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The energy content of electrostatic perturbations about homogeneous equilibria is discussed. 
The calculation leading to the well-known dielectric (or as it is sometimes called, the wave) 
energy is revisited and interpreted in light of Vlasov theory. It is argued that this quantity is 
deficient because resonant particles are not correctly handled. A linear integral transform is 
presented that solves the linear Vlasov-Poisson equation. This solution, together with the 
Kruskal-Oberman energy [Phys. Fluids 1, 275 ( 1958)], is used to obtain an energy expression 
in terms of the electric field [Phys. Fluids B 4, 3038 (1992)]. It is described how the integral 
transform amounts to a change to normal coordinates in an infinite-dimensional Hamiltonian 
system. 

I. INTRODUCTION 

Since the advent of S W, energy principles have been an 
important mainstay of theoretical plasma physics research. 
Indefinite energy expressions imply either instability or the 
occurrence of negative energy modes, both of which are 
detrimental to confinement (see, for example, Ref. 1 and 
references therein). Therefore, precise expressions for the 
energy are desirable. Surprisingly, such energy expressions 
for the simplest of plasma models have not been obtained 
until recently.2” In this paper I discuss the energy content 
of electrostatic perturbations within the confines of 
Vlasov-Poisson theory. In Sec. II the derivation of the 
energy of a dielectric is revisited, and comments about its 
inability to completely describe the energy of a Vlasov 
plasma are made. In Sec. III, the linear Vlasov equation is 
solved by an integral transform technique. This solution is 
then used to obtain an energy expression for Vlasov theory 
in terms of the electric field, which is Fourier transformed 
in space and time independently.4 In Sec. IV it is briefly 
described how the energy obtained in Sec. III is the Hamil- 
tonian for an infinite-dimensional Hamiltonian system and 
how the integral transform solution amounts to a canonical 
transformation to action-angle variables. Finally, in Sec. V, 
is the conclusion. 

II. THE DIELECTRIC ENERGY 

Consider a gedanken experiment in which a dielectric 
medium, i.e., a “plasma,” spatially coexists with an artifi- 
cial medium that carries an imposed current, J,. It is as- 
sumed that the only interaction between the artificial me- 
dium and the plasma is by means of the electric field. The 
Maxwell equation that describes this situation is 

‘)Dedicated to the memory of Carl Oberman. 
*Paper 312, Bull. Am. Phys. Sot. 38, 1931 (1993). 
‘Invited speaker. 

where B and J are the electric field and plasma current 
density, respectively. Assume 

Je,e-iot+ikx, (2) 

where o=wR+ip and, for now, p> 0 and - UJ < ~0. 
Note that E and J are generated solely by J,; thus, their 
space and time dependencies are identical to those of J,. 
According to the usual response theory, the plasma is as- 
sumed to be adequately described by a dielectric function 
E(k,W), 

E+i z J=E(k,w)E, 

and hence 

(3) 

Je=E E(k,o)E. 

Now the energy absorbed by the plasma, gp, due to 
J,, is calculated from the power absorbed by the plasma. 
The latter quantity, which is equal to the power liberated 
by the artificial medium, is given by calculating the work 
done in maintaining J, against the electric field that arises 
in the plasma: 

p=-; 
s 

(Jet-c) (E+E*)d3x 
V 

=-f (cE+Jp) 

.VIE12 =z 4x [w*E*(k,w) -oe(k,o)]. 

Assuming e( k,WR) possesses real and imaginary parts; i.e., 

dk,tid =dk,~d +i~~(k,~d (6) 

and 

Wk,md 
E(k,tiR+ip) =:E(k,WR) +i,u aoR , 

and noting that the power is related to the plasma energy 
by P=~P%‘~, yields 
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~P=G* IE12($ 1 
R 

%dk,~dl +F eI(k,tiR) 

‘(8) 
So far no connection between k and tiR has been as- 

sumed. This is put in by assuming e( k,mR+iy) =O. When 
e&=0, this can be approximately solved, in the so-called 
small growth rate expansion, as follows: 

Ez(k,%t) 
Wwt) =O, y= -aER,aw . 

