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Conventional linear stability analyses may fail for fluid systems with an indefinite free-energy 
functional. When such a system is linearly stable, it is said to possess negative energy modes. 
Instability may then occur either via dissipation of the negative energy modes, or nonlinearly via 
resonant wave-wave coupling, leading to explosive growth. In the dissipationless case, it is 
conjectured that intrinsic chaotic behavior may allow initially nonresonant systems to reach 
resonance by diffusion in phase space. In this and a companion paper (submitted to Phys. Plasmas), 
this phenomenon is demonstrated for a simple equilibrium involving cold counterstreaming ions. 
The system is described in the fluid approximation by a Hamiltonian functional and associated 
noncanonical Poisson bracket. By Fourier decomposition and appropriate coordinate 
transformations, the Hamiltonian for the perturbed energy is expressed in action-angle form. The 
normal modes correspond to Doppler-shifted ion-acoustic waves of positive and negative energy. 
Nonlinear coupling leads to decay instability via two-wave interactions, and to either decay or 
explosive instability via three-wave interactions. These instabilities are described for various 
integrable systems of waves interacting via single nonlinear terms. This discussion provides the 
foundation for the treatment of nonintegrable systems in the companion paper. 0 199.5 American 
Institute of Physics. 

1. INTRODUCTlON 

This and a companion paper’ address the effect of nega- 
tive energy waves and intrinsic chaos on the nonlinear sta- 
bility of plasma systems. Many plasma equilibria that appear 
stable by a linear analysis can contain negative energy 
modes.2-5 If dissipation occurs, these negative energy modes 
become unstable as they give up energy; in the dissipation- 
less case, nonlinear instability may occur via resonant cou- 
pling to positive energy modes. The growth of negative en- 
ergy waves from dissipation or resonant wave-wave 
coupling is well known in plasma and beam physics.6-14 
Here we will consider wave-wave interactions in dissipa- 
tionless systems, described using a Hamiltonian formulation. 

Analytical treatments of coherent wave-wave interac- 
tions often proceed by considering a single wave triplet, 
whose component waves interact via a single nonlinear term 
in the Hamiltonian.7,‘5 This formulation may be arrived at by 
averaging, where nonresonant nonlinear terms are assumed 
fast-varying compared to the single resonant or near-resonant 
term, and are therefore dropped. Such a Hamiltonian is inte- 
grable, so that the wave amplitudes and phases may be de- 
scribed exactly as an explicit function of time. When appro- 
priate resonance conditions are satisfied, coupling between 
waves of positive and negative energy results in explosive 
growth (infinite amplitude in a finite time) for arbitrarily 
small perturbations, while coupling between waves of the 
same energy sign results in growth to a finite amplitude (de- 
cay instability), limited by energy conservation, When the 
resonance is “detuned,” the equilibrium becomes stable to 
small perturbations, with growth occurring for modes above 
some critical amplitude (outside a separatrix in phase space). 

Growth rates and critical amplitudes for growth may be cal- 
culated exactly in the integrable case. 

It is often the case that more than one nonlinear term in 
the Hamiltonian is nearly resonant and should be retained. 
This will, in general, result in a nonintegrable system.16 In 
this case the motion cannot be described analytically, and 
some invariant surfaces in the phase space will be replaced 
by regions of chaotic motion. Chaos originates in the vicinity 
of separatrices between different types of phase space trajec- 
tories, so that in the case of a detuned resonance we expect 
destruction of the separatrix between stable and unstable mo- 
tion, and therefore a change in the effective size of the stable 
region. If the system is nearly integrable, most of the invari- 
ant curves within the stable region will remain intact. For a 
two-degree-of-freedom Hamiltonian (i.e., some number of 
modes coupled by only two nonlinear terms), these invariant 
curves provide absolute barriers to transport in the phase 
space, and the system will be absolutely stable for small 
enough perturbations. If the system is very chaotic, most 
invariant curves within the stable region may be destroyed so 
that stability is effectively lost. For more than two degrees of 
freedom, the invariant surfaces are not of high enough di- 
mensionality to partition the phase space, so that even in a 
nearly integrable system transport may occur across unlim- 
ited regions of phase space.17 Thus, waves whose amplitudes 
are initially well within a “stable” region may experience 
relatively slow growth until they reach sufficient amplitude 
for instability to occur. This process (Arnold diffusion) is 
generally quite slow; faster “thick layer” diffusion will oc- 
cur if most of the invariant surfaces are destroyed.is 

