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Abstract

Rigorous results on the stability of stationary solutions of the Vlasov-Poisson
system are obtained in the contexts of both plasma physics and stellar dynamics. It
is proved that stationary solutions in the plasma physics (stellar dynamics) case are
linearly stable if they are decreasing (increasing) functions of the local, i.e., particle,
energy. The main tool in the analysis is the free energy, a conserved quantity of the
linearized system. In addition, an appropriate global existence result is proved for
the linearized Vlasov-Poisson system and the existence of stationary solutions
which satisfy the above stability condition is established.

1. Introduction

The evolution considered in this papef is governed by the Vlasov-Poisson
system

0uf + v 0uf — 0,U8,f =0,
AU =4n(p* +yp),

pt,x):={ f(t x,v)dv,

where t > 0 denotes time, x € R?® position, and v € R3 velocity. For y = —1 this
system describes a collisionless plasma of electrons, which move in the electrostatic
field that arises self-consistently from the electron spatial charge density p(z, x) and
a fixed ion background with special charge density p* = p*(x) = 0. The case
where y =1 and p* is set to zero describes a collisionless ensemble of self-
gravitating point masses, e.g., stars in a galaxy or galaxies in a galactic cluster. In
this case, p(t, x) represents the spatial mass density. The function f=f(t, x,v)
denotes the phase-space density of either the electrons or stars, while — U and
U denote the electrostatic and gravitational potential, respectively.

The initial-value problem for this system, where the initial phase-space density
S0, x,v) = f(x,v)is prescribed, is now well understood, and the existence of global,
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classical solutions for C* data with appropriate decay at infinity is established
[10,21,27, 32, 35].

However, these rigorous results provide only limited information about the
qualitative behavior of the solutions. The purpose of the present investigation is to
clarify the question of stability of certain stationary solutions. Two main stability
concepts have to be distinguished: A stationary solution is nonlinearly stable if
solutions of the nonlinear Vlasov-Poisson system remain arbitrarily close to the
stationary solution in some norm for all times, provided the Vlasov-Poisson
solutions start sufficiently close to the stationary solution. The stationary solution
is linearly stable if the solutions of the nonlinear system are replaced by the
solutions of the corresponding linearized problem in the above “definition.” Obvi-
ously, a global existence result — at least for initial data close to the steady state
under consideration — is an integral part of both stability concepts.

If the solution is written as f, -+ f(t), where fj is the distribution function of the
steady state, and the term that is quadratic in f(¢) is neglected, one obtains the
linearized Vlasov-Poisson system:

O0uf + v 05f — 8:Uo 0, f = 0:Us 0o fo,
AUy = 4mypy,
pr(t,x)= [ f(t,x,v)dv,
where the steady state (fy, Uy) satisfies the stationary Vlasov-Poisson system:
v:0xfo— 0xUo"0ufo =0,
4Uo = 4n(p™ + ypo),
po(x):= ~ffo (x,v)dv.

Stability conditions are often expressed in terms of how f, depends on the local or
particle energy E(x, v):= 3v? + Uy(x). Since E and, for spherical symmetry under
which Uy (x) = Uy (|x]|), also F := |x x v|* are constant along the characteristics of
the stationary Vlasov equation, it is natural to represent fo(x,v) = @(E) or
fo(x,v) = @(E, F ) with some function ¢. The present work is restricted to the first
case.

There exists a large number of investigations of both linear and nonlinear
stability: cf. [1, 2, 11, 12, 13, 16, 19, 20, 22, 36, 37, 38]. The general and long-
standing opinion seems to be that — both in the plasma physics and in the stellar
dynamics cases — a steady state is stable if ¢ is a decreasing function of the energy.
Although these results are physically appealing and plausible, a distinction must be
made between these results and rigorous mathematics. (Note, too, that certain
conclusions drawn for anisotropic spherical systems are admittedly contradictory
[13, p. 308].) Concerning nonlinear stability we mention the following rigorous
results: In [9] it is shown, for the plasma physics case with spatial periodicity, that
spatially homogeneous steady states are nonlinearly stable if ¢ is decreasing; the
analogous result for the relativistic Vlasov-Maxwell system is shown in [25]. Both
results are based on using the total energy of the system as a Lyapunov function; cf.
also [28]. In [34] it is shown by REIN how to put the so-called energy-Casimir
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method as described in [20] into a rigorous mathematical setting for the plasma
physics case, thereby obtaining a nonlinear stability result in this case. In [38] an
attempt to prove nonlinear stability using the energy-Casimir method for the
stellar dynamics case was made; however, shortcomings of this work were pointed
out in [24]. (Bounds used-in [38] require that solutions of the Vlasov-Poisson
system have uniformly bounded gradients, a property that has not to date been
established. Also, it is not clear whether steady states that are “regular” in the sense
of Definition 1 exist.) As for linear stability, the only rigorous result we are aware of
is [18] where the effect of Landau damping is established for a homogeneous
steady state in the one-dimensional case. It is important to point out that in
infinite-dimensional dynamical systems such as the Vlasov-Poisson system, the
relationship between the two concepts of stability is in general not clear.

