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SINGULAR EIGENFUNCTIONS FOR
SHEARING FLUIDS

N. J. Balmforth and P. J. Morrison

We study the linear stability of a two-
dimensional, inviscid shear flow in a channel
(Rayleigh’s problem!). At the point where the
advection of a perturbation by the mean flow
equals its phase speed, Rayleigh’s equation con-
tains a singular point. This is a local wave-
mean flow resonance like the wave-particle reso-
nances encountered in plasma physics, and gen-
erates a continuous eigenvalue spectrum.

We use techniques familiar in plasma
physics? to construct singular eigensolutions for

shearing fluid. These methods allow us to ver-

ify the existence and uniqueness of represen-
tative singular eigensolutions. By considering
the initial-value problem, we establish that the
- continuum, together with any complex pairs of

growing/decaying modes, form a complete ba-
sis set :

- FORMULATION

Consider a channel, extending to 00 in the
streamwise direction x, but bounded across the
. stream in y. Shearing equilibria of the two-

dimensional Euler equations are then given by
-any velocity profile, U(y). Here we consider
monotonic cases, for which U is a single-valued
function.

Perturbations to the equilibria can be char-
acterized by their vorticity and a stream func-
tion,

Y(y) exp ik(z — ut),

for streamwise wavenumber, &, and wave speed
u. These quantities satisfy Rayleigh’s equation,

U-ww=U-uw)@' - =U". (1)

The boundary conditions are that ¢ vanish at
the walls of the channel, which are located at
y = +£1.

w(y) exp ik(z — ut),

This second-order differential equation is
singular at the point y, for which v = U(y).
This is the critical layer of the mode. There
are in general three types of eigensolutions:
(a) The singular neutral modes of the con-
tinuum, which is intrinsically irregular at the
critical layer. (b) Smooth, neutral modes for
which y. = yr, where y; is an inflexion point,
U'(yr) = 0. These we call inflexion-point
modes. (c) Complex conjugate pairs which ex-
ist when flow profile contains an inflexion point,
and correspond to growing/decaying discrete
modes.

REGULARIZATION

In order to construct the singular eigensolu-
tions, we follow van Kampen,? and rewrite (1)
in the form,

w="P <g_¢u) +Co(y — us),

where P signifies “principal value,” and C is (as
yet) arbitrary. If we eliminate w, then we find
an inhomogeneous, integral equation,

P = 73/ ”(yi v )dy + CK(y, yz))
2

where K(y,y’) is the Green function of the
Laplacian, 9" —k?1). The kernel of this integral
equation is singular at the critical layer, but the
inhomogeneous term contains an arbitrary con-
stant, C. Furthermore, we have the freedom of
a normalization condition. We select a normal-
ization that regularizes the singular problem:

1= [ wly)dy = c+p [ = Ty iy (3)

-1

With such a selection for C, equation (2) be-
comes

v =K + [ Fluvie @), @
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where the regular kernel is

Ky, v) = K, 9)] ;.
Ul =) | @)

Equation (4) is an inhomogeneous Fredholm
equation of the second kind. We can call on
Fredholm theory to establish that (unless there
are homogeneous solutions which superficially
complicate matters) there is a unique, particu-

Fly,vs0) =

lar solution for every y, within the channel.

INITTAL-VALUE PROBLEM

A general sﬁperposition of singular eigenso-
lutions is

o 1 A
0=V [ 5= r ™

LU Wsy)
+A[1 P T =0 (y)dy}. (5)
If we extend the coordinates y and y, off the
real axis, we can use methods of singular in-
tegral equation theory to invert this equation
and write A in terms of . Then,

A= 1 I:UIJP /1 ¢(y'; y)Q(yl) dy’

€k + € -1U(y) - U(y)

(e Lpsege)e] o

where

_p /1 u "(y )) ay'

and

L

UI

The inversion procedure works provided
that there is no point in the complex plane
for which eg = ¢; = 0. These relations are
equivalent to the eigenvalue problem for the
discrete, complex eigenvalues and the inflexion-
point modes. However, by adding arbitrary

€ = —

multiples of the eigenfunctions of the complex
modes into the superposition, and then suit-
ably modifying the distribution A at the in-
flexion points, we can avoid any problems as-
sociated with the zeros of ez and ¢;. We can
then represent an arbitrary initial condition in
terms of the singular eigensolutions and com-
plex pairs; in other words, we establish com-
pleteness.

FURTHER REMARKS

The solution of the initial-value problem in-
dicates that we can represent an arbitrary ini-
tial condition in terms of superposed contin-
uum solutions and complex modes. This allows
us to consider the evolution over asymptotically
large times, and make contact with the Laplace

. transform approach. In the long-time limit, in-

tegral spatial averages of singular-mode super-
positions become vanishingly small as a result
of phase mixing.

We ‘can also pose the problem within
a Hamiltonian framework, since the two-
dimensional Euler equations have a Hamilto-
nian structure. In this setting, we find that the
amplitudes of the singular eigenfunctions define
a set of coordinates in terms of which the sys-
tem takes a canonical, action-angle form. The
canonization and diagonalization of the Hamil-
tonian fluid system extracts the true energy of
a perturbation. Furthermore, it reveals a char-

* acteristic signature of the modes. Thus we can

establish the existence of positive and negative
energy modes in shearing fluid.
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