R 
(9) 

Remember p is a property of the current J,, while in light 
of the above y arises from the dispersion relation. Because 
of the expansions used, both quantities must be small. With 
(9), (8) becomes 

‘P=A lE(20,&R(k.@j& 
R 

The above expression is not quite that normally obtained in 
calculations of this sort, because of the factor ( 1 -r/p). 
The dielectric energy, 8’,, is defined by gP 
= gjlD( 1 -r/,u). The factor has some interesting conse- 
quences. 

For unstable plasmas one can take ,U = y and obtain the 
result gP=O, a result that is, in fact, correct for a Vlasov 
plasma, as can be shown directly within Vlasov theory.4 In 
this unstable case E#O at t=O is obtained with Je=O; i.e., 
only the self-consistent E and J contribute. This case could 
be called self-consistent “adiabatic” turn-on. For a mode 
with y<O, one can choose ,U CO, and in this case the time 
interval O<t < co is considered. The energy at t= 0 is given 
by the energy that has been transferred to the artificial 
medium during this time interval. If y=p, then again 
J,=O and %‘:p=O, which is again a valid result for a Vlasov 
plasma. This case could be called self-consistent “udiu- 
batic” turn-ofl 

Some people find the above result unsettling, but it is 
really to be expected. Consider a simple one degree-of- 
freedom Hamiltonian system for a particle in an inverted 
potential well: N= (p2 -qz)/2. This linear system has two 
eigenvalues f y and two corresponding eigenvectors. Eval- 
uating H on the eigenvector corresponding to the growing 
mode (for example) yields 

H=i e’Y’(pi -4:) =O. (11) 

The last equality follows because the only way energy can 
be conserved is to have (p”, -$+ ) =O. It is a simple matter 
to insert the eigenvector and check that this is so. As the 
particle falls down the well, its speed and displacement 
both increase as er’, but sum to zero. This is analogous to 
what occurs for the dielectric medium. As the instability 
grows the energy in the field increases, but this is canceled 
by the energy of the medium, which is negative but grows 
in absolute magnitude. For Vlasov theory the medium en- 
ergy is kinetic energy, which, in a sense, is being drawn 
from that contained in the unstable equilibrium state. 

It is important to point out that the validity of the 
above results, for both the growing and damped modes, 
depends upon y being the imaginary part of a root of the 

dielectric function. In the case of a Vlasov plasma such 
modes may exist, but these must be distinguished from 
solutions of the Landau problem, where the contour of 
integration is deformed. In the latter case, the above anal- 
ysis is invalid, For a stable Vlasov plasma a dielectric func- 
tion e( k,o) strictly speaking does not exist. The expression 
with the deformed contour used for obtaining Landau 
damping is only asymptotically valid in the limit of large 
time, where the electric field decays exponentially, and one 
cannot self-consistently turn off, as in the above case of a 
stable mode, a perturbed electric field that is only asymp- 
totically of the form E--e+“. 

In many places in the literature, attempts have been 
made to obtain energy expressions by solving the linearized 
Vlasov equation or other plasma models with the adiabatic 
turn-on assumption. Generally these expressions are defi- 
cient in two respects. First, they are not constants of mo- 
tion so their use in energy arguments must be viewed with 
caution, Second, the presence of resonant particles leads to 
singularities. This is because a finite amount of energy is 
deposited in the plasma in each wave period over an infi- 
nite interval of time. This behavior is recovered from ECq. 
( 10) by keeping y fixed and taking the limit ,u~-rO. 

The limit where ,u) I y I, but both still small, is also of 
interest, since in this case Rq. (10) reduces to gD. Al- 
though this limit can be appropriate for dielectric media, it 
is, in general, not valid for Vlasov plasma. In the case of 
weakly Landau damped modes, a self-consistent exponen- 
tial adiabatic turn-on (or turn-off) is not possible and the 
dielectric or wave energy expression is inappropriate. 

The physical reason that an expression like the dielec- 
tric energy is inadequate to describe the energy content of 
a Vlasov perturbation is that there can be an arbitrary 
amount of energy stored in the short time “transient” field. 
This energy can go into the particles in a complicated man- 
ner that is not representable by a formula like 8 D. 