The present investigation is intended to fill part of the gap between what is done
in more physically motivated papers and what is mathematically established. We
proceed as follows: In the next section the basic assumptions on the steady states
under consideration are collected. In Section 3 we prove a global existence and
uniqueness result for the linearized Vlasov-Poisson system. Section 4 introduces
a conserved quantity of the linearized system, the dynamical free energy, for
solutions with initial conditions whose support lies inside the compact support of
the steady state f,. This is preparatory for Section 5 where we derive our stability
results in terms of a weighted L*-norm induced by the free energy: For the plasma
physics case we obtain linear stability if ¢’ < 0 on the support of ¢, and in the
stellar dynamics case we obtain linear stability if ¢’ > 0 on its support. Since the
steady state has to have finite total mass, this necessitates a jump discontinuity of ¢.
In Section 6 we show that there exist steady states which satisfy our assumptions.
This is necessary since in the plasma physics case the existence of steady states in
the above situation has not yet been demonstrated; we refer to [6, 14, 15, 33] for
related results. In the stellar dynamics case the polytropes of the form
@(E) = (Eo — E)§ with —1 < u < 0, which are investigated in [7] and [8], do not
satisfy our assumptions, but their approximations ®(E) = ¢(E)y_ ,z,1(E) with
E; < Ey do.

Since the restriction on the support of the initial distribution may seem
unphysical, we show in an appendix that it is a natural assumption within the
framework of a linearized theory. In the stellar dynamics case the result that f; is
stable if ¢ is increasing on its support and has a jump discontinuity at its boundary
may also seem unphysical. However, our analysis then at least shows that the
results of a linearized theory have to be taken with care. This in turn should be
a valuable insight for the plasma physics and stellar dynamics communities, since
there stability questions are very often approached by linearization.

2. Assumptions on the stationary solutions

We consider stationary solutions ( fy, Uy) of the Vlasov-Poisson system such
that

fO(x> U) = (p(%vl + Uo(X)), X, V€ ]R3:
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where ¢ satisfies the assumptions

(¢1) @ € Lige(R), ¢ 2 0,
(¢2) Eq:=inf{Ee€R|p(E') =0 ae. for E' > E} — 0, 0],
(93) ¢ € CH(] — 0, Eo[) with ¢’ € Liyo(] — 0, Eo]J),

and U, satisfies the assumptions

(U1) U, e C*(R?),

(U2) U, is bounded; U, = inf, (. ps Up(x) < Eo,

(U3) the set B:= {(x,v) € R®| $v? + Uy(x) £ E,} is bounded, and B has measure
Zero.

Here ¢ € Li(IR) means that ¢x € L*(K) for every compact interval K = IR, and
Li(] — o0, Eq]) is defined analogously.

Conditions (¢2) and (U2) imply that the energy levels of the distribution
function f, vary between the values U, and E,. Together with (U3) this means
that f, has phase-space support in the bounded set B. In particular, the steady state
has finite radius, i.e., there exists a radius Ry > 0 such that fy(x,v) = 0for |x| > Ro,
and by (¢1) it has finite mass or change:

[{ folx,v)dvdx <vol(B) sup @(E)<oo.
RS E € [Unins Eol
Condition (¢3) implies the estimates

[ 10/ Dldo =4 [ 19©)/2E~ Ut ds

Uo(x)

E,
é 47'5.\/ 2(E0 - Umin) j I(pI(E)ldE
Unin

<o, xelR3
and, with z:= (x,v) € RS, :

Ey R,
[ 10'(E(2)dz < (4n)* \/2(Eo ~ Umin) § |¢'(E)IdE | r*dr < oo,
R® Unnin 0

which are needed in the proof of global existence for the linearized Vlasov-Poisson
system in Section 3.

We write (fo, Uo) € & if (fo, Up) is a stationary solution of the Viasov-Poisson
system satisfying the above assumptions. In Section 6 we show that stationary solu-
tions of this type exist both in the plasma physics and in the stellar dynamics cases.

