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1. Introduction 

It is well-known that the Vlasov equation possesses an infinite dimensional 
Hamiltonian structure [1-4]. An interesting feature of this structure is that the 
natural variable, the phase space density, constitutes noncanonical coordinates, 
and as a result the Poisson bracket has a noncanonical form. A feature of this 
noncanonical form is that the Poisson bracket contains some of the nonlinearity of 
the theory, a feature that changes the usual procedure for linearization. One must 
expand both the bracket and the Hamiltonian. The resulting system is an infinite 
dimensional linear Hamiltonian system - one that still possesses a noncanonical 
form. Recently [5], motivated by Van Kampen's solution [6], it was shown how to 
transform this linear system into canonical action-angle coordinates, coordinates in 
which the Hamiltonian is diagonal. This is an infinite dimensional analogue of the 
elementary transformation to normal coordinates in finite dimensional oscillator 
systems. The analogue is not straightforward since the Vlasov-Poisson system has 
a continuous spectrum. 

The purpose of the present paper is to· present a significantly simplified 
method for performing the calculations of Ref. [5]. In Sec. 2 we briefly review 
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the noncanonical Hamiltonian structure of the Vlasov-Poisson system and its lin
earization about a stable homogeneous equilibrium. In Sec. 3 a family of integral 
transforms is presented and essential identities are proved. The results of this 
section allow the simplifications in the calculation. In Sec. 4 we canonize and di
agonalize. We conclude with Sec. 5. 

2. Noncanonical Hamiltonian structure of Vlasov-Poisson theory 

The Vlasov-Poisson equation for a phase space distribution function 
f( r, Vj t) for electrons is 

a e 
a/+v.Vf+mE[f]·\lvf=O. (1) 

By the notation E [f] we mean the solution of 

V . E = 41f'e (j d3vf - N) , (2) 

where N is a fixed ion background density and the square brackets emphasize the 
fact that, through (2), E is a functional of f. 

This is an infinite dimensional Hamiltonian system or field theory, but be
cause the distribution function does not constitute canonically conjugate variables, 
the Poisson bracket is of the following noncanonical form [2]: 

{ } j 3 3 [OF OG] 
F, G = d r d v f of' of' (3) 

where F and G are arbitrary functionals, [, ] is the ordinary Poisson bracket 

[a b] - aa . ab _ ab . oa (4) 
, - ar ap or op' 

and of/of is the functional derivative. In terms of (3) the Vlasov equation is 
compactly written as 

af at = {I, H}, (5) 

where the Hamiltonian If is the total energy functional, 

H = j'd3rd3 v ~mv2 f + 8~ jd3rE2
• (6) 

Two features of the bracket, (3), warrant mention: first, the form is obviously 
not canonical (note e.g. it is an explicit function of f) and second, the bracket is 
degenerate in the sense that 

{C, F} = 0, (7) 
for all functionals F, where C, the so-called Casimir invariants, are given by 

C[f] = j d3 rd3 vC(f), (8) 

where C is any function. Because of this degen acy the bracket can only generate 
dynamics in constraint "surfaces" (sometimes calle mplectic leaves) determined 
by the constants C. For details we refer the reader to Refs. [7-11]. 
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vVe now linearize (1) about an equilibrium f(O) that only depends on v a.nd 
take for our spatial domain a periodic box of volume V. We are interested in 
electrostatic perturbations and thus only consider perturbations UiaL have spatial 
variations in a single direction, x say. The neutralizing background results in no 
equilibrium field so the linearized Vlasov equation becomes 

!... PI) + v~ f(l) + '::"'E(I) PO)' = 0 (9) at ox m ' 
where E(I) is determined by the linearized Poisson equation 

! E(I) = 471"e J d3vJ<I). (10) 

An expression for the energy of the linear perturbation was obtained by 
Kruskal and Oberman [12], 

m J J<1)2 1 J 2 62 F = -- d3rd3vv-- + -71" d3 rE(I). 
2 f(O)' 8 (11) 

This result is the exact energy for the linearized equations. The Hamiltonian de
scription of the linearized dynamics of interest here is obtained by expanding 
both the above noncanonical Poisson bracket and the Hamiltonian. Assuming 
f = PO) (v) + f(l) and expanding to first order yields the linearized bracket 

{F, alL = J d3
rd

3
vJ<") [/;) , 6~~)] , (12) 

in terms of which the linearized Vlasov-Poisson equation can be concisely written 
as 

of (1) 
- = {J(I) , CFh. at (13) 

It is a simple matter to show that (12) satisfies the Jacobi identity. 

3. A family of integral transforms 

Below we discuss some properties of Hilbert transforms, which we then use 
to define the transformation to action-angle variables. 

