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In Ref. 1 Best correctly suggested that the usual di- 
electric or wave energy expression is deficient because of its 
inability to describe the effect of resonant particles. For this 
reason reference to Best’s paper in our paper (Ref. 2) 
would have been appropriate. However, there are substan- 
tial differences between these two works-most notably, 
the energy density expression he presents is not (when 
integrated) equal to the energy of a linear perturbation in 
Vlasov theory. The correct (exact) expression is given by 
either Eq. (42) or Eq. (98) of Ref. 2. We comment on this 
and other discrepancies. 

In Ref. 1 and in the preceding Comment it is argued 
that the energy of a wave packet depends upon second- 
order quantities via initial conditions [cf. Eq. (8.4) of Ref. 
11. The calculation of this work proceeds by expanding 
about a Maxwellian equilibrium distribution function. 
Since the energy of a perturbation is a second-order quan- 
tity, an energy expression to this order, upon expansion, 
will contain both first- and second-order quantities. In Ref. 
1 an attempt is made to reexpress the second-order quan- 
tities in terms of first-order quantities. To this end a series 
of tedious calculations, that spans in addition to Ref. 1 at 
least two other papers (Refs. 3 and 4), are made and it is 
observed that the energy contains a second-order contribu- 
tion that depends upon the initial conditions. However, in 
the course of these calculations several approximations are 
made. For example, in Eq. (5.8) of Ref. 1 certain second- 
order quantities are neglected. [Later, in Eq. (8.4), it is 
observed that the neglected part contributes a constant 
value to the energy, but there it is erroneously stated that 
this contribution is not essential.] In Eqs. (6.6) and (6.7) 
a narrow spectrum has been assumed and terms of the 
order of the square of the group velocity divided by the 
phase velocity have been neglected. In our papers (Refs. 2 
and 5-7) we have made no approximations and have ob- 
served that the energy can be expressed in terms of first- 
order quantities alone. Our calculation is simple and con- 
cise [see Ref. 5, Eqs. ( 19)-(21) and Ref. 2, Eqs. (37)- 
(42)]. Moreover, our result is to be expected since the 
linearized theory by itself forms a Hamiltonian system for 
any initial condition; hence the energy is necessarily a bi- 
linear expression in the first-order quantities-just as it is 
for simple oscillator systems with a finite number of de- 
grees of freedom. 

Contrary to the claim in the Comment, there is noth- 

ing ambiguous about the fact that the energy constant 
should depend on the initial conditions for first-order 
quantities. The energy of a simple oscillator clearly de- 
pends upon the initial momentum and linear displacement 
from equilibrium. Although the initial conditions for first- 
order quantities can be chosen arbitrarily, the initial 
second-order perturbation of the distribution function that 
appears in the energy cannot simply be set to zero. This is 
because, as we have shown, this second-order quantity is 
determined by the first-order quantities. Thus the expres- 
sion that Best claims to be the energy of a Landau damped 
wave is incomplete. 

In Best’s Comment he has asserted that the condition 
we called dynamical accessibility is responsible for the fact 
that the energy is expressible in terms of first-order quan- 
tities. This is not the case. Dynamical accessibility, which 
is merely the statement that perturbations are caused by 
forces that are generated by a one-particle Hamiltonian, 
e.g., electromagnetic forces, is not at issue here, since Best’s 
calculations are confined to Maxwellian equilibria where 
the constraint plays no role. The energy in this case re- 
duces to the early result of Refs. 8 and 9. We have also 
treated the case where the constraint is not imposed, as can 
easily be seen from the simple derivation of the general 
energy expression in Ref. 2. We note that the Maxwellian 
energy expression is the simplest case of the general energy 
expression we derived for arbitrary Maxwell-Vlasov equi- 
libria and arbitrary electromagnetic perturbations (Refs. 2 
and 5-7). 

In the context of Best’s Eq. (8.1) it is stated that an 
additional “constant” piece of the total energy is “set to 
zero” with the argument that it “has no physical rele- 
vance.” In reality relation (8.1) is a direct consequence of 
Eqs. (6.8) and (6.10) and the constant piece need not be 
set to zero in an ad hoc manner. Thus Best has obtained the 
strange result that the total energy perturbation should 
vanish for all perturbations. This strange result is due to 
the approximations made and the terms omitted. 