Throughout the paper constants which depend only on the steady state under
consideration — such as the above integrals — and which may change from line to
line are all denoted by C.

3. Global existence for the linearized Viasov-Poisson system

Let (f5,Uo) € & and let ¢t — fp +f(t) be a solution of the Vlasov-Poisson
system with initial condition f, + f. If the term which is quadratic in f(¢) in the
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Vlasov equation is neglected, we arrive at the linearized Vlasov-Poisson system for
the (small) perturbation f(t)

atf+ v'axf— axUO'auf= afo‘avaa 3.1)
AUy = 4nypy, , (3.2)
(t,x):= jf(t X, v) dv, (3.3)

together with the initial condition f(0) = f. Assuming that U, vanishes at infinity,
we obtain

pf(t,y)d ’
[x — y|

Urt,x) = —y x € R3, (3.4

Consider the system of characteristics corresponding to (3.1):
X=1v,0=— 0,Up(x). (3.5)

Due to the regularity of U, for every t € R and z = (x,v) € R® there exists
a unique global solution Z(-,t,z) = (X, V)(*, t, x, v) of (3.5) with Z(t,t,z) = z. The
mapping Z is continuously differentiable in all variables and Z (s, t,-): R® — IR® is
a measure-preserving diffeomorphism for all S, t € R. Using the flow Z, we can
write (3.1) in the form

ng(sa Z(Sa [ Z)) = (afo(S) aufo)(Z(S, L Z)): S,te R-: ze ]R6>
which upon integration yields
° t
f(t,2)=£(Z(0,t,2)) + [ (0:Us(s) @ fo)(Z(s t,z))ds, t=0,zeRR"
0

Since for steady states of class & we have fy(x,v) = @(3v* + Uy(x)) and since the
energy E(x,v) = 3v* + Uy (x) is invariant under the characteristic flow, this relation
becomes

° t
f(t.2) =£(Z(0,1,2)) + ¢'(E(2)) [ (0:Us (s) v)(Z(5,t,2))ds, t20,ze RS (3.6)
: .
This motivates the following definition:

Definition 3.1. Let f € L1(1R6) A function f: [0,00[xR® >R is a solution of
the linearized Vlasov-Poisson system with initial value f if and only if

(@) fe C([0,0[, L'(R®)),

(i) ps € C([0,00[, L=(R?)),
(ili) Uy e C([0,0 [, C;(R?)),
(iv) f satisfies (3.6) for t = 0 and z¢0B,

v) F0) =1
Here p, and U, are defined by (3.3) and (3.4), respectively, and Ci (IR?) denotes the
space of continuously differentiable functions which are bounded together with
their first derivatives.
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Note that a solution in this sense satisfies the linearized Vlasov-Poisson system
classically if f and U, are sufficiently regular.

Theorem 3.2. Let (fo, Up) € & and let fe L'(R®) be a pointwise-defined, R-valued
Sunction such that foZ(0,-) satisfies conditions (i) and (ii) of Definition 3.1. Then
there exists a unique solution of the linearized Vlasov-Poisson system with initial
value f.

Proof. We construct a converging sequence of iterates in the set
M= {g:[0,00 [ x R® >R |g satisfies (i), (ii), (v) of Definition 3.1}.
Obviously, fi = f 0Z(0,") € M. Let g € M. Then (i) implies that
Py € C([0,00 [, L*(IR?)),
and the well-known estimates (cf. [4])

10,0l < 221" 1109 (8) 127 1| 5 ) 1T,
10:U,(0) oo < 321> | pg (1) 122° 1l 04 () 11
yield (iii) for U,. Define

(3.7

t .
(Tg)(t,2) = f1(t,2) + @' (E(2)) | (0:Uy(s) v)(Z(s,2, 2))ds, t =0, z¢0B,
0
and zero otherwise. The estimate

[ |@'(E@) g (0:U,(5) 0)(Z(s, 1, 2)) ds | dz

IRG

< [1¢'(E(z))|dzsup |v] g 105Uy s) |l o ds

zeB

t
S Cpy)I 1oy () 11" ds
0

shows that (Tg)(t) € L*(IR®) — recall that constants denoted by C may depend on
the steady state under consideration. Let 0 < v < ¢; then

