
















































































































































As observed above the structure constants for the free rigid body noncanonical bracket 
are Eijk, which is completelyantisymmetric. The structure operator for the 2-D Euler non
canonical bracket, which was given in Lecture III, this property. This is clear from 
the "fgh" identity of (III. 78) , from which we also observe that 

[j,g]t = _[j,g]. 

Here no distinction is made between the vector space and its dual. For this case 

and 

of og of og 
[f,g] = oxoy - oyox' 

( , ) = Iv d2r. 

The Clebsch variables Q(r, t) and nCr, t) are related to the scalar vorticity via 

w(r, t) = [n, Q] , 

(IV. 123) 

(IV. 124) 

(IV. 125) 

(IV. 126) 

and the reduction from these canonical variables to the 2-D Euler bracket parallels exactly 
the calculation of the previous subsection. * There are two ways to obtain the equations of 
motion for Q(r, t) and nCr, t). One way is to insert (IV.126) into the Hamiltonian H[w] of 
(III. 74) and then calculate 

on 6H 
ot - 6Q· 

The other way is to insert (IV.126) directly into the equation of motion for w, viz. 

ow 
7ft = -[1/1, w] , 

[cf. (III.72)] and then manipulate as follows: 

= - [1/1, [n, Q]] = [n, [Q,1/1] + [Q, [1/1, n]] , 

(IV. 127) 

(IV. 128) 

(IV. 129) 

where the Jacobi identity was used to obtain the last equality. From (IV.129) we obtain 

(IV. 130) 

*The careful reader will notice a sign discrepancy. There is a story that goes with this sign, but unfortu
nately we are not able to tell it here. 
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which is satisfied if 

8Il 8Y at = -[1P, II] + 8Q 

8Q 8Y 
at = -[7/J,Q] - 8Il' 

r 

(IV.131) 

where the terms involving Y point to the gauge ambiguity present in (IV.126), something 
that will not be discussed further here. If Q(r, t) and n(r, t) are solutions of (IV.131), then 
the w = [II, Q] constructed from these solutions are solutions of (IV.128). 

Thrn now to the following bracket, which is a portion of the noncanonical bracket for the 
ideal fluid, [ef. (III.89)]: 

r (8F 8 8G 8G 8 8F) 3 
{F, G} = - iD Mi 8M; 8x; 8Mi - 8M; 8x; 8Mi d r 

=: - (M, [FM' GM]) . (IV. 132) 

It is obvious that this bracket will satisfy the Jacobi identity if (III.89) does. The inner 
bracket in this case is given by 

(IV. 133) 

where, evidently, f and 9 now have three components. Integration by parts and neglect of 
surface terms yields 

[X, gJ) = Xi 889i + 8~;9i) , (IV. 134) 
Xj Xi 

whence the Clebsch variables are seen to be related to M by 

M; = Qi 8Ili + 8(Q;Ili ) 

8x; 8Xi 
(IV. 135) 

In reality the decomposition above is not quite that due to Clebsch, whose transformation 
did not have the second term of (IV.135). However, it is closely related to that introduced 
for MHD. * In fact the reduction occurs without this last term; it also occurs with the last 
term with opposite sign. Also, it is not important that Q and II have three components. 
Some of this will be discussed below in the last subsection of this lecture. 

4 Semidirect Product Reductions 

The semi direct product is an example of an extension, a group theoretic notion for making 
bigger groups out of a given group. We cannot discuss this is any kind of detail here so the 

*P. J. Morrison and J. M. Greene, Phys. Rev. Lett. 48, 569 (1982) and Morrison (1982), Ref. IV C. 
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interested reader is referred to the references. t However, this notion makes its way up to Lie 
algebras and thus to Lie-Poisson brackets, a case of which we will discuss (briefly) here. 

Suppose the functional F in (IV. 118) , in addition to its X dependence, depends upon 
Q, i.e. F[X,Q] = F[Q,II]. (We have included the overbar now, as in Lecture II, to avoid 
confusion.) Effecting the chain rule with this additional dependence yields 

which upon substitution into (IV.121) produces instead of (IV.122), the following: 

{F,G} = - (X, [Fx,GxD - ([Q, GX]t,FQ) + ([Q,FX]t,GQ) 

(IV. 136) 

(IV. 137) 

where the second equality follows from manipulations similar to those performed above. 
Many systems possess brackets of this (and similar) form(s). The rigid body in a grav

itational field is an example of finite dimension. An example of infinite dimension, which 
was first given in the context of reduced MHD, * but also occurs in fluid mechanics, is the 
semi direct product extension of the noncanonical bracket for the 2-D Euler fluid. For this 
example one simply interprets (N.137) using (IV.124) and (IV.125). 

5 Other Clebsch Reductions: That for the Ideal Fluid 

In this final subsection we present some other forms of Clebsch reductions. The first is 
another way to reduce to the reduced MHD bracket of above. This emphasizes the fact that 
reductions are not unique. Following this we show another way to reduce to the portion 
of the ideal fluid bracket, also treated above. Finally we reduce to the complete ideal fluid 
non canonical bracket. This final transformation is the one actually due to Clebsch. 

Suppose we have a system with canonical variables (Qi(r, t), IIi(r, t)), where i = 1,2 and 
r = (x,y). The canonical Poisson bracket is then 

{F, G} = Iv (FQ . Grr ~ GQ . Frr) d2r. 

The following transformation is a reduction: 

X = [Q1, III] + [Q2, 112] 

'Ij; = [Q1,Q2] ' 

(IV. 138) 

(IV. 139) 

where [, ] is given by (N.124). We leave it as an exercise to show via the chain rule that 
with (N.139), (N.138) reduces to a bracket of the form of (IV.137). 

Now consider the portion ofthe fluid bracket discussed above in (N.132), but now instead 
of (N.135) we let 

(IV. 140) 

tSee e.g. Sudarshan and Mukunda (1974), Ref. IV C, J. E. Marsden and P. J. Morrison, Contemp. 
Math. 28, 133 (1984). 