There is one instance in Vlasov theory where the di- 
electric energy is appropriate. This occurs for special neu- 
tral modes that exist for equilibrium distribution functions 
that possess stationary inllection points.7 These have eI = 0 
at the phase velocity of the wave and so there is no Landau 
damping. Also, in models without resonant particles, such 
as fluid models, the dielectric energy is exact and appro- 
priate. Nevertheless, the question remains: What in general 
is the energy for stable Vlasov plasmas? 

In closing this section I wish to point out that after the 
completion of Ref. 4 we become aware that the deficiency 
of the dielectric energy because of resonant particles was 
previously suggested by Best.* However, this work, which 
is based on a rather complicated second-order perturbation 
treatment, serves to underscore the use of Hamiltonian 
techniques that we have advocated, since this reference 
contains incorrect and incomplete results. 

Ill. INTEGRAL TRANSFORM SOLUTION OF THE 
LINEAR VLASOV EQUATION AND THE NEW ENERGY 
EXPRESSION 

Now we solve the linear Vlasov equation by an integral 
transform. This method is akin to the solution by Van 
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Kampen,9 but has a distinct difference, as will be described 
below. The solution is used to obtain an energy expression. 

Begin by expanding about an equilibrium as follows: 

f(w,~) =fO(v) + : fk(v,t)eih, (12) 

where it is assumed that p is stable. The linear Vlasov- 
Poisson system, which is to be solved, is given by 

ikEk=he fk dv, 

afk af” 
af +ikfk+; Ek x=0. 

(13) 

We define 
2 

e’k,+ly;+l-2 (14) 

and observe that by stable we mean that E(k,v)#O for 
Im(kv) )O. Note that below we will often let v=o/k, and 
use e(k,v) ze(k,~). All integrations in this paper are 
along the real axis. 

The solution of ( 13) is obtained easily by the follow- 
ing, specially designed, integral transform: 

f,d%d =& Ek(u,t)~kk(U,U)df4 co 
where the kernel of the transform is given by 

P 1 
Yk(&v)=e,(k,u) ;u_u+e&u)S(v-u). (16) 

This is a linear transformation that takes a function of II 
into one of v. It is important to note that no particular time 
dependence is assumed-time plays the role, at this stage, 
of a parameter. This is were we depart from Van Kampen, 
who assumed a particular time dependence. The transform 
of ( 15) can also be view as a coordinate change on an 
infinite dimensional space, a point of view that we take in 
Sec. IV below. 

Integral transforms are not particularly useful unless 
they possess an inverse. The inverse of ( 15) is given by 

fk(v,+%(U,v)dv, (17) 

where the kernel of the inverse transformation is given by 

e#v) P 1 e&u) -__ 
skb)= lq pu--u+ lEl2 &V-u). (18) 

That this is the inverse follows from the following com- 
pleteness relations: 

s 
m 9;(u,v’)~~(u,v)du=S(v-v’) (19) 
--m 

and 

I Q) SZ(u,v)y~(Io,v)dv=~(U--U)). -02 (20) 

These relations are necessary to make the transform useful. 
They were, in principle, proved by Van Kampen’ and are, 
in essence, equivalent to the orthogonality relations that 
appear in the works of Case.” Another property of the 
transform is obtained by integrating ( 15) over u. It is easily 
seen from the resulting charge density that Ek is the elec- 
tric field associated with fk. 

In addition to the existence of an inverse, the above 
transform ( 15) (denoted by an overtilde) possess many 
properties as itemized: 

(i) A generalized convolution theorem; 
(ii) a generalized zarseval’s theorem; 
(iii) [g(v)] = u[ - (~I/I~~2)(1/r)J~mf dv; 
(iv) (EI)= e~/lel ; 
(VI j?‘,[q(k,Wl4k,u) I21 %3u,v’)9~(w)du 

=eI(k,v)S(v-v’); and 
(vi) JZ,eI(k,v)g;(u,v) ~~(u’,v)dv = [eI(k,u)/ 

Ie(k,u) (2]S(u-u’). 
(Above we have omitted the factor ik/he in the def- 

inition of the transform.) We will state and give the proofs 
of items (i) and (ii) elsewhere. The remaining items were 
proved in Ref. 4. Items (v) and (vi) will be alluded to in 
Sec. IV, where we discuss the Hamiltonian interpretation. 
They ensure that the integral transforms are, in fact, ca- 
nonical transformations of a sort. They are new (and non- 
trivial) identities that do not appear in the works of Van 
Kampen, Case, and others. 