(Tg)) — (Tg)(@) .«

S 1A® =A@ + CJ10:Up(s) Il ds

+ i}fgl(p'(E(Z))l |0 Uy (5) - vNZ(s, 1, 2) — (0 Uy () 0)(Z(5, 7, 2)) | dz ds

-0 fort—t,
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since f; satisfies condition (i) and (0, U,(s) - v)(Z (s, 7, z)) is uniformly continuous on
[0,¢]* x B. The case t >t is analogous, and thus Tg satisfies condition (i). Next
observe that

|pg(t, X)| < 105 (2, X)| + Cflfp’(E(Z))Idvg 10:Up(s) o s

t
o X) + C I 10:Uy(5)ll o ds,
0
which implies that p,(t) € L*(R3?) for ¢ = 0. Furthermore, for = < t,

194(2) = Ps@ oo < 11 p7(8) = (Do + C [ 10:Uy(5) 0 ds

+C jsup|(a U,(s) 0)(Z(s, 1, 2)) — (05 U,(5)" v)(Z (s, 7, 2))| ds

0 zeB
-0 fort—t,

where the first term converges by the assumption on f, the second converges by (iii)
and the last by the same argument as above. Since the case t > ¢ is analogous, we
have (ii), and (v) being obvious we have shown that Tg € M, ie., T maps the set
M into itself. Now let g;, g, € M; then the above estimates show that

1/3

I(Tg1)(e) — (Tg2)(®)ll: < C£ 106,(9) = Pg (%> 1 91(s) = g2(5) II

g, = Pro. ()l = C ({ 196.(8) = Po, (%> [ 91.(5) — 92(5) 11"

Hence, if we define f,.,:=Tf,, n =1, it follows that there exist functions
feC([0,00[,L*(R®)) and p e C([0,00[,L°(R?)) such that f£,(t)—>f(t) in
- LY(R®), t-locally uniformly on [0, o[ and p,(t) = p(t) in L*(R3), t-locally uni-
formly on [0, co[. Since p,(t) — p,(¢) in L*(R?), we have p = p, and p,(t) = p(¢)
in Ll(le)mL“’(lR3) t-locally uniformly on [0, co[. This implies that Uy (t) — U(z)
in Cj (R3), t-locally uniformly on [0, co[. Passing to the limit in the relation

Sor1(6,2) = £i(t,2) + ¢'(E(2)) [ (0 Uy(s) 0) (Z(s, t,2))ds, t 20, z¢0B,
0
we obtain
1,2 =£Z(0,1,2) + ¢'(E@) f (0xUs(s) v)(Z(s,8,2))ds, t 2 0, z¢0B,
0

after redefining f on a set of measure zero. Since condition (v) is clear, f is
a solution in the sense of Definition 3.1. Uniqueness of the solution is obvious. [J
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Corollary 3.3. The solution f obtained in Theorem 3.2 has the following properties

fort =0 .

(@) f@t z)=f(Z(0,t,2)) for z¢ B, in particular,if f vanishes outside B, then so does
f@).

(b) %f (& Z(2,0,2)) = ¢'(E(2))(0: Uy (¢t) v)(2 (2,0, 2)), ¢ 0B.

© [/@dz =162 dz.
(d) If f has compact support or vanishes sufficiently rapidly at infinity, then

fo(t, X) f(t, 2)dz = — % wa U, (t, %) * dx.

Proof. (a)is obvious, (b) follows from replacing z in (3.6) by Z(z, 0, z) and differenti-
ating the resulting equation, (c) follows by integrating (3.6) with respect to z and
using the fact that the flow Z preserves measure and that the term 0, U,(s, x)-v is
odd in v. Note that the set B is invariant with respect to (x, v) > (x, — v).

(d) If p,(t) is, in addition, Holder-continuous, then

(U, x) f(t,2)dz = [ Up(t, x) py (2, x)dx

=lim | Uf(t,x)pf(t,x)dx=ilim [ Upt,x)4Us(t, x)dx

I2® |y gy 4y rowo ixg,

=—y—lim[ [ U, x)8.Us(t, %) n(x)do(x) — Iafo(t,x)lzdx}

dr reo | g =r |xjSr
Y
—— L [10.U(t, P dx

if the decay of U,(t, x)0, U(t, x) at spatial infinity is such that the boundary term
vanishes; if f has compact support, then U(t, x) 0. U,(t, x) = O(]x|™3). In case
py(t) is not Holder-continuous, we can use a mollification of p,(t) to get the
result. []

4. Conservation of free energy

Theorem 4.1. Let (fy, Up) € & and let f e L'(R®) be as in Theorem 3.2 with

[]

f(z)=0 for z¢ B and

@
) R < @.1)
Then
22
SN = =0
Foy=— (L8D 4, f Ust,x) f(t,2)dz = F(0), t20.  (42)