*Morrison and Hazeltine (1984), Ref. IV C. 
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where i = 1,2, ... N and N is arbitrary. We also leave it as an exercise to show via the 
chain rule that with (lV.140), a canonical bracket in terms of (Qi(r, t), IIi(r, t)), where now 
r = (x, y, z), reduces to a bracket of the form of (IV .132). 

Finally, suppose in addition to (lV-I4-3) that 

(lV.141) 

We leave it as a last exercise to show via the chain rule that with (lV.140) and (IV.141), 
a canonical bracket in terms of (Qi(r, t), IIi(r, t)), reduces to the ideal 3-D fluid bracket of 
(III.89). One can choose N large enough to describe the velocity field of interest. 
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v. Stability and Hamiltonian Systems 

This Lecture concerns notions of stability in Hamiltonian systems. In Section A canonical 
systems are considered. Here, basic definitions are reviewed, energy arguments for stability 
are discussed, and the notion: of a negative energy mode (NEM) is introduced. An example 
that illustrates properties of NEM's is given, in which context simple Hamiltonian bifurcation 
theory is reviewed. Finally in this section, these ideas are applied to the ideal fluid in 
the Lagrangian variable description. Section B is concerned with stability in noncanonical 
Hamiltonian systems. The energy-Casimir method is described and two examples are given: 
a charged rigid body in an external magnetic field and the 2-D Euler equation. The examples 
exhibit a pathology related to the rank changing behavior of the cosymplectic form, that is 
discussed. In Section C the notion of dynamical accessibility, which can be used to make 
statements about stability, in spite of the rank changing behavior, is introduced. Finally, it 
is shown how Eulerian variations, constrained by the condition of dynamical accessibility, 
lead to the same expression for the potential energy, 82W, as Lagrangian variations. 

A. Stability and Canonical Hamiltonian Systems 

Consider a dynamical system of the form 

i=1,2, ... ,M, (V.1) 

where, as in Lecture III, we will not get into what is required of V(z) for existence and 
uniqueness of solutions, but just assume everything is alright. An equilibrium point, Ze, is a 
type of solution of (V.1) that satisfies V(ze) = O. Stability concerns the behavior of solutions 
near such equilibrium points. Roughly speaking, Ze is· stable if solutions starting "close" to 
Ze at t = 0 remain close to Ze for all later times. This idea is formalized by the following: 

The equilibrium point Ze is said to be stable if, for any neighborhood N of Ze there 
exists a subneighborhood SeN of Ze such that if z(t = 0) E S then z(t) EN for 
all time t > O. 

At first one might wonder why such a fancy definitioJ;l is needed. Why introduce the 
subneighborhood? Why don't we just say, if it starts in a set and stays in the set, then it 
is stable? The answer to this is illustrated in Figure 1, which is the phase portrait for the 
simple harmonic oscillator. In this figure the circles are surfaces of constant energy. Here 
we have chosen as a neighborhood N the rectangular region in which we have rp.arked an 
initial condition by the symbol "x." Since trajectories move round and round on the circles 
of constant H, it is clear that in a short time the trajectory starting at x will leave N, in 
spite of the fact that the equilibrium point at the o~igin is stable. However, if we choose 
initial conditions inside the subneighborhood S, which is defined as the region bounded by 
an H = constant surface contained in N, then the trajectory will remain in N for all time. 
Thus, H = constant surfaces serve as a handy means of defining subneighborhoods. 
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H= Const. 

s 

Figure 1: 

Observe that the neighborhood N can be chosen to be any neighborhood N of Ze. We 
can make them smaller and smaller, and in this way, probe the stability property of the 
point Ze. In the example above we can always find tiny circular energy surfaces inside any 
N, no matter how small. 

When z(t) is determined from the linearized dynamics, 

;:.i _ avi 
( );: j 

uZ - -a . Ze uZ , 
Z3 

(V.2) 

where now z(t) := Ze + 8z, and this dynainics is stable according to the above definition, we 
say that (V.2) or Ze is linearly stable. 

One might think, since N can be made as small as we like, that these types of stability 
are equivalent, but this is not the case, as we shall see below. To distinguish, we sometimes 
call stability under the full nonlinear dynamics, V(z), nonlin~r stability. Equilibria that 
are unstable under nonlinear dynamics, yet stable under linear dynamics are said to be 
nonlinearly unstable. This is different from finite amplitude instability, where the equilibrium 
point is nonlinearly stable until it is pushed hard enough. In a sense (almost) all physical 
systems are finite amplitude unstable; for example; any laboratory experiment is unstable 
to a perturbation caused by a large enough earthquake. 

One last definition is that of spectral stability. A linear system such as (V.2) has this 
type of stability if upon substituting 8z = 82 eiwt , and solving the resulting linear algebra 
problem for w := ~R +i" there exist no solutions with, < O. Clearly, linear stability implies 
spectral stability, but beware, the converse is not true. 

A nice thing about Hamiltonian systems is that they have a built in method for proving 
nonlinear stability. In the case where the Hamiltonian has a separable form, H = p2 /2+ V(q), 
an old theorem due to Lagrange states that an equilibrium point with Pe = 0 and qe being a 
local minimum of V is stable. It is tempting to think that the converse should be true, but 
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a counterexample from the book of A. Wintner* show$ this not to be the case. Consider 

V(q) = { e-1
/,' ~(l/q) q#O 

q=O. 
(V.3) 

The equilibrium position qe = 0 is stable, but due to the wild oscillation that occurs as 
q -+ 0, the origin is not a local minimum. However, with some relatively mild restrictions 
on V, Lagrange's theorem is both necessary and sufficient for Hamiltonians of this restricted 
form. Sufficiency follows since surfaces of constant H serve to define subneighborhoods, as 
in the example of the simple harmonic oscillator above. Necessity is more difficult to see, 
but rests upon the idea that there exists a direction where the trajectory can fall down to a 
state of lower potential energy. 