Now let us proceed to transform ( 13). Using item (ii), 
we obtain 

=k 
z+ikuEk-iksk --m 

s 
a7 m fkdv+x=O. 

(21) 

Solution of (2 1) is hampered by the presence of the last 
two terms, but using item (iii), these are seen to cancel, 
yielding 

(22) 

an equation that is trivially solved by 

Ek=&(U)e-ikut, (23) 

where I? is arbitrary and can be used to set the initial value. 
From the above, the solution Sf (x,v,t) is obtained by sum- 
ming over k and performing the inverse transform. This, in 
the end, is equivalent to Van Kampen’s solution; it 
amounts to solving a mathematics problem know as the 
Riemann-Hilbert problem.” 

Let us now turn to the task of calculating the energy. 
We begin with an expression that was derived by Kruskal 
and Oberman,12 

v Sf’ 
af”/au dx dv+; 

s 
SE2 dx. (24) 

This expression was first obtained in a context more gen- 
eral than the present, but is easily obtained upon simplifi- 
cation. The derivation proceeds by expanding the energy 
subject to the general constraint 
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C[fl= j-uCf W, (25) 

where % (f ) is an arbitrary function that is mated to the 
equilibrium of interest. The expansion proceeds to second 
order and yields the constant of motion (24). The invari- 
ants C are an Eulerian manifestation of the conservation of 
phase space volume and are now often referred to as 
Casimir invariants. (Kruskal and Oberman proceeded to 
use their invariant to ascertain stability, a procedure that in 
the fluid mechanics literature is commonly and errone- 
ously credited to Arnold.) 

Although %‘)KO is a conserved quantity, it is not at all 
obvious that it corresponds physically to the energy. In 
Refs. 2-4, 8’k0 is generalized to a more general class of 
equilibria than that considered by Kruskal and Oberman, 
by imposing a condition referred to there as dynamical 
accessibility and, in addition, @ZKo is shown to be the en- 
ergy by deriving it from time translation invariance in the 
context of an action principle. It is also shown how to 
derive it by an appropriate expansion of the full nonlinear 
energy for the Vlasov-Poisson system. 

It is difficult to compare ??xo with gD or zY,, since 
the former quantity depends upon both the perturbation of 
the distribution function and the perturbation of the elec- 
tric field, rather than just the electric field. Thus, it is nat- 
ural to expand SE in a Fourier series and to insert ( 15) 
into gXO. This will yield a quantity quadratic in Ek; how- 
ever, one that is ostensibly very messy looking. In our 
previous paper4 we were able, with perseverance, to reduce 
this to a simple form. Now, with the aid of the identities 
listed above, notably the convolution and Parseval-type 
identities, this calculation has been significantly simplified 
(see Ref. 6). Here we will just state the result 

I:,‘;;;,” &(W) I2 dw, 
, 

(26) 

where we have used w= ku. Observe in this formula that 
&(o,t) depends explicitly upon time. If we insert the so- 
lution (23) then this time dependence disappears, a con- 
sequence of the fact that $ is a constant of motion. The 
quantity Ek(o) is the Fourier expansion of the electric 
field, where space and time are treated independently. 

The form of 8’ seems familiar, but is really quite dif- 
ferent in character from g D. The latter quantity requires a 
solution of the dispersion relation, and is evaluated on 
w(k). It is natural to question: Is 8 near, in some sense, to 
?YD? The answer to this question is, in general, no! To see 
this consider some electric field profiles. First, it is clear 
that the electric field at a point does not determine the state 
of a plasma. Suppose the electric field in the plasma is 
zero-positive charge neutralizing negative charge. In the 
future this may remain so. However, if a group of particles 
are given an initial velocity, then an instant later charge 
will be bared and an electric field will arise. Thus, specify- 
ing that the electric field is zero does not determine the 
state. However, it is true that specifying the electric field 
for all times, i.e., for TV ( - Q), 43 ) does determine the state. 
In light of the above analysis this is clear, since upon Fou- 