@' (E(2))
B
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Here the quotient is to be understood as
_9(2) _ {oo for ¢'(E(z)) =0 and g(z) + 0,

- 9'(E(2)) 0 for ¢'(E(z)) arbitrary and g(z) =
Proof. Assume that
f2.2)
JTotE@n =

for some ¢ = 0. Then with Corollary 3.3,

F(t) = J wdz ) j £(t,2(,0,2) £, 2(:,0,2)

) 1X(,0,2) - X@0,2)] 2%

e J $126,26,02) , f f(Z)f(Z)

— d a
) @) o (E) 4

B 0

JJJ d f(5,2(5,0,2))f (s, Z(s5,0,2))

1X(5.0,2) — X(5,0.7)] 4z

=F(0)—2 f J 75, Z(5,0,2)) (0 Us(s)- ) (Z(s, 0, 2)) ds dz

X(5,0,2z) — X(s,0,2') y
+?ff 1X(s,0,2) — X (5,0, z ),3(V(SOZ) V(S’vo,z))

x f(s,Z(s,0,2)) f(s,Z(s,0,2)) ds dz dz'

-2y f j{ﬁ’(E(Z))(afo(S)'v)(Z(S, 0,2))
B 0

f(s,Z(s,0,2))

'd
1X(5,0,2) — X(5.0,2)] 2 4542

=9’(0)— fjf(s z) 0. Up(s,x) - vdz ds
+yJJJ| ,I3(v v)f(s 2) f(s,2') dz dz' ds

+2 ff¢’(E(z))5fo(s,x)-va(s, x)dzds =
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=%(0)—2 fjf(s,z)afo(s,x)-vdzds
0B
+2Jff(s,z)axU,(s,x)-vdzds
0B

+2 JJ¢'(E(Z))6,¢ Us(s,x)-vUp(s, x) dz ds
0B

=7 (0)

the last integral vanishes because the integrand is odd in v and B-invariant under
the mapping v — — v. Retracing all the steps of the argument, we observe that all
the integrals exist by the boundedness of the term 9,U,(s,x) v on B and by the
integrability of ¢’ o E, and Fubini’s Theorem applies. []

Remark: The energy expression of (4.2), restricted to monotonically decreasing
(nonvanishing) stationary phase-space densities, was first obtained in [26] in
a plasma physics model more general than that of the Vlasov-Poisson system.
Imposing condition (4.1) allows one to consider stationary solutions of compact
support by restricting the class of initial conditions. In the Appendix we comment
on the restriction that f has to vanish outside the support of fj.

5. Linear stability

Theorem 5.1. Let (fy, Uy) € &, assume that yo'(E) >0 for Uy £ E < Ey, and
define the weighted L*-norm
2
g9°(2)
||g”2’ = f BVTTES dz.
2T ] 9 ER)

B

Then (fo, Uy) is linearly stable in the following sense: For every fo as in Theorem 4.1

with || £ 122 1lpfl X3 £ 1 the corresponding solution f of the linearized Vlasov-
Poisson system satisfies the estimate

If @12, < coll fllop + 1 £ 12, 20,

where the constant co depends only on the stationary solution (fy, Up).

[ L2
Proof. ||f(t)l|§,,, =y 7 EQ@) dz

B

y? 2
= —yZF —_——
170~ 1 [10.0/600 dx
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<17 0)= f f(E(())) - [t f @

B

o[ fQ) ]
<1712, f J(T(\/wus(z Uiy d

o vz
<1 flz, + ( [¢"(E(2))| U} (x) dZ> £ 1l26
B

12
= Ilfllz o 200 1 F15P 171132 < JW’(E(Z))IdZ) 1/ 1265
B

where the last estimate follows from (3.7). Thus, the proof is complete, with
1/2
coi= 220" < [1¢'(E@)] dz> . O
B

Remarks. 1. Using [38, Lemma 2] to estimate the potentlal energy corresponding
to f in the above proof we obtain the alternative stability estimate

If®15, < c1 Ilfllz +1f By £20,

for all initial data as in Theorem 4.1, where c; again depends on the stationary
solution (fy, Up).

2. If0 <c- = |¢'(E)| £ c+ < o0 on] — oo, Eq[, then the norm || - |15, is equiv-
alent to the usual L2 norm, and we obtain the stability estimate

[l f(t) 2 =cs ”f”Za t20

for all initial data as in Theorem 4.1.