For ''well-behaved'' V(q), stability can be determined by analyzing the potential energy 
matrix, 82V(qe)/8qi8qj' If all the eigenvalues of this matrix are greater than zero, then H 
defines good subneighborhoods (topological 2N-spheres) and the equilibrium is stable-in 
fact nonlinearly stable. If there exists a negative eigenvalue the system is unstable. 

One might be fooled into thinking that nonlinear stability implies linear stability; how
ever, with a little thought you can see that this is not true. The one degree-of-freedom 
system with potential 

4 

V(q) = ~ (VA) 

has an equilibrium point qe . 0, and it is clear that this is nonlinearly stable since H defines 
good subneighborhoods. However, the linear dynamics satisfy 

8j; = 0, 8q = 8p , (V.5) 

and thus 
8p = constant, 8q = 8qo + 8p t . (V.6) 

Obviously, trajectories leave any neighborhood of the equilibrium point provided 8p # O. 
This example also reveals why spectral stability does not imply linear stability. Adding 
another degree of freedom, (q', p') and defining the potential V (q, q') = q4 /4 + q'2/2, produces 
a linearly unstable, yet spectrally stable, system. 

In the 1950s, project Matterhorn was begun at Princeton for the purpose of investigating 
controlled fusion reactions as a source of energy. The idea was (and still is) to confine 
hot plasmas by means of magnetic fields. Since the dominant force balance is governed by 
MHD, a great deal of stability analyses using this model were undertaken in a variety of 
confinement configurations invoking different magnetic field geometries. What is in essence 
the infinite degree-of-freedom version of Lagrange's theorem was worked out for MHD. * This 
goes by the name of the energy principle or "8W" (which is in fact the second variation 
of the potential energy). Extremization techniques applied to this quantity have been used 

* A. Wintner, The Analytical Foundations of Celestial Mechanics (Princeton University, Princeton, New 
Jersey, 1947). 

*1. Bernstein, E. A. Frieman, M. D. Kruskal, and R. M. Kulsrud, Proc. Roy. Soc. A 244, 17-40 (1958); 
Von K. Hain, R. Lust, and A. Schluter, Zeitschrift fUr Naturforschung A 12, 833-841 (1957); G. Laval, C. 
Mercier, and R. Pellat, Nucl. Fusion 5, 156-158 (1965). 
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to determine stability and instability, and such procedures were automated in PEST, the 
Princeton Equilibrium and Stability code, and elsewhere. Early MHD calculations were 
successful in explaining and eliminating the fastest plasma instabilities. 

Often, (as we shall see) Hamiltonian systems are not of the separable form H(q,p) = 
p2/2 + V(q), but are instead general functions of q and p. When this is the case another old 
theorem, which is sometimes called Dirichlet's theorem, gives a sufficient condition for stabil
ity. It should be no surprise to you now that if in the vicinity of an equilibrium point surfaces 
of H = constant define a family of good neighborhoods, then the equilibrium is nonlinearly 
stable. For well-behaved Hamiltonians one need only analyze the matrix 82H(ze)/8z i 8zi , 
where Z := (q,p). If this quantity is definite, i.e. there are no zero eigenvalues and they 
all have the same sign, then we have stability. Observe that H could in fact be an energy 
maximum. This can occur for rigid body dynamics and is typically the case for a localized 
vortex in fluid mechanics. 

There is an important example due to Cherry* that illustrates two things: that Dirichlet's 
theorem is not necessary and sufficient and'that linear stability does not imply nonlinear 
stability. Cherry's Hamiltonian is 

where Wl,2 > 0 and a are constants. If a is set to zero Cherry's system reduces to a 
linear system of two stable simple harmonic oscillators. However, because of the minus sign, 
82H/8zi 8zj is not definite. Observe that this minus sign cannot be removed by a time 
independent canonical transformation and in the typical case cannot be removed by any 
canonical transformation. Oscillator "I" of this system is a negative energy mode (NEM). 

Negative energy modes are important because wh~n dissipation is added, they tend to 
become linearly unstable: If energy is removed from an NEM its amplitude increasest . Also, 
with the inclusion of nonlinearity NEM's· can be driven "unstable. The example of Cherry 
demonstrates this; assuming a =I 0 and W2= 2WI, (V.7) possesses a solution+ of the form 

(V. 8) 

This is a two parameter, (a, ,), subfamily of the general four parameter solution set of 
Cherry's system. These solutions are of interest since they can diverge in finite time. In 
fact, in any neighborhood of the equilibrium point ql = q2 = PI = P2 = 0 there exist 
initial conditions for solutions that diverge in finite time. Such behavior is referred to as 

*T. M. Cherry, Trans. Cambridge Philos. Soc. 23, 199 (1925) 
tThis is a fairly old idea that is sometimes called the Kelvin-Tait theorem. See W. Thompson and P. G. 

Tait, Treatise on Natural Philosophy (Cambridge University Press, Cambridge, 1921), part 1, p. 388. 
tSee E. T. Whittaker, Analytical Dynamics (Cambridge University Press, London, 1937), Sec. 136, p. 101, 

but be careful because there are typographical errors. 
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explosive growth and is characteristic of systems that possess both NEM's and resonance. 
Another example is the well-known "three-wave" problem.§ The three-wave problem and 
Cherry's "two-wave" problem are examples of systems with order three resonances that are 
driven unstable by cubic terms in the Hamiltonian. These are in fact normal forms that are 
obtained upon averaging a general class of Hamiltonians. Thus explosive behavior is to be 
expected when there is resonance. When the resonance is detuned these systems generally 
are finite amplitude unstable and systems with three or more degrees of freedom may in fact 
be unstable, although with very small growth. 