3.1. Review of Hilbert transforms 

The theory of Hilbert transforms relies heavily on the notion of the Holder 
continuity. A function rjJ is said to satisfy the Holder condition of order c¥ if 

IrjJ(x) - rjJ(y)1 ~ A Ix - yla V x, y E R, (14) 
where A > 0 and 0 < c¥ < 1. If in addition to satisfying the Holder condition, rjJ 
has a limit, rjJ(oo), as Ixl- 00 and 

A' 
IrjJ(x) - rjJ(oo) I ~ x

il 
x - 00, (15) 

where A' > 0 and J.L > 0, then the Hilbert transform of rjJ is guaranteed to exist and 
satisfies (14) and (15) with tlie same values of c¥ and J.L [13]. The Hilbert transform 
is defined by 

¢;(x) == ~pr dy rjJ(y) , (16) 7I"J y-x 
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where P denotes the Cauchy principal value. ·We·will state, without proof, several 
properties of the Hilbert transform that will be used in the following calculations 
[14, 15]. 

• The inverse transform exists and is ,given by 

¢=-¢;. 

• The lIilbert transform has a convolution theorem 

• A generalization of Parseval's formula exists 

jdX¢1f; = jdX¢1f;j 

jdx¢1$ = - jdx¢;1f;. 

(17) 

(18) 

(19) 

(20) 

The existence of the integrals in (19) and (20) is not guaranteed by (14) and 
(15) and so must be checked separately. 

• Given a function a, which has a Hilbert transform, there exists a function, 
F(z), analytic in the upper half plane, which has the limit a + ia as z 
approaches the real axis from above. This function is unique up to an additive 
constant, which can be taken to be the value of the function at infinity. 

This last point is of particular importance in that it allows us to compute some 
otherwise difficult Hilbert transforms. For example, consider functions a and f3 
that satisfy (14) and (15), and are related by 

(3=a+(3oo, (21) 
where 

(300 = lim (3(x). 
Ixl->oo 

(22) 

Then (3 + ia is the limiting value, as z approaches the real axis from above, of the 
function 

F(z) = (3(z) + ia(z), 
analytic in the upper half plane. Let 

'I' 1 
X + I." = F(z)' 

Then 
_ (3 

X - a2 +(32' 
and 

a 
(= - a2 + (32' 

In view of the above, 

X = (' + Xoo , 
on the real axis. 

(23) 

(24) 

(25) 

(26) 

(27) 
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3.2. Van Kampen modes and integrallransforms 

Now we consider a family of integral transformations that are inspired by the 
Van Kampen mode solution of the linearized Vlasov-Poisson equation [6]. This 
will ultimately be used to transform the Vlasov-Poisson bracket into canonical 
action-angle form. Define 

1/1 (x) = g[¢] (x) = jdY9(Y,x)¢(y) :=a¢;+{3¢, (28) 

where a and (3 are related by (21) and 

g(y, x) = a(x).!p_l_ + (3(x)8(y - x). (29) 
71' y-x 

Taking a = CI and {3 = lOR, we see that 9 is a Van Kampen mode and the condition 
(21) is clearly satisfied. We can think ofthe transform being parameterized by a, as 
each function a yields a different transform. We will say more about the structure 
of 9 below. . 

Using the convolution theorem, we can rewrite (28) as 

1/1 = a¢ - ii~ + {3oo¢. 
It is easily seen that 

1/1 = -a¢ + ri¢; + {3oo¢; = {3¢; - a¢, 
and 

{31/1 - a"if = {32¢ + a2¢ .. 

Thus provided a 2 + {32 :I 0, we can solve for ¢: 

{31/1 - a"if 
¢ = {32 + a 2 j 

therefore the transformation 9 has· an inverse, 9, given by 

9[1/1] = ("if + x1/I· 

(30) 

(31) 

(32) 

(33) 

Here X and ( have the same definitions as above. The inverse exists provided that 
the condition a 2 + {32 :I 0 applies in the upper half plane, in addition to on the 
real axis. Observe that 9 and iJ belong to the same family of transforms. . 

Now consider the chain rule_relating functional derivatives with respect to 
¢ to those with respect to 1/1, where 1/1 = g[¢J. Let F be a functional of ¢ and 
consider its variation 

f 8F f 8F 8F = dx 8¢ 8¢ = dx 81/1 81/1. 

Since the relationship between ¢ and 1/1 is linear, 

81/1 = 9[8¢], 
which can be used in the expression for 8F to obtain 

8F = jdX9t [~~] 81/1, 

where gt is defined by 

jdxe9[>'] = jdX>.gt[e]. 

