large scale) \(\rightarrow \varphi(X, Y, T) \) that satisfies the CHM equation containing the average of \(\langle \psi, \nabla^2 \psi \rangle \) over the small scale turbulence. The driven
large scale CHM equation is given by

\[
(1 - \nabla^2) \partial_T \varphi + \nu_0 \partial_Y \varphi - \langle \varphi, \nabla^2 \varphi \rangle = (\partial^2_X - \partial^2_Y) A + \partial^2_{XY} B \tag{21}
\]

where

\[
\begin{bmatrix}
A(X, Y, T) \\
B(X, Y, t)
\end{bmatrix} = \sum_k \begin{bmatrix}
k_1 k_2 \\
(k_0^2 - k_1^2)
\end{bmatrix} \frac{N_k(X, Y, T)}{1 + k^2 \rho^2}. \tag{25}
\]

This system of equations leads to the modulational growth of large scale structures from the
inhomogeneity of the distribution of the small scale fluctuations. In a tokamak the small
scale turbulence is known to have a strongly increasing strength toward the low density side
and, at a given radius, an increase in strength toward the outside of the torus compared with
the inside. In planetary atmospheric turbulence it may be expected that the intensity of the
small scale turbulence is stronger in the equatorial zones than in the high latitude regions.
It is clear from the structure of Eqs. (23)–(25) that when the basic assumptions of the scale
separations are satisfied, that anisotropy and inhomogeneity in the small scale turbulence
is a driving force on the large scale structures. We are in the process of investigating the
driven CHM equation (24) and the propagation of the small scale turbulence by the nonlinear
wave kinetic equation (23) for various systems. This separation of space-time scales appears
to be an effective method for extending the study of Rossby-Drift Wave turbulence to more
realistic inhomogeneous turbulent states compared with the previously studied homogeneous
turbulent states, as for example, in Horton (1986).

\section*{Acknowledgment}

The work was supported by the U.S. Department of Energy contract DE-FC05-80ET-53088.
References

1 Introduction

During the 1960s and 1970s, we have seen a great deal of interest in the study of solitons. These solitons are solutions to certain nonlinear partial differential equations. Solitons were first discovered by J.B. Sjostrand, who noted that certain nonlinear equations have solutions that behave as if they were particles. These particles, or solitons, can move through a medium without changing their shape or velocity, and they can interact with other solitons in a non-destructive manner.

Now, we are interested in the study of solitons in a more general context. In this paper, we will consider the behavior of solitons in a wide range of physical systems, including water waves, plasma waves, and even optical fibers.

The study of solitons has led to a number of important applications, including the development of new technologies for communication and signal processing. For example, solitons have been used to transmit data over long distances without distortion, and they have also been used to study the properties of materials.

In this paper, we will review the current state of knowledge about solitons, and we will discuss some of the open questions that remain. We will also discuss recent developments in the field, including the discovery of new types of solitons and the development of new methods for studying them.

Recently, dimensional...