One might think that systems with NEM's are artifacts or unphysical, purely mathemat
ical, oddities; this, however, is not the case. They occur in fluid and plasma systems* for a 
reason that will become clear below. Generally, they occur in mechanical systems with gyro
scopic forces, like the Coriolis force, and they occur in the dynamics of particles in magnetic 
fields. An example that exhibits both of these is described by a Lagrangian of the form 

(V.g) 

where G is a constant that is either proportional to the constant angular speed of a rotating 
coordinate system or to a constant magnetic field. Note that for k > 0 the potential en
ergy term corresponds to a hill and thus without the gyroscopic term the system would be 
unstable. Upon Legendre transforming and scaling, the following Hamiltonian is obtained: 

H = ~(p~ + p~) + wa(q2Pl - QlP2) + ~(w~ - w~)(Q~ + Q~), 
where the two time scales of the problem are determined by the frequencies 

G 
Wa:=-,· 

m 

Assuming Ql,2, Pl,2 rv eiwt
, it is easy to solve for eigenvalues, 

where c:= w'b/w~. This system possesses the three types of Hamiltonian spectra: 

stable 

2. W = ±i{ unstable 

3. W = ±WR ± iWJ unstable 

·(V.I0) 

(V.11) 

(V.12) 

§See e.g. C. Kueny, "Nonlinear Instability and Chaos in Plasma Wave-Wave Interactions," Ph.D. Thesis, 
University of Texas at Austin (1993) and many references cited therein; See also D. Pfirsch, Phys. Rev. D 
48, 1428 (1993). 

*In the context of MHD see J. M. Greene and B. Coppi, Phys. Fluids 8, 1745 (1965); of fluids see R. A. 
Cairns, J. Fluid Mech. 92 1 (1979), R. S. MacKay and P. G. Saffman, Proc. Roy. Soc. A 406, 115 (1986), 
P. Ripa, Geophys. Astrophys. Fluid Dyn. 70, 85 (1993); and of Vlasov theory see P. J. Morrison and D. 
Pfirsch, Phys. Rev. A 40, 3998 (1989), Phys. Fluids B 2, 1105 (1990) and ibid. 4, 3038 (1992). 
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In Hamiltonian systems eigenvalues occur in doublets or quartets. Case (1) is the only stable 
case. It occurs in the example when c = wb/w~ > 1, which means the rotation or magnetic 
field is large enough to make the system stable in spite of the destabilizing potential energy. 
In this case we have two stable doublets, a fast one and a slow one. The slow one is an NEM. 
For c > 1 there exists a canonical transformation (q, p) ---4- (Q, P) that takes H into 

(V.13) 

which is the linear part of Cherry's Hamiltonian. The canonical transformation is effected 
by the following mixed variable generating function: 

(V.14) 

where c:= [4(wb - W~W/4. 
Case (2) occurs if G is set to zero. There exist two unstable doublets, corresponding to 

the two directions for falling off the hill. 
Case (3) occurs when c < 1. This case of the quartet obviously requires two degrees of 

freedom, and is obviously unstable. -
A nice feature of the above example is that it displays the two kinds of bifurcations that 

are generic to Hamiltonian systems. The first is when a doublet makes a transition between 
cases (1) and (2). There is a steady state bifurcation where the frequencies go through the 
origin of the w-plane as shown in Figure 2. Here the stable pair is indicated by x while the 

, w-plane 

Figure 2: 

unstable pair by the ®. This bifurcation generally occurs in systems where the Hamiltonian' 
is separable, Le. H = p2/2 + V(q), Le. those for which Lagrange's theorem applies. It occurs 
in one degree-of-freedom systems where the potential goes from concave up to concave down. 
The arrows of the figure correspond to this case. For the system of (V.10) it occurs when 
G = 0 and w~ ---4- -w~. 

The other bifurcation, which is something called a Krein crash, is illustrated in Figure 3. 
The arrows indicate the path followed by the eigenvalues of system (V.10) as c is decreased 
from some value greater than unity. At c = 1 the fast and slow modes coalesce at a value 
IWkl =f. O. Two possibilities exist: either the modes go through each other and remain on the 
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, w-plane 

f S S 

Figure 3: 

real axis or they can migrate off the real axis as shown in the figure. Krein's theorem* states 
that a necessary condition for this latter case is that the signature of the colliding modes 
must be different, i.e. one of them must be an NEM. The proof of Krein's theorem is not. 
difficult; it relies on the fact that definite Hamiltonians cannot have instabilities. 

Krein's theorem provides a means for detecting the occurrence of NEM's. If you have 
performed an eigenanalysis in some nondissipative system, one that you believe is Hamil
tonian, and you observe the bifurcation described above, there must exist an NEM. This 
bifurcation is very common in fluid and plasma models. Why? 

To answer this question we return to the Hamiltonian formulation of the ideal fluid in 
terms of the Lagrangian variables q and 7r that we discussed in Lecture II. Since we have 
defined an equilibrium point of a dynamical system to be a solution obtained by setting 
time derivatives to zero, it is evident that the sets of Lagrangian and Eulerian equilibria 
are not equivalent. Although static Eulerian equilibria, i.e. ones for which v = 0 for all 
r, certainly correspond to Lagrangian equilibria with 7r = 0 and q = constant, stationary 
Eulerian equilibria, i.e. ones for which v = v(r), do not correspond to Lagrangian equilibria, 
but to a particular kind of time dependent orb~t, which we denote by 

(V.15) 

The functions above are particular in that they have the properties 

Po (a) = Pe(r) 
..J(a, t) a=q;l(r,t) 

(V.16) 

so(a)la=q;l(r,t) = Se(r) (V.17) 

(V.18) 

*Moser (1958) and (1968), Ref. V A. 
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where we emphasize that, upon doing the substitutions indicated on the right-hand sides of 
the above equations, the resulting functions Pe, Be and Ve are independent of time. 

Although (qe,1I"e) does not constitute a Lagrangian equilibrium state, it is a reference 
state about which we could linearize. We could set 

q(a, t) = qe(a, t) + ~(a, t), 11" = 1I"e(a, t) + p(a, t) (V.19) 

and expand (11.88); however, the resulting equation would have explicit time dependence 
due to that in (qe,1I"e). Even when the time dependence is periodic, analysis of such linear 
equations is not trivial (recall Mathieu's equation). 