This is distinct from the expression of Eq. (42) or Eq. 
(98) of Ref. 2 for the energy of longitudinal perturbations, 
which are clearly nonzero and non-negative for Maxwell- 
ian equilibria. (Best’s statement that we “found in section 
VIIC and Appendix C that the total energy can take...ne- 
gative values,...” is simply untrue for Maxwellian equilib- 
ria.) The counterpart of Eqs. (42) and (98) for transverse 
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perturbations were given in Refs. 5 and 6 and can also be transport, as we have described above and, most impor- 
written as (Ref. 7) follows: tantly, only the total energy is a constant of the motion. 

PI24 > (1) 

with obvious definitions of symbols. Note that the above 
energies are not just “constants,” but expressions involving 
equilibrium and first-order quantities. 

Contrary to Best’s claim the numerical value of our 
energy expression certainly has meaning. In general energy 
is only defined up to a constant. However, the energy here 
is the dtJ2rence between the energy of the perturbed state 
and the energy of the equilibrium state. It is well known 
that the sign of the energy of linear perturbations has prac- 
tical meaning. In particular, negative energy modes are 
seen to be destabilized in traveling wave tubes and, in gen- 
eral, in beam plasma systems (see, e.g., Ref. 10 and refer- 
ences therein). In the theory of Hamiltonian dynamical 
systems the energy of a linearly stable mode has an invari- 
ant signature that is a basis for distinguishing normal 
forms (see, e.g., Ref. 11). We would also like to point out 
that there is an intimate similarity between Penrose’s cri- 
terion and the criterion for the existence of negative-energy 
waves. The total energy expressions we have derived, con- 
trary to energy density, are quite useful for describing sta- 
bility in Vlasov plasmas. (See, e.g., in addition to our Refs. 
2 and 5-7, Refs. 8, 9, and 12.) 

Contrary to Best’s claim, the integrand of Eq. (42) in 
our paper is the exact energy density. In the derivation no 
terms have been omitted because of space integration. 

In the Comment and in Ref. 1 it is argued that for 
small Landau damping one can distinguish two time scales 
for energy propagation of a wave packet. In particular, it is 
argued that a portion of the energy, which has a density 
given by the dielectric energy expression, propagates at a 
group velocity while another portion precurses this and 
travels at a phase velocity. However, upon examination of 
the exact energy density, as given, for example, by the 
integrands of the space integrals in Eq. (44) of Ref. 2, one 
observes that in general the energy has contributions mov- 
ing at a spectrum of velocities, including the group veloc- 
ity. The last term of this expression propagates at the 
group velocity as it Landau damps while the second and 
third terms, which involve time integrals over the electric 
field, propagate at no particular velocity. Best’s result 
arises because important terms have been neglected. It is 
perplexing to us why it is claimed in Ref. 1 and in the 
Comment that energy density is important in contradis- 
tinction to the total energy. The total energy sheds light on 

Contrary to Best’s claims in the Comment our deriva- 
tion of the general energy expression in Ref. 2 does not 
make use of Van Kampen type modes and does not require 
products of generalized functions. The transformation in- 
volving the perturbed distribution function that is de- 
scribed in Sec. IX of Ref. 2 is related, but not equivalent, to 
Van Kampen’s calculation because it makes no assumption 
about time dependence. This transformation is used for the 
purpose of diagonalizing the energy expression, which has 
already been obtained by other means. The diagonalization 
procedure is akin to the procedure for transforming ele- 
mentary linear oscillator systems into normal coordinates. 
The mathematics employed is of a character similar to that 
used to prove Parsevals theorem in Fourier analysis. 

In addition to the claim in Ref. 1 and in the Comment 
that perturbations of a homogeneous Maxwellian Vlasov 
plasma do not necessarily change the energy, it is claimed 
that perturbations change the entropy. This latter claim is 
also incorrect in general. When perturbations are caused 
by, e.g., electromagnetic fields the constraint of dynamical 
accessibility is fulfilled and, as shown in Refs. 2, 5, and 6, 
integrals over any function of the distribution function are 
conserved. If mechanisms exist that produce perturbations 
that violate this constraint, it would seem appropriate to 
incorporate them into the dynamics. Such a dynamics is 
outside of Vlasov theory, which of course, conserves en- 
tropy. 
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