(34) 

(35) 

(36) 

(37) 
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Comparing (34) with (36) gives 

8F = gt [8F] 
81/J 8cp' 

Similarly 

8F _ ~t [8F] 
8cp - g 81/J . 

Equations (38) and (39) imply gt = gt. 
The operator g can be determined from the definition (37), namely 

jdxem>.] = jdX (ep>. + eaX) = jdX (ep>. - ea>.) 

= jdX>. (pe - a() == jdx>.gt[e]. 

Since (40) must hold for all e and >., we conclude that 

gt[e] = -ae + pe, 
and similarly, 

(38) 

(39) 

(40) 

(41) 

(42) 

There are many identities involving g and gt that can be proved. Below we 
give three identities that will be required subsequently for the transformation to 
diagonal form 

jdXagt[cp]gt[1/J] = - jdx(cp1/J; (43) 

jdx(gt[¢]gt[1/J] = - jdxacp1/J; (44) 

jdx~g[¢)g[1/J] = - jdXZ¢1/J - (3; jdXCP jdx1/J. (45) 

One can see that the second identity follows from the first through the substitution 

(46) 

The first identity is proved upon substitution of the explicit expressions for gt[cp] 
and gt[1/J], viz. 

jdxagt [¢]gt[1/J] = jdxa (xcp - rn (x1/J - 0PJ . (47) 

First consider the term that contains two Hilbert transforms, 

jdXa(¢(1/J = - jdXa(1/J(¢ = jdx(¢ (a(1/J - a(1/J + a(1/J) 

= jdXa(2¢1/J - jdxa ((cp(1/J + (1/J(¢) . (48) 
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Using (48), the right hand side of (47) becomes 

Jdxa ((2 + X2) <lnp - JdX (</J('IjJ + 'IjJ(¢;) (a( + ax), (49) 

and from the definitions of X and ( we see that ax = -13(; whence, the second 
integral in (49) becomes 

Jdx (</J('IjJ + 'IjJ(¢;) (a - 13) = -1300 JdX (</J('IjJ + 'IjJ(¢;) = O. (50) 

Therefore 

(51) 

The proof of the third identity proceeds in a similar manner but requires an 
additional property of the Hilbert transform, namely 

- - I} x</J = x¢ + -; dx¢. 

3.3. Group property ofg 

The family of transforms g is in fact a family of infinite dimensional linear 
coordinate changes on function space. Here we describe its group composition law. 
We adopt a slightly different notation here and denote g by 

g[¢; 13, a] = a¢ + f3¢. (52) 
The composition of two such transforms can be written out explicitly as follows: 

g(g(¢; 131, a2]; 132, a2] = (a1f32 + f32 ( 1)¢ + (131132 - a1( 2)¢ 

(53) 

where 

(54) 

This is the group parameter composition rule, which makes the expression for g 
clear, since 

g[g(¢; a, 13]; 13, a] = g[g(¢; 13, a]; X, (] = g(¢; 1, 0] = ¢. (55) 

The restriction 13 + ia =1= 0 for all x guarantees the existence of the inverse group 
element. Below we will see that the elements of this group are in essence linear 
infinite dimensional canonical transformations. 

4. Canonization and diagonalization 

The first step in making the transformation to action-angle variables is to 
decompose fill into its Fourier modes, i.e. 

1 00 

j<l)(X,v,t) = 2 L: fk(v,t)eikX , (56) 
k=-oo 
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where 

Ik = ~ jdxe-ik:t: J<1). (57) 

Any functional, F, of 1(1) can be thought of as a functional of the Fourier ampli
tudes and the chain rule can be used to relate functional derivatives with respect 
to Pi) to those with respect to Ik' 

~F 00 ~F ~/k 
~=Lm~· ~ 

k=-oo 
From (57) we have 

~/k 2 -ikx 
~/(1) = V e . 

which gives 

~F _ 2 ~ ~F -ik:t: 
~/(1) - V L...J ~'" e . 

k=-oo 
Using (59) in the expression for the linearized bracket yields 

{F, G}L = 4i f: kjdvJ<0)' (OF ~G _ ~G ~F ) . 
mV Olk ~/-k ~/k ~/-k k=1 

(59) 

(60) 

The above bracket is quite close to canonical form. A simple scaling produces this 
end; in particular, upon letting qk == (mV/4ikl(0)')lk and Pk == I-k we obtain 

{F,GlL= ~fdv (~F ~G _ oG ~F). (61) 
L...J ~qk ~Pk Oqk ~Pk 
k=1 

Note, having assumed that the equilibrium is stable there is no problem dividing 
by PO)'. 