3. The stellar dynamics case where ¢'(E) > 0 is of particular interest. This
result requires the jump discontinuity in ¢ and the restricted class of initial
conditions f described in Theorem 4.1. It is natural to question the physical
relevance of and the sensitivity to these assumptions. One would expect collisions,
i.e., the effect of short-range interactions, to smooth out the jump discontinuity in
¢ and produce a transition region where ¢'(E) >0 (and large). In this way
collisions .can provide a mechanism for the onset of instability.

6. Examples

In this section we establish the existence of a large class of stationary solutions
(fo, Up) € &. Among these there are steady states satisfying the stability condition
of Theorem 5.1, i.e., ¢'(E) < 0 in the plasma physics case and ¢'(E) >0 in the
stellar dynamics case.
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Any f, of the form
Jo(x,0) = 9(E) = ¢(30* + Uo(x)) (6.1)

automatically satisfies Vlasov’s equation, since the energy E is constant along
characteristics. Therefore, the stationary Vlasov-Poisson system is reduced to the
semilinear Poisson equation

AUo(x) = 4n(p* (x) + yhy(Us(x)), x€IR?,

where
h,(w):= [ p(3v* + u)dv.

Here we investigate spherically symmetric solutions of this problem, i.e., solutions
of

Nl’_‘

2 *Uo() = An(p*(r) + yho(Uo(r)), 1 >0, (6.2)

where

2]

hy(u) = J J¢< w +—+u>dFdw, (6.3)

0

(=]

ri=|x|, w= x-v/|x|, F:= |x x 0> = x?v> — (x* v)* The distribution function f; is
then a function of 7, w, F, and po(r) = h,(Us(r)) is a function of 7, i.e., the whole
steady state is spherically symmetric.

For the rest of this section let ¢ satisfy the conditions (¢1) and (¢2) from Section
2 and assume in addition that

(p4) Case (S) (stellar dynamics case): @(Eo):=limg, g @(E) exists and
®(Eo) >0,
Case (P) (plasma physics case). p* € C([O of), p* 20, r2p* € L0, o),
and there exist constants ro > 0 and p¢ > 0 such that p* () = pg, 7 € [0, 7]

Theorem 6.1. Let the assumptions (pl), (p2), and (¢p4) be satisfied. Then there
exists a constant oo < Eo such that for o€ Jog, Eo[ the problem (6.2) has a
unique solution Uy € C%([0, co[) with Uy(0) = o, where h, is defined by (6.3). Uy is
strictly increasing, Up(0) = 0, Eq < lim,_.o, Up(r) < 00, and there exists Ry > 0 such
that Ug(Ro) = Eq and Uu(R,) > 0. Consequently, if ¢ in addition satisfies (¢3) and
fo is defined by (6.1) and po:= h,o Uy, then (fo,Us) € &, po € CY([0, co[), and
po(r) =0 for rZ Ry, po(r)>0 for r<Ro. Under the further assumption
that yo'(E) >0 for E < E,, the steady state (fo,U,) is stable in the sense of
Theorem 5.1.

For the proof 6f this result the following lemma is useful: .
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Lemma 6.2. Let ¢ satisfy the assumptions (p1) and (¢2). Then (6.3) defines a func-
tion h, € C*(R), h,(u) =0 for u = E,, and

hy(4) = 4n./2 f 9(E)/E —udE,

4 ©
h;,(u)=—77% f (p(E)\/—g%, ueR.

The proof of this lemma is an easy application of Lebesgue’s theorem on
dominated convergence and therefore omitted.

Proof of Theorem 6.1. Local existence and uniqueness of the solution for arbi-
trary o € R follow by the contraction mapping principle, applied to the following
reformulation of the problem:

Us) =35 § (0" 9)+ -+ | Ua(o)de) s,

Let Uy € C1([0, R[) be the solution, extended to its maximal interval of existence
[0,R[, and po(r):= h,(Uo(r)). Then U, € C*(J0,R[), Uy (r) has a limit for r — 0,
Uo(0) = 0, and this 1mphes the regularity -assertions for Uy and pg. For the rest of
the proof, we have to treat the two cases (P) and (S) separately.

Case (P): Take oy < Eg such that

(1) h(p(u) < :0(-))-/2 forue :lOCo, EO [9

(i) Eo — 0o <55 15,

and let « € Jog, Eq[. Then by (i) Us{r) >0, and U, is strictly increasing on
[0,701n[0, R]; in fact, because h, is decreasing,

r

mm=if%p@ o (Us(s)) ds

an (L . pt 2
>F s(po - ds—3p0r

0
Since h,(u) = 0 for u 2 E,, this implies that R > r,, and by condition (i),
Uo(ro) > o + % pg 5 > Eo.

Thus there exists Ry € ]0,ro[ with Uy(Ro)=E, and Uy(r) > E0(< E,) for
r > Ro(< Ry) which implies the assertions on pg.