In general, therefore, for a system with negative energy 
modes, one might expect a lack of long-term stability to be 
the rule. Our goal in this work is to see what type of trans- 
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port occurs and to determine the relevant time scales for a 
simple example. 

This paper provides a review of pertinent background 
material and describes the physical system to be studied and 
the mathematical modeling employed. Companion work’ de- 
scribes numerical results for chaotic behavior of the system. 

The paper is organized as follows. Section II contains a 
review of some relevant background material, which is in- 
cluded here for continuity. (See Refs. 19 and 20 for further 
discussion.) We discuss the noncanonical Hamiltonian for- 
malism, which will be used to describe our plasma model, 
and describe the free energy principle, which yields a gener- 
alized definition of negative energy modes and a criterion for 
nonlinear stability.“*3 bi Sec. lTI we describe the physical 
system that was studied and the fluid model that was used to 
describe it. The system’s energy is described by a Hamil- 
tonian functional, and the equations of motion found from 
the corresponding noncanonical bracket. We describe the re- 
duction to normal-mode variables. In Sec. IV we discuss the 
resonance properties arising from nonlinear interactions be- 
tween the normal modes, and how chaotic motion arises. 

II. NONCANONICAL HAMILTONIAN FORMALISM AND 
THE FREE ENERGY PRINCIPLE 

We will be investigating a Hamiltonian system with a 
noncanonical Hamiltonian structure. This is the natural 
framework for a system described in terms of Euler@ vari- 
ables. Here we will review the noncanonical formalism both 
for finite-degree-of-freedom systems and for fields,“’ and we 
discuss the free energy principle and the related concept of 
negative energy modes,3 which will determine the stability of 
our system. 

The Hamiltonian formulation allows us to exploit the 
wealth of techniques available for understanding such sys- 
tems. Integrable systems to be described later are easily ana- 
lyzed when in the Hamiltonian form, and strict constraints on 
the phase space structure will lead to conclusions on what to 
expect in nonintegrable systems, as well as guiding the 
choice of numerical algorithms for studying these cases. 

A. Finite-degree-of-freedom systems 

First we consider an M-degree-of-freedom Hamiltonian 
system, where the dynamical variables are given by the vec- 
tor z:=(z’,...,zM ). Such a system is defined by a Hamil- 
tonian function H and a Poisson bracket { , ), with the time 
evolution of the dynamical variables given by Hamilton’s 
equations: 

._ dH +{z$H}=J’~ azj, i= l,...,M, 

where the Poisson bracket is defined by 

‘f if ‘g &&=-g J azjp 

for any functions f and g of the phase space variables. (Here 
we sum repeated indices from 1 to M.) The Poisson bracket 
(2) must satisfy the following algebraic properties: 

(f&l= --kJ?~ 

{{f,g},h}+.{{h,~},g)+{{g,h},f}=O,- (3) 

where f, g, and h are functions of z. 
A special case is the canonical one,22 where the M dy- 

namical variables split into N configuration variables and N 
momenta: 

z:=(q1 ,...&v#l,...,PN)r 

and the Poisson bracket has the form 

,(4) 

‘V,gl:= -$Jg$, (51 

where the constant matrix, 

ON IN 
Jc:= -I [ 1 N ON” 

is known as the cosymplectic form (ZN and ON are the NXN 
unit and zero matrices). Hamilton’s equations (1) then take 
the familiar form 

. dH . dH 
4i=dpi3 Pi’- dqi. (7) 

In the general (noncanonical) case, J’j may be odd di- 
mensional and may be a function of the zi. An important 
property of noncanonical brackets is the existence of Casimir 
invariants, which commute with any function of z: 

[C,f(z)l=O. 