We can get out of this bind by an old trick. To see this we turn to the action principle 
of (11.72), insert (V.19), and expand 

(V.20) 

The first term of (V.20) is merely a number, while the second term vanishes since the reference 
trajectory qe is assumed to be a solution and is thus an extremal point. The third term, 
upon variation with respect to~, generates the linear dynamics relative to the reference state 
qe' It is given by 

6' S[q,; el ~ f dt fv d'a ( !""e' - [1J U (e",), H;" e'J 1 - [2~2 Upp L (e",)') . 
(V.2I) 

It is important to observe that in (V.2I) the term involving Up and Upp possesses the explicit 
time dependence arising from qe(a, t). The old trick is to view the perturbation of a trajectory 
in a frame of reference moving with the reference trajectory. This can be done since qe = 
qe(a, t) is invertible. Thus we define 

(V.22) 

The quantity fJ(r, t) is a sort of Eulerian field for the Lagrangian displacement variable. A 
time derivative of (V.22) yields 

(V.23) 

or in light of (V.18) 
. afJ(r, t) 
~(a, t) = at + ve(r) . 'V'fJ(r, t) . (V.24) 

Note that we have used "." for time derivatives at constant a and a/at for time derivatives 
at constant r. Since in (V~24) ve(r) , the equilibrium velocity, is time independent, no explicit 
time dependence is introduced by this transformation. 

It is interesting and revealing to compare (V.24) with the transformation for time deriva
tives when going into a rotating frame of reference 

a 
at fixed 

a 
+ Ox 

at rot 
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Just as the second term of (V.25) gives rise to noninertial (or fictional) forces, notably the 
Coriolis force that gives rise to the gyroscopic term in the Hamiltonian of (V. 10) , the second 
term of (V.24) will give rise to a noninertial type force in the fluid Hamiltonian. Transforming 
(V.21), using (V.22) and (V.24) yields 

828[1]] = ~ itl dt r d3r (Pe 11j + Ve . \71]1 2 -1] . me . 1]) 
to iD (V.26) 

where me is an operator, although one without explicit time dependence because it is now a 
function of the equilibrium quantities Pe and Be. The second term, the potential energy, can 
be written as 

(V.27) 

where Pe (Pe , Be) is the equilibrium pressure expressed as a function of the equilibrium density 
and entropy. . 

We can now obtain the (time independent) Hamiltonian by Legendre transformation. 
The canonical momentum is given by 

(V.28) 

whence the Hamiltonian is seen to be 

(V.29) 

which has the "noninertial" term -Pi Vej o1]i/orj that is reminiscent of the gyroscopic term 
of (V.lO). 

Now, it should come as no surprise that ideal fluids typically have negative energy modes, 
and generally 82 H is not positive definite as required for Dirichlet's theorem. In spite of 
the indefiniteness of 82 H the system can be spectrally stable; Lagrange's theorem, which is a 
necessary and sufficient condition for stability, is not possible since the Hamiltonian is not 
of the separable form. 
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B. Stability and Noncanonical Hamiltonian Systems 

In noncanonical Hamiltonian systems it is still the case that equilibria occur at extremal 
points of the Hamiltonian, 

·i _ J ii 8H - [ i H] - 0 (V.30) . z - 8zi - z, -, 

but the situation is more complicated. To see that something is amiss, consider the variation 
of the energy for a barotropic fluid, where 

namely, 

8H 
-=pv 
8v 

8H v2 

8p = 2" + U(p) + pU(p). 

(V.31) 

(V.32) 

Setting the right-hand side of (V.32) to zero results in the trivial equilibrium state with 
v = 0 and p = constant (which is generally zero). If this were the only equilibrium state, 
fluid mechanics would not be a very interesting discipline. Where are the other equilibria? 
Why are they not extremal points of the Hamiltonian? 

To answer these questions, compare (V.30) with its counterpart for the canonical case: 

. ..8H 
Z·, = J'3- = 0 

c 8' . . Z3 
(V.33) 

Since detJc = 1, it is evident that z = 0 implies 8H/8zi = O. Thus all equilibria are extremal 
points. However, in the noncanonical case this is not so when detJ = O. In the vicinity of 
points where the rank of J does not change, the null space of J is spanned by aca /8z i

, . 

a = 1,2, ... v, where v is the corank of J. In this case the general solution to (V.33) is given 
by 

8F 
8zi 

Ze 

8H 8Ca 

8
· +Aa -

8
· =0. 

z' z' 
Ze Ze 

(V.34) 
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Here Aa are Lagrange multipliers, which are determined by choosing the values of the con
stants of motion ca. Thus (V.34) gives those equilibria that lie on the symplectic leaf with 
the chosen values. 

Not surprisingly, the linear dynamics obtained by setting Z = Ze + 8z and expanding to 
first order, exhibits behavior arising from detJ = 0, namely, the existence of zero frequency 
modes. The equation for the linear dynamics is easily seen to be 

(V.35) 

where 

(V.36) 

[Note, this linear dynamics has a Hamiltonian structure with the Poisson bracket defined 
by Je (which is constant) and the Hamiltonian given by82F := ~F:jk 8zj8zk.] Assuming 
8z "" eiwt yields an eigenvalue problem with a characteristic equation given by " 

det(iwI - A) = 0, (V.37) 

where zero frequency modes satisfy 
detA= O. (V.38) 

In the canonical case, A is given by 

A~k = ~jH,jk (V.39) 

and 
det(A~k) = det(J~j)det(H,jk) = det(H,jk). (VAO) 

Thus all the zero eigenvalues of Ac arise from det(H,jk) = O. These zero eigenvalues corre
spond to (local) troughs in the energy surface. 