rier transformation kk(m) is obtained. Moreover, given 
any E(n,t) for all space and time (with weak restrictions, 
i.e., within an appropriate Hoelder class of functions) one 
can find an initial condition Sf (x,v,O), where Sf (x,v,t> 
solves the linear Vlasov-Poisson system and gives rise to 
E(x,t). We can use this fact to attempt to relate g to $?,. 
If we specify an electric field that fits our intuition, i.e., has 
a form that looks like Landau damping, then perhaps they 
can be made to agree. An example that was treated in 
detail in Ref. 4 assumes E(x,t) behaves as follows: 

lim Ek(t) =EO(k,mo)e-i~t-Ylfl, 
t+ztm 

(27) 

where oo+iy is a root of the Landau dispersion relation. 
Does this ensure that %’ z $ D? The answer to this question 
is no. The reason for this is that there can exist an arbitrary 
amount of energy in the decayed transient. This can go into 
the plasma kinetic energy in an arbitrary way, the details of 
which require the specification of the electric field during 
the short times as well. The formula for gD does not con- 
tain this information. 

IV. ACTION-ANGLE VARIABLES 

In this last section, we briefly interpret the above re- 
sults in terms of Hamiltonian theory. Recall in elementary 
mechanics classes we are taught how to transform a linear 
stable Hamiitonian system with a Hamiltonian of the form 

into normal coordinates. In terms of normal coordinates, 
the Hamiltonian takes the form 

H(q7P)=i 7 dPt+qf) Ek C wiJi* 
I I 

where ail the oscillator degrees of freedom are separated. 
In the definition above we have made a further transfor- 
mation to action-angle variables, with the action 
J= (~*-1-4~)/2. Now, the form of $ suggests that the ac- 
tion variables for the linear Vlasov system should be 
Y- le(k,o)j2/el(k,o). The sum in (29) is replaced in 
(26) by the sum over k and the integral over o. Thus, the 
parallel here is one where the Vlasov system corresponds to 
a Hamiltonian system with an infinite number of degrees of 
freedom. I would like to emphasize that the action r is 
not an action for particles, but an action that describes the 
perturbation of the distribution function, Sf (x,v,t). It is an 
action for a field theory. 

By now it is well known that the full nonlinear Vlasov- 
Poisson system is an infinite-dimensional Hamiltonian 
system. l3 However, when the dynamical variable is the dis- 
tribution function the system is in noncanonical variables 
and the Poisson bracket takes a noncanonical form. In Ref. 
4 we have begun from this complete nonlinear Hamii- 
tonian theory and derived a Hamiltonian description for 
the linear theory discussed in this paper. The transforma- 
tion from the variable fk to the variable Ek amounts to a 
canonical transformation to normal coordinates for this 
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infinite-dimensional system. The new identities that were 
given in Sec. III [items (v) and (vi)] ensure that the trans- 
formation is a canonical transformation. Recall in finite- 
dimensional theory there are two requirements of the 
transformation to normal coordinates. The first is that it 
diagonalizes the quadratic form of (28). This is clearly 
achievable by an orthogonal transformation. The second is 
that this be done by a canonical transformation. This, in 
essence, is the role of the new identities (v) and (vi). I 
refer the reader to Ref. 4 for details. 

V. CONCLUSION 

Since for finite systems the transformation to action- 
angle variables is general, i.e., can be done for all stable 
systems, the question is raised as to how general the con- 
struction given above is for infinite-dimensional fluid and 
plasma models. I believe it is quite general and can be done 
for essentially every nondissipative model, although, in 
general, it will not be as easy as the case presented here. 
Recent and ongoing efforts are along this line. For trans- 
verse electromagnetic perturbations about stable inhomo- 
geneous equilibria, we have effected the transformations 
above and obtained the following form for the energy: 

IET-2’vi I2 IE 
Im ET 1 12dv,, (30) 

with obvious definitions of symbols. The details of this 
calculation will be presented by Shadwick and the author 
elsewhere. 

In the literature there exist very many calculations that 
produce or use formulas like gD. Generally, this is be- 
cause assumptions similar to those of Sec. II have been 
made; i.e., that there exists an E( k,o), and resonant parti- 
cle effects are ignored or not treated in entirety. The di- 

electric is correct and complete in some models, for exam- 
ple, in fluid theories or in kinetic theories, where the 
distribution function vanishes identically for sufficiently 
large velocities. However, an arbitrarily small amount of 
resonant particles can contain an arbitrarily large amount 
of energy. 
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