Since f is arbitrary, we see from Eq. (2) that 

(8) 

dC 
J’j-=O i=l 

CJZ’ ) ‘***’ 
M. (9) 

This linear system clearly has nontrivial (nonconstant) Ca- 
simir solutions only if 

det(J’j) = 0. (10) 

Since the cosympletic form (6) has determinant 1, the ca- 
nonical bracket has no nontrivial Casimir invariants. For 
noncanonical brackets, the Casimirs label “leaves” in phase 
space upon which trajectories are constrained to lie. 

Consider perturbations about an equilibrium z,, which 
satisfies 

Wz,) pj~={zi,H}={zi,F}=Jij 7, i= l,..., M, 

(11) 

where F, the “free energy,” is defined by 

F:=Hf C XiCi; (12) 
i 

evidently equilibria are given by 

Wze.l 
~=0, i=l,..., M. 

dz 
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The Hamiltonian for the linear dynamics is given by 
expanding F about the equilibrium (see Refs. 19 and 20), 
i.e., upon setting z=z,+ 6z and expanding in 6z to second 
order. This yields 

1 #F(z,) 
a2F:=--m 

2 az’ dz’ 
6z’ szj. (14) 

The quantity S2F is, in fact, the energy change under pertur- 
bations that conserve the Casimir constraints. Different val- 
ues of Xi label different equilibria. 

If an equilibrium is such that S2F is of definite sign for 
all perturbations, then nearby surfaces of constant F are to- 
pologically spheres and the equilibrium is stable. If S2F is 
indefinite, then the system may be spectrally unstable, or if 
spectrally (linearly) stable, then it possesses modes of both 
“positive energy” and “negative energy.” This may be taken 
as a general definition of a negative energy mode. Note that 
since energy is not a covariant quantity, we must require that 
&F must be indefinite in any reference frame. 

In the theory of dielectric media, the energy content of a 
linear wave is defined as the work done by an external agent 
in exciting the wave, and is given byz3 

%= & (o&)[E12= 0 g 1Ek12, 

where E(~,o) is the dielectric function, Ek is the electric field 
strength for the mode of wave number k, and w(k) is the 
frequency as found from the zeros of E(~,o). The energy 
signature is given by sgn[w(&l&)], so that waves of both 
negative and positive energy are possible. A negative energy 
wave is one such that the total energy of the system is lower 
in the presence of the excitation. Our previous definition of 
negative energy waves via ?T2F agrees with the definition 
from dielectric theory, and provides a generalization that is 
valid for systems where the dielectric function is not defined 
or is difficult to calculate (see, e.g., Ref. 24). 

It is conjectured that systems with indefinite S2F are 
generically unstable, via either dissipation or nonlinear 
resonance.3 In the following sections we will examine the 
role of resonant wave-wave interactions in a dissipationless 
plasma physics example. 

B. Fields 

The ideas just discussed are readily extended to the case 
of tields,‘9-2’ which will be necessary for the treatment of 
our fluid model. In this case the state of the system is speci- 
fied by the field variables II/ i, i = I , . . . ,M. The time evolution 
is determined by a Hamiltonian functional H and a Poisson 
bracket, 

where 3 is an operator (possibly a function of the #‘), mak- 
ing the bracket satisfy the properties (3), and dr is the vol- 
ume element. The equations of motion are 

rjri={$‘,H}=y’j $ J’ i= 1 ,...,M. 