In the noncanonical case zero eigenvalues can arise from two places, namely, det(Jij) = 0 
and det(F:ij) = O. An accounting of these zero eigenvalues is given by 

(VAl) 

Thus for every Casimir there exists a null eigenvector., 8z~. To avoid complication suppose 
det(F:jk) =1= 0, i.e. that there are no local troughs in F, then all the null eigenvectors come 
from degeneracy in the bracket and they are given by 

8 k = (F- 1)kj8C(Ze) 
Zo 8zj , . (VA2) 

where (F';-l),kj F:jl = 8t. Evidently, with 8zo given by (VA2), 

Aj 8zk = yj F "k(F-1),kl 8C = Jij 8C = O. 
k 0 ,3 8Zl 8zj 

(VA3) 

In spite of the existence of null eigenvalues, a version of Dirichlet's theorem goes through 
in the noncanonical case. Since F is a constant of motion it can be used to define the 
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F= 

Figure 4: 

subneighborhoods in the definition of stability given above, provided 82P = ~F,jk8zj8zk = 
constant defines compact (as depicted in Figure 4) surfaces in the vicinity of Ze. This will 
be the case if P'jk(Ze) is definite. 

It is of interest to note that this prescription for stability places no restrictions on 8z, even 
though dynamically 8z is confined to surfaces of constant Ca (as depicted in Figure 4). We 
will see in the next section that sometimes it is useful to take advantage of this information. 

Although the picture described above for equilibrium and stability of noncanonical Hamil
tonian systems may seem nice and tidy, there is a complication that occurs at places where 
the rank of J changes. Generally, this happens at isolated points but it can happen on curves 
or surfaces. When the rank changes it is no longer true that setting Zi = 0 and solving for 
Ze is equivalent to solving (V.34) for all choices of Aa. When the rank decreases on an open 
set, there is no problem in obtaining new Casimirs whose gradients span the null space of 
J. However, when the rank changes at (for example) a point, a new null eigenvector of J 
appears, an eigenvector that cannot be written as a gradient in the normal way. I 

The above pathology is perhaps best illustrated by an example. Consider the free rigid 
body of Lecture III, but modified so that the Hamiltonian has the form 

(VA4) 

Here, we have added the linear term with Bi constant and nonzero for i = 1,2,3. This 
Hamiltonian is a sort of mixture between that of a spin system and a free rigid body. This 
form serves our purpose and we won't dwell on the physics, although it isn't hard to imagine 
a physical system where Hamiltonians of this form might arise. The equations of motion are 
now 

i, = -<;i,.f. ~~ = -<;i.e• (~ + Bi) 

and it is clear that equilibria must satisfy 

£1(12"1£2 + B2 ) - £2(11"1£1 + B 1 ) = 0 

£1(1;1£3 + B3 ) - £3(11"1£1 + B 1 ) = 0 
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(V.46) 

From (V.46) it is clear that a nonrotating configuration with £1 = £2 :...- £3 = 0 is an 
equilibrium point, but there are other, uniformly rotating equilibria as well . 

. Now, consider the equilibria that arise upon extreroizing F = H + )"C, where C is given 
by (III.45). (Note the Casimirs remain the same as in Lecture III since we have not altered 
the bracket-only the Hamiltonian.) From OF/O£i = 0 for i = 1,2,3, respectively, we obtain 

£1 (Ill + )..) = - B1 

£2(121 +)..) = -B2 

(V.47) 

It is evident from (V.47) that there exists no choice of).. for which the equilibrium point 

(V.48) 

extremizes F. Observe, also, that the inequivalence of (V.46) and (V.47) occurs for an 
equilibrium, namely (V.48), that corresponds to a point where Jij = -f.ijk£k changes from 
rank 2 to rank O. 

Another example* where 8F = 0 does not yield all equilibria, is that of the 2-D Euler's 
equations for fluid motion (cf. Lecture III). Here the equation of motion yields the equilibrium 
relation ow 

- = [w, '¢] = 0 , ot (V.4g) 

which is satisfied if wand 'Ij; are functionally dependent. Suppose S = Sex, y) defines a locus 
of points, then the equilibrium relation is satisfied if We = we(S) and '¢e = '¢e(S). Note that 
We need not be the graph of '¢e and vice versa. Thus we can write, e.g. 

(V.50) 

where G('¢e) is an arbitrary function of '¢e. 
Let us contrast this with the equation obtained upon varying the functional F = H + C, 

which for the 2-D Euler equations, is given by 

F[w] = -! r '¢ wd2r + r C(w) d2r. 2JD JD (V.51) 

The functional derivative 8F /8w = 0 implies 

'¢e = C'(we) . (V. 52) 

*This example is credited to V. Arnold, Izv. Vyssh. Uchebn. Zaved. Mat. 5 (54), 3 (1966) and (1966), 
l.c. Lecture III, which is the origin of the popular terminology "Arnold's method" or "Arnold's theorem" for 
the application of these ideas to other situations. This terminology is erroneous since the method was used 
in earlier papers: R. Fjortoft, Geofy. Pub. 17, 1 (1950), W. Newcomb, in Appendix of 1. Bernstein, Phys. 
Rev. 109, 10 (1958), M. D. Kruskal and C. Oberman, Phys. Fluids 1, 275 (1958), C. S. Gardner quoted in 
K. Fowler, J. Math. Phys. 4, 559 (1963) and Phys. Fluids 6, 839 (1963), and K. Fowler, ibid. 
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Assuming C'(w) is monotonic we can solve for was follows: 

(V.53) 

Thus here, in contrast to (V.50), the vorticity must be a monotonic function of the stream 
function-if it is not, then it does not satisfy (V. 52) and hence is not extremal. (Suppose 
'l/Jo =I- '1/;1 and w('l/Jo) = W('l/Jl) = w*. Then (V. 52) implies '1/;0 = C'(w*) = 'l/;I, which is a 
contradiction. ) 

In stability analyses it is advantageous for the equilibrium to be extremal. When this is 
the case, as for the monotonic equilibria above, one can calculate the second variation 

(V. 54) 

where the second equality follows upon differentiation of (V. 52) with respect to 'l/;e. Formally, 
if we have an equilibrium for which owe('l/Je)/o'l/;e > 0, then 82 F is positive definite and in 
analogy with finite degree-of-freedom systems we could claim stability, in a "norm" defined 
by 82 F. This would also be the case if owe('I/;e)/o'l/;e < 0 and the second term of (V.54) could 
be shown to always dominate the first when 8w is in some space. This case, which is typical 
of localized vortices, corresponds to an energy maximum. In either case the situation would 
be pretty good, but in infinite dimensions things can still be slippery. Recall in Lecture II 
we gave an example of a functional with positive second variation at a point that was not 
a minimum. The condition of strong positivity is needed to show convexity. A rigorous 
stability analysis requires the definition of a Banach space in which the solution must be 
shown to exist. Convexity is one technical piece that is needed in a complete proof of stability. 