Now we use the linear transformation g to change variables 
ik 

Ik = -4 g[ek(U,t)]. (62) 1C'e 
For the moment a and f3 are left unspecified, but we allow for the possibility that 
they depend on k. From (39) 

~F = 41C'e gt [~F] , (63) 
~/k ik ~ek 

which can be used to write the linearized bracket, (60), in terms of ek: 

{F,G}L = _1~i tk jdv ~:: 1C'J<0)' 
k=1 

(64) 

Clearly (64) is not in canonical form, however, with appropriate choices for a and 
f3 it can be made so. The first of the three identities, (43) of the previous section 
motivates the choices: if a ex PO)', then 

j dvJ<0)'gt [~G] gt [ of ] ex _jdu,~G ~F , (65) 
~ek ~e-k ~ek ~e-k 
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which is precisely what is needed. It is convenient to set 

411'e2 

a(u) = - mk2 1I'j<O)/(U) == cI(k, u), (66) 

where CI is the imaginary part of the plasma dielectric function. Choosing {Joo = 1 
gives 

(67) 

where CR is the real part of the plasma dielectric function. With these choices for 
a and (J 

(u) = - cI(k,u) , (68) 
Ic(k,uW 

and the expression for the bracket becomes 

16i ~ j CI (SFSG SG SF ) 
{F, G}L= V ~ k du Icf Sf;k Sf;-k - Sf;k Sf;-k . (69) 

The condition on a and {J for the existence of iJ restricts us to considering only 
stable plasmas that do not support neutral modes, which is consistent with our 
choice (in this paper) of strictly monotonic equilibria. 

Using (45), it is a straightforward matter to writ~ the energy in term of the 
variables f;k. Doing so gives the following form: 

S2F= ~ fjdU1I'u 1c(k,u)1
2

1f;d, (70) 
1611' k=l cI(k, u) 

which is seen to be diagonal. 
The time dependence off;k is determined by the bracket, (69), and the energy, 

(70): 

(71) 

Thus 

c ( t) - c ( ) -ikut .. k U, - .. k U e . ' (72) 

Note that this is the same time dependence that was assumed by Van Kampen, 
but here follows from the diagonalization. 

To obtain the physical interpretation of f;k, we consider Poisson's equation 

E(l)(k, t) = -411'~ jdvJ<l) 

= j du (CI~k + cRf;k) = j duf;k(u, t) = j due-ikutf;k(u). (73) 

Thus the f;k(U) are the Fourier amplitudes of the electric field corresponding to 
frequency w = ku" where k and u are independent. 

Note that S2 F is not equal to the well-known expression for energy stored 
in a dielectric [16-18], 

£ = V 8(WE:R) IE(k )12 
D 1611' 8w ,w, (74) 



768 P.I. Morrison, B.A. Shadwick 

where wand k are related through the dispersion relation e(k,w/k) = O. The 
expressions differ because plasmas, unlike dielectrics, possess resonant particles 
(see Ref. [5] for further details). 

We can now transform to action-angle variables lp and 8p, by setting 

Here wp = ku and J-t = (k, u). Thus the energy becomes 

82 F = f J duwplp
k::::l 

(75) 

(76) 

which is the expected action-angle form for an infinite dimensional Hamiltonian 
system with a continuous spectrum. 

Through the chain rule the Poisson bracket obtains the canonical form 

(77) 

5. Conclusion 

Above, we began with the noncanonical Hamiltonian form for the Vlasov
Poisson system, which was linearized about a stable equilibrium state. The non
canonical linear system was then scaled to obtain canonical form, however in 
these coordinates the Hamiltonian was not diagonal. Then, an infinite dimen
sional canonical transformation was effected to bring the system into action-angle 
coordinates, where the Hamiltonian is diagonal. 

It is evident that the techniques of this paper are quite general and can apply 
to a variety of systems. In particular for transverse waves about an homogeneous 
Vlasov-Maxwell equilibrium, we [19] have obtained the following result: 

V ~J leT - c
2 /V1I12 2 

& = 32L...... dVIlVIl ImeT IEkl, 
k.::::l 

(78) 

with obvious definitions of symbols. This result is analogous to that of (70). The 
details of this calculation will be presented elsewhere. Since quantum mechanics 
in the Weyl-Wigner formalism [20] possesses a bracket of a form similar to that 
for the Vlasov-Poisson theory, it is likely that the techniques of this paper are 
applicable. 
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Errata 

August 22, 1994 

The following corrections should be made in the text. 

Page 763: 

... which can be used in the expression for8F to obtain 

Page 764: 

... Comparing (43) with (36) gives 

Similarly 

8F = gt. [8F]. 
8¢ 8'ljJ' 

8F = st [8F] 8'ljJ 8¢' 

(36) 

(38) 

(39) 