For a canonical field theory the dynamical variables split 
into N configuration variables 7 i and N momenta rr i. In this 
case the operator J is the 2N X 2N constant matrix, 

(18) 

giving, for the Poisson bracket, 

{JF-$& ,d3x($$-%&). 

i= I 
09) 

Hamilton’s equations take the form 

SH i’={ #&}= ----, 7j~=(,#H)= - f$ (20) 

For the noncanonical case we again have some number 
P (possibly infinite) of Casimir invariants, satisfying 

{C,,.:GqtjG]}=O, k= I,..., P. (21) 

We can then find equilibria corresponding to extremals of the 
free energy functional, 

P 

F=H+ c hkCk, 
k=l 

cm 

i.e., the Hamiltonian subject to the constraints of constant 
Casimirs. By definition, equilibria satisfy 

@=O, i= l,..., M. (23) 

Since we have 

li/={#,F}={#,H}=3ij ?.!& 

we see that the equilibrium equations are 

=I tlr,l 
-=O, 

w 
i= l,..., M, (25) 

where we have supposed that $e solves (25). Then the first 
variation of F, relative to +e in the direction #=(#*,...,#“), 
is denoted SF[t,h$J and is given by 

SF[$, ;+I:=; F[~e+eq5]~,=,:=~ dT$ qSi. 

(261 

Equation (25) implies that SF=0 for all r#. A second varia- 
tion at fixed 4 yields 

@F[$&$,l:=; SF[~e-W;dl~s=~: 

(27) 

Now analogous to the finite-dimensional case, definite 82F 
implies stability, while indefinite 8-F implies either linear 
instability or the existence of negative energy modes. 
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III. COUNTERSTREAMING IONS: BASIC 
DEVELOPMENT 

We will consider a simple one-dimensional plasma con- 
figuration consisting of two cold counterstreaming ion beams 
in a neutralizing isothermal electron background.” 

We begin by describing the fluid equations governing the 
system, and the characteristic modes of oscillation that arise 
from the linearized equations. The Hamiltonian structure of 
the system is then described, and the normal modes are ob- 
tained from an energy functional by calculating the lowest- 
order expression for the perturbed energy about an equilib- 
rium and transforming the corresponding system into action- 
angle variables. Higher-order terms in the Hamiltonian 
provide coupling between normal modes, which will be seen 
in the following sections to lead to explosive instability, as 
well as to strongly chaotic motion for a wide range of physi- 
cal parameters. 

The Hamiltonian nature of the system places strict con- 
straints on its possible behavior. The Hamiltonian formula- 
tion employed here serves to illuminate these properties. 

A. Linear analysis 

The dimensionless equations of motion and continuity 
for the two ion streams are 

2+ $ (n,u,)=O, 
where CC=? labels each ion stream with the sign of its ve- 
locity relative to the center-of-mass frame. Here the n, are 
normalized to the total unperturbed ion density no, u, is in 
units of the ion sound speed c, : = dm, the electric po- 
tential CJ~ is in units of TJe where T, is the electron tempera- 
ture in energy units, x is in units of the electron Debye length 
x0: = 7 $T,/4nnoe- and time is in units of the inverse ion 
plasma frequency, 0,‘: = dz’. These equations 
are supplemented with the isothermal (m,lmi40) approxi- 
mation for the electron motion and Poisson’s equation: 

n,=ebBI 

where n, is normalized to no. Through the latter two equa- 
tions we can, in principle, solve for &n + ,n -) so that the 
entire system is described in terms of the dynamical vari- 
ables nz and u + . 

For simplicity we consider an equilibrium of ion streams 
of equal density and speed: 

n I +=n--5, v+= -u-=v, E=$b=O, (32) 

where the ion drift speed u is normalized to c, . If we assume 
that perturbations have the dependence eiCkrmof) and linear- 
ize Fqs. (28)-(31), the condition for the resulting system to 
have nontrivial solutions is the vanishing of the dielectric 
function, given by 

1 

w 

0 

-1 

-POSITIVE ENERGY ,/: 
-.-.------.-- NEGATIVE ENERGY 

(a) 
1 

w 

0 

-1 

W I 

vd/cs= 1 .I0 

I-..d+.------- 

------ . ..-____- 

0 .l .2 .3 .4 .5 

k/k, 
FIG. 1. Dispersion relation w(k) for the cases (a) v<l, where negative 
energy modes (branches 2 and 4) are linearly unstable for long wavelengths; 
and (b) u > 1, where all modes are linearly stable. 