Case (S): First of all we note that for any « < E, the potential U, is strictly
increasing on [0, R[. Either Uy(r) < E, for r € [0, R[ in which case Uy, is bounded
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and thus exists globally, or Uy(r) = E, for » = Ry and some R, in which case
po vanishes for r = Ry, and U, again exists globally. To prove that actually the
latter case holds, we rely on the analysis in [5]. The existence of R, follows if we
show that the (possibly infinite) limit

L= lim Uy(r) > E,.
Assume L < E,. Then the monotonicity of U, and h, implies that 4, (Uy(r)) =
h,(L) for r 2 0, and thus,

Uo(r) = j—? JSZh,,,(L) ds =4+;h¢(L)7', r=0.
0

But this means that Uy (r) — co for r — 00, a contradiction. Thus it remains to show
that the assumption L = E, leads to a contradiction as well. To this end, define
y(#):= Ey — Uy(r), r = 0; then

@) yr)>0and y'(r) <0 forr =0,

(i) lim y(r) =0, lim ry@r) >0, hm (r)

(di) (2y'@) = — H,y(), r > 0, where H(r,y) = 4nr*h,(Eo — y).

Here the assertions in (i) follow from the strict monotonicity of Uy, and the first

assertion in (ii) is our assumption L = E,. The second assertion in (ii) follows by
L’Hospital’s rule:

lim (L — Up(r)) = lim 1/‘;'°(r) fim ‘i;r(’)
= lim 4n Jszpo(s) ds = 4n J 52po(s)ds > 0.
r—
o 0

Finally,

r

yo _ D _ fs2po(s>ds o 2 o0 == by <0
r r r 3 3
0

for r — 0. Condition (iii) is Equation (6.2), rewritten for y. Obviously, H satisfies the
relation

(iv) r6,H(r,y)=2H(r,y),r 20,y e R.

The assumption (@4) in case (S) implies the existence of constants oo < Eo and
0 < ¢y < ¢, such that

¢ S @(E)=c, for E € [ao, Eof.
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Take o € Jotg, Eo[; then 0 < y(r) £ Eg — o < Eg — 0y O 09 < Eg — y(r) < E, for
r = 0. Thus, _
0,H(r,y(r)) = — 4nr?hy(Eo — y(r))
dE

1 Ep
=_4 2.2 E —_—
\/E( ﬂ:) ’ ony(r)(P( )\/E_E0+y(r)

< (j;); r2c,2./y(r) = (4n)2\/§czr2 Jy{r),

H(r, y(r) = @n)/2¢,72 Ef E — Eo + y(r)dE = (4n)2 /2 3,72 y(r)*2.

Eo—y(r)

For «, sufficiently close to E, we can assume that

Cy 10

o < 3
Then there exists a constant m e ]1, 5[ such that c,/c; < 2m/3 ie., ¢, L%cym,
which in view of the above estimates for H(r, y(r)) and 0, H(r, y(r)) implies that
W) y(r)o,H(r, y(r)) = mH(r, y(r)), r 2 0.

Conditions (i) to (v) now lead to the desired contradiction in the following way; cf.
also [5]: Define

ry(m+ 1)/2(7.)

q(r)= BTN rz0,
Q)= r?y®* "2y (r) ¢ ()
m+1

=3r’y(r)y' () + ) Py (y +ry@) Hr,yr), rz0;

then

00) =2y 0 + 00, H — 2H)y) + (y3,H — mH)ry ()

5—m

2 r’y'(r)? rz0

by (iv) and (v), and
ling Q(r) = 0.

Thus .
r2y() M2y ()2 ' (r) = Q(r) = [ Q'(s)ds > O,
0




178 J. BATT, P. J. MORRISON & G. REIN

which implies that ¢'(r) >0 for » >0, and we have shown that g is strictly
increasing. The third assertion in (ii) yields '

limg(r) = — 4, A>0,
r—=0

and we conclude that

ry(m+ 1y2 (T)

, r>0.
y'(#)