If the first variation exists and does not vanish on the equilibrium of interest, then it is 
impossible for F[weJ to be convex and thus impossible to obtain a norm as discussed above. 
It can turn out that the functional is not differentiable at the equilibrium of interest but 
still can be proven to be stable by obtaining appropriate bounds. * Another technique is to 
restrict the class of variations so that they lie within symplectic leaves. In the next section 
we will see how this removes problems related to the rank changing behavior of J. 
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c. Dynamical Accessibility 

Dynamically accessible perturbations are ones for which all the Casimir invariants are 
unchanged. As depicted in Figure 5, these perturbations lie in the surfaces defined by 
COt = constant for all a. In the prescription described above for obtaining equilibria of 
noncanonical systems from a variational principle, the energy was extremized subject to a 
selection of Casimir invariants. The values of these invariants are determined by the Lagrange 
multipliers (and vice versa). In contrast, dynamically accessible perturbations are "direct" 
variations that automatically satisfy the constraints without choosing their particular values. 
The particular constraint surface is selected after the fact by the equilibrium point, rather 
than by Lagrange multipliers. Since the cosymplectic form, Jii, projects (co ) vectors onto 
the symplectic leaves, it is natural to consider a first order variation of the form 

(V.55) 

where 9 := Zigi . Here the arbitrariness in the variation is embodied in the arbitrariness in 
the generating function gi' but because of the presence of Jii the variation 8(1)Zda is arbitrary 
only within the symplectic leaf. Observe that Jii is evaluated at any point z, in practice this 
will be a candidate equilibrium point that is determined after setting the first variation to 
zero. 

Whether or not one wants to restrict to dynamically accessible variations, as described 
above, is a question of physics that likely must be determined on a case by case basis. In 
some systems the constraint is quite robust, while in others it is not. However, we will 
make the comment that if there exist mechanisms for creating perturbations that are not 
dynamically accessible, then it would seem appropriate to reexamine the model equation to 
see if such a mechanism should be incorporated into the dynamics. 

Before considering equilibria and stability with this kind of variation, let us show explic-
itly that 8(1) Zda preserves the constraints to first order: 

8C( ) = {)C 8(1) i = {)C Jii (1) = 0 
Z {)' Z {)' g3 • Z~ Z~ 

(V.56) 

An expression that preserves the constraint to second order is given by 

{) ti 
8(2) i = J ii g\2) + !Jil ~ g(l)g(l) 

da 3 2 {)zl t 3 • (V.57) 
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Figure 5: 

Here we have added the superscripts (1) and (2) to distinguish the first order from the second 
order generating functions. Inserting (V. 57) into 82e and using the fact that Jij Be / BZi = 0 
(in at least an open set) verifies the assertion. 

In the case where Jij = c~ Zk, the first and second order variations have the form 

8(1) z~a = = c{i zk gY) 

(V. 58) 

A convenient form to all orders is given by 

(V.59) 

where Ilz := z - z is a finite variation. The infinite dimensional analogue of (V.59) can be 
usedto construct finite leaf variations, which are important for proving convexity in infinite 
dimensional systems. Expanding 9 = g(1) + g(2) + ... and the exponential of (V.59), yields 
Eq. (V. 58) to second order. 

Return now to the example of the rigid body with "the modified Hamiltonian. Using 

(V.60) 

we obtain 
(V.61) 

for the extremal equilibrium condition. Equation (V.61) yields a result that is identical to 
(V.46) , the equilibrium condition obtained upon setting ii = 0 in the equation of motion. 

In the case of the 2-D Euler fluid 

8Wda = {Q,w} = -[g,w] , (V.62) 
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where 9 := JD wg cPr with 9 arbitrary, and 

8Fda := 8F[w; 8Wda] = - in 'I/J 8Wda tfr 

= in 'I/J[g,w] d2r = - ing['I/J,w] d2r = 0, (V.63) 

which implies ['I/J,w] = O-the condition obtained upon setting 8w/8t = 0 in (V.49). 

Proceeding now to the second variation, it is clear that stability can depend upon the 
class of variations allowed. Decomposing a general perturbation as 

(V.64) 

and inserting into 82 F yields 
(V.65) 

where 
~2 L1 _ 1 (82 

H(ze) +' 82CO:(Ze)) Jli( ) (I)Jkj( ) (1) 
U I'da - 2 8·8· "0: 8 ·8 . Ze gl Ze gk • ZZ zJ Z~ zJ (V.66) 

. Note, it is always the case that 82 Fnda depends only on the first order g's. It is evident that 
82 F can be indefinite because of the presence of 82 Fnda, even if 82 Fda, which involves only 
perturbations of the form Jij (Ze)g~I), is of definite sign. An example is given by the free rigid 
body with the equilibrium 

~= (V.67) 

j where we set Bl .. B and B2 = B3 = O. In this case 

82 F = - Be (8£1)2 + ! (~ - ~) (8£2)2+ ! (~ - ~) (8£3)2. 
2£1 2 12 II 2 13 II 

(V.68) 

If h < 12 < 13, the last two terms are positive; however, the first term can have either sign. 
Dynamically accessible perturbations satisfy , 

(V.69) 

hence 8tia = O. Therefore, 82 Fda is definite, even though 82 F need not be. Observe that the 
nondynamically accessible perturbation corresponds to the null eigenvector described above. 