1 1 
(W-kv)2+(m+ku)Z 

(33) 

(Here k is normalized to h,t and w to opi .) Solving for o 
yields 

02=k’ 
1 

2c1+k2) +v”+. 

(34) 

A plot of the four branches of w(k) is shown in Fig. 1 for 
the cases u > 1 and u < 1. Taking the “ +” sign in Eq. (34) 
yields “fast modes,” with phase speed o/k greater than the 
drift speed u. These modes are always linearly stable (o 
real). The “-” sign yields “slow modes” with w/k<u , 
which are linearly stable when u > l/( 1 + k2). (Recall that u 
is the ratio of the equilibrium ion drift speed to the ion sound 
speed, or equivalently of the equilibrium ion kinetic energy 
to the electron temperature.) For u < 1, the slow modes be- 
comes linearly unstable, via the well-known ion-ion two- 
stream instability, for small k. (It should be noted that the 
linear stability criterion u > 1 would be replaced by the more 
stringent criterion lvlcos 01 in a two-dimensional model, 
where 8 is the angle between k and v.) 
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As discussed earlier, the energy signature of a wave is where we have used Poisson’s equation (31) and the Boltz- 
given by w(&/&J). It is easily shown from Eqs. (33) and (34) mann relation (30) in evaluating SHISn, for the last equa- 
that the fast modes have positive energy, while the slow tion. As described in Ref. 25, the Poisson bracket has the 
modes are negative energy waves. Casimir invariants, 

B. Hamiltonian development 

7. Hamiltonian structure 

The above normal modes may also be derived via a 
Hamiltonian formulation. The Hamiltonian is given by the 
energy, written as the functional 

H=h ;n+v:+;n-VtC I 
4 

d4 4e4 
0 

(35) 

The physical significance of these Casimirs may be traced 
back to the Liouville theorem of kinetic theory?7g28 

Equilibria are given by extrema of the energy, subject to 
the Casimir constraints; we therefore consider variations of 
the free energy functional, 

F=H+X:C:+X;C;+X:C:+X;C,. (40) 

The equilibrium (32) is obtained from the first variation of F: 

and -f$-=O 
i 

where A=~1~Xo%l is the (one-dimensional) plasma param- 
eter, L is the size of the system in Debye lengths, and H is 
normalized to the electron temperature. The first two terms 
are the ion kinetic energy densities, the third is tbe internal 
energy function for the electrons,25 and the fourth is the elec- 
tric field energy. The electrons can be envisioned as supply- 
ing an effective ion pressure. 

The appropriate Poisson bracket is given by25T26 

{F,$)=A-’ c ~oL&(f$=$$-;~), 
l.Y=C a CY (I 

(36) 
where 3 and .X are functionals of the na and v,, and @I& 
denotes the variational derivative off with respect to u. The 
Poisson bracket has units of (energy X time)- ’ = action- ’ ; 
consistent with our earlier normalizations we have written it 
in units of WpiT~ ’ . The equations of motion (28) and conti- 
nuity equations (29) are obtained from the usual formuIas for 
time derivatives in terms of Poisson brackets: 

ri,={n,,H}=h-’ c I,idx’ +&$ 6;a$. 
a’=+. I 

s 

L an,(x) =-- 
0 

dx' -& (n,v,) ~ 
%W) 

=-- dx’ $ (n,v,)6(x-x') 

&={v~,H}=-A-~ 
c%,(x) d SH 

dn’ --- 
Sv,(x') dx' Sn, 
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(38) 

*)+- $9 and Xg=Ti v. (41) 

The Lagrange multipliers may be recognized as the kinetic 
energy and momentum of the two streams. 