—A<qr)=

Therefore,
(= A)y() =" D2 < (= A)(p(r) =" D2 — y(0)~ "= R2)

r

— ) [(=25 yorrryas
0

r

which implies that
ry(r) < Crm=3m=1" 50

for some constant C > 0. But this contradicts the second assertion in (ii). Thus, the
only remaining possibility is L > E, which implies that Uy(R,) = E, for some
Ry > 0 also in the stellar dynamics case. In both cases U, is strictly increasing and
Uo(r) ~ ¥~ 2for r > R, so that E, < lim,, , Uy(r) < co. Furthermore, Up(Ro) > 0
so that 8,E(z) = (2Uy(r),v) * 0 for z = (x,v) € dB. This shows that 0B is a C*-
submanifold of R® and is of measure zero. Since U, € C?([0, o) and Uy (0) = 0,
U, is in C? when interpreted as a function on R3, and the proof is complete. []

Appendix. Some comments on the class of admissible perturbations

The purpose of this section is to show that the restriction that fo vanish outside
the support of f, is a natural one within the present, linearized setting.

A class of perturbations that one certainly wishes to include are perturbations
caused by external forces. For example, one could think of f, as representing some
stationary galaxy which is perturbed by some other, distant galaxy. The particle
orbits are then given by a perturbed characteristic system

X=v, U0=—0.P,

where the (time-dependent) potential P of the perturbed force field can be thought
of as the sum of the self-consistent potential caused by the (perturbed) fo, and the
potential of the outside force. Let Zp = (Xp, Vp) be the flow of the perturbed
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characteristic system. The perturbed distribution function is then given by
JooZp(0,1,°),
and a natural class of perturbations would be the set
M:={fooZp(0,7,") — fo| P e C(1 = 5,3[; Co(R®)), t € ]— 8,6[, & > 0}.

It is quite obvious that this set contains perturbations whose support is not
contained in the support of f,. However, in a linearized theory it is consistent to
approximate the above perturbations to first order in 7, that is, to take as
perturbations the tangent vectors to all curves

r '_)fOOZP(O: Ta')

at v = 0 where P € C(]— 6, 6[; CZ(IR®)). In more geometric language: We replace
the “manifold” M by its “tangent space” at f,. Now

d 4

foZr0.59) = 2. fo@) 5 4

dT]T,-:o VP(Os T, Z)

s Xp(0,%.2) + 8,fo(@):

= — 0xfo(2) v + 0, fo(z) 0P (0, x)
=[g, fo1(2),
where [ -,-] denotes the usual Poisson bracket, and
g(z)=3v* + P(0, x);

note that Z(0,, z) satisfies

d
E ZP(O: T, Z)

0
= (_ v, axP(Ta X)) + f (% VP(Gn T, Z)’ ancP(aa XP(O') T, Z))'%XP(O-: T, Z)> dO'.

Therefore, the set
{[9.fo1l9(z) = 3v* + P(x), P € C;(R®)}

is natural as the set of admissible perturbations in a linearized setting, and
obviously these functions have support in the support of f;.
If we take f, € C(IR®), then the curve

T fooZp(0,1,")

is differentiable as a curve with values in any L?(R°), 1 < p < oo. In general, we do
not require this regularity of f;, and the corresponding curve need not be differen-
tiable. However, neither do we require the form [g, fy] for the initial perturbation,
but keep only the restriction on the support which makes sense without any
differentiability assumption on f;.
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Perturbations of the form [g, fo ] were called dynamically accessible perturba-
tions in [29, 30, 31]. (See also [3, 17,23].) For such perturbations, condition (4.1)
turns into the following condition on g:

L9, ET*(2)l9' (E(2))|dz < oo,

and the singularity in (4.1) due to the vanishing of ¢’ outside B disappears.

A second argument justifying our assumption on the support of the perturba-
tion goes as follows. Let us for the moment return to the original nonlinear
system and write the solution as F = f, + f. If we insert this into the nonlinear
Vlasov equation and use the fact that f; is a steady state, we obtain the Vlasov
equation

Ouf + 0 0uf— 8Uo 0of — 0Up 8,5 — 3:Us -0,/ = 0, (x,0) € RS,

with obvious meaning of U,. If one linearizes this equation, one drops certain
terms (quadraticin f) with the justification in mind that for small f they are small
compared to other terms (linear in f) which are not dropped. On the support of
fo the term 8, U, -8, f is small compared to the term 8, U, -0, fo and thus can be
dropped. However, outside the support of f; the latter term is zero so that the
quadratic term in f can be dropped only if it is small compared to zero, ie., if it is
zero itself, which is the case if and only if f vanishes outside the support of fo. It
would be questionable to drop the term 8, U, - 8, f outside supp f, by comparing it
to the term 8,Uyd,f since 8,U, can be zero outside supp fo, for example, if
fo represents a spherically symmetric plasma with zero net charge.
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