In this example, and above, we substituted the first order dynamically accessible variation 
into the second order quantity 82 F. To some of you it may not be clear that 82 Fda is identical 
to 82 Hda , which is obtained by expanding H to second order and then inserting (V.55) and 
(V.57). It is, however, straightforward to show that these are in fact identical. Expanding 
some Casimir CO: to second order about the equilibrium yields 

!1 (2) CO: = 8C~ 8(2) Zi + 1 8
2
.CO:. 8(1) Zi 8(1) zj , 

8zZ 28zz8zJ 
(V.70) 
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but, when restricted to the constraint surface, (V.70) reduces to 

~(2)Cada = f)C
a 

Jli (1) + f)ca 
Jli (2) 

f)Zi e 9l f)Zi e 9z 

The first and second terms in (V.71) clearly vanish because 

Jii f)e. = O. 
f)z3 . 

(V.71) 

(V.72) 

However, by exploiting the local nature of the constraint surface, it is also possible to show 
that the last two terms cancel, so that, to second order, ~(2)Cda vanishes identically. Indeed, 
one can realize (V.72) as a Taylor series about the equilibrium point Ze and observe that, 
since this equatio~ holds for all Z (at least in a neighborhood of ze), each power of 8z in the 
expansion 

0
- .r·i f)C _ rii f)C· ~ l (f)J~i f)Qa rii f)2ca ) 
- f). - J e . + uZ f) l . + J e . + ... 

Z3 f)z~ ze f)i'e f)z~f)i'e 
(V.73) 

must vanish identically. The first term in (V.73) is clearly zero, while the vanishing of the 
second term, the one linear in 8zl , yields the desired relation 

f)Jii f)ca .. f)2ca 
_e ___ - -J~3_--:-

f)z~ f)z~ - e f)z~f)z~ , 
(V.74)· 

between the first and second partial derivatives of ca. It follows immediately that the second 
variation ~(2)Cda = O. 

Similarly, expanding H to second order yields 

~ (2) H = f)~ 8(1) i + f)~ 8(2) Zi + 1 f)~ H .8(1) Zi 8(1) zi 
f)z$ f)z$ 2 f)Z~f)Z3 ' 

(V.75) 

which, when restricted to lie within the constraint surface, takes the form 

~ (2) H. _ 8(2) H. _ 1 f)2 H Jli (1) Jki (1) + 1 f)H f)J!i Jil (1) ~1) 
da - da - 2 f)zif)zi e 9l e 9k 2 f)Zi f)Zl e 9t 93 

e 

(V.76) 

It is evident that the first term of (V.76) is the same as the first term of the free energy 
8(2) Fda, but in order to compare the second terms in these relations, one must again use 
(V.74) and the equilibrium condition (V.34) involving the Lagrange multipliers. Indeed, by 
summing (V.74) over Aa and then exploiting (V.34), one concludes that 

.. f)2ca f)Jii f)Ca f)Jii f)H 
AaP3 . = - Aa-e---. = _e ___ .. 

e f)z~f)z~ f)z~ f)z~ f)z~ f)z~ 
(V.77) 

It thus follows that, as was asserted, the constrained variation 8(2) Hda = 8(2) Fda. 
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Now we show how dynamically accessible variations are related to Lagrangian variations, 
in the context of the ideal fluid. In particular we will relate the Lagrangian and Eulerian 
potential energy functional. 

To obtain dynamically accessible variations for the fluid, the following functional: 

(V.78) 

can be inserted into the bracket of (III.89). Here the arbitrariness of variation within the 
symplectic leaf is described by the free functions of r: rJ, h, and k. We will only need the 
expressions for the first and second variations of the density and entropy per unit mass 

8(I)Pda = {Q,p} = V· (p :t) = V· (PrJ) 

8(I)O"da = {Q,O"} = V· (0" :t) = V· (O"rJ) 

8(2)Pda = ~{Q, {Q,p}} = ~V· [rJV· (PrJ)] 

8(2)O"da = ~{{Q,Q,O"}} = ~V· [rJV· (O"rJ)] . 

(V.79) 

(V.80) 

(Note we are not expanding Q since we already know only the first order part contributes.) 
Observe that the variations of (V.79) are compatible with those of (IV. 101) , which are 
induced by variation of the Lagrangian coordinates. 

The potential energy functional for the ideal, fluid is 

(V.81) 

where recall U is the internal energy per unit mass and 0" = ps. In terms of the function 
U(p, 0") the equation of state for the pressure is given by 

_( ) 2 (au 0" au) 
p p,O" = P op + P 00" • (V.82) 

Here we have used the tilde to indicate that the dependence is upon p and 0" instead of p 
and s. Upon Taylor expansion, the second order potential energy functional is seen to be 

82W = ~ In ( (8(1) p) 2 (pUpp + 2Up) + (8(1)(J)2 (pUuu) + 2 (8(1)0" 8(1) p) (pUpu + Uu) 

+ 2 (8(2) p) (pUp + U) + 2 (8(2)0") (pUu) ) d3r, (V.83) 

where subscripts denote partial differentiation. Inserting (V.79) and (V.80) into (V.83) cre
ates a relatively complicated formula, one with terms that are similar but with no immediate 
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simplification. What we have is in reality a sort of integration by parts puzzle. We will not 
give all the details here of a calculation that gets us to the desired end, but only a few 
"landmarks." The first move is to integrate the second order variations by parts. Next, the 
terms are grouped as follows: 

+ (\7. r]) (r]. \7(1) (/1pUuu + p2 Upu + pUp) 

+ (\7. TJ) (TJ· \7 p) (p2Upp + 2pUp + /1pUpu + /1Uu) ) d3r, (V.84) 

which upon making use of (V.82) can be put into the form 

(V.85) 

The definition p(p, s) := p(p, (1) and the chain rule imply ppp + /1pu = ppp, which when used 
in (V.85) yields, finally, 

(V.86) 

This expression, when evaluated on p = Pe and /1 = /1e, is precisely that of (V.27), which 
was obtained in the strictly Lagrangian variable context. We have thus, in a sense, gone full 
circle! 
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