Stability is determined from the second variation, evalu- 
ated on the equilibrium: 

S*F= A f ; (&I+)‘+; (SU-)~ 

$2~ Sn+ &.I+-2v Sn- CC- 

+(6qq2+(s4)* , 
1 

(42) 

where && denotes (dl~?x)~~+ Here we have expanded the 
exponential in the internal energy function, keeping second- 
order terms. The sign of #F may be either positive or nega- 
tive, depending on the perturbation; thus, we may have either 
positive or negative energy waves in the system. It is impor- 
tant to note that, for this system, 8TF is indefinite regardless 
of the reference frame. 

2. Reduction to normal-mode variables 

We now Fourier decompose the perturbations: 

SE”= 5 nietkrnx, 

m=-m 

S4= $ 4,ebkmx, 
m= -co 

v;e%nX, 

m=-;o 

(43) 

where k m : = mkl and k, : = 27r/L. If we linearize Eqs. (30) 
and (31) about the equilibrium (expanding the exponential) 
and insert the Fourier expansions for Sn' and S$, we can 
solve for rpm(nf n-) nl7 m  1 
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A,=&- ; 2 i 
NG’m-, 

ItI I=1 ( 

N-IN,+I 
+ (1+!2[)(1+k;)(l+k;+J (44) 

where N,n : = rrt + ?l,. In terms of Fourier coefficients, we 
then have 

m 

f32F=;AL~ lv,~12+lu,12f2u(n,+v+,-n,v_, 
t?Z=l ( 

+ccj+2e * *. l+k, 
+@IN 13) m P (45) 

where C.C. denotes complex conjugate. Here we have 
dropped terms of order lN,J3 that came from evaluating 
14m12; we shall reclaim them when we evaluate the cubic 
terms in the Hamiltonian. 

The Poisson bracket (36) now takes the form (see Ap- 
pendix A) 

{xq=a~xj, gf(-$~--$~ m m m 
SF SF SF SF 

f- -- ~ - 
i Snol_, 871: Snol,~ Svg ’ (46) 

This can be put into the familiar form via the transformation 

&km -- 
4- & (Pz-xzl)r d,=(d)“, 

(47) 

d ~Uk,ll 
““=J;;r. CP4-LqgL n7,=(n,)“, 

1 

v”‘=2&lG 
b3--cq4), v-,=(v,)*, 

where we have suppressed the mode number labels on the pi 
and qi. [Here pi and qi have dimensions of 
action”2=(energyXtime)“2 and have been normalized to 
(T,/wJ lD.] The bracket then becomes 

w¶v=m~l i (g-g-zg. I‘II (48) 

Using the transformation (47), our expression (45) for 
the perturbed energy becomes 

.4 

S’F= ~ ~ C (qiAijqj+piBijpj), 
,s 

m=l i,j=l 

where 

A= 

B= 

=; i (4Aq+$Q),, 
IF?=1 

k;k,v 
kmu 

k;k,v 
i-3$ 1 0 

k,u 
1 

- 
2k,u 

0 0 

k;k,u 0 k;klu 
iq m 

-k,v 

0 0 -krnu & 
- 1 

1 
- 
2klu 

kmv 0 0 

kmu 
k;klu 

0 
k$klu 

l+k;5, m 

0 0 
1 

- 
2klv 

-k,v 

0 k;klv k;klu 
i-7-g -kl& I+k” 

m 

(49) 

(50) 

L 

(The overtilde denotes transpose.) The subscript “m” in Eq. 
(49) is a shorthand, indicating that each quantity inside the 
parentheses is labeled with this mode’ number. 

The wave momentum is given by 

P=R oLdX(n+v++n-v-). 
I (51) 

The total momentum for our equilibrium is zero; the per- 
turbed momentum is 

m 

@P=hLC (n;vt,+n,ur,+c.c.) 
m=l 

co 
= c k,,(plp2+qlqz+P3P4+q3q4)m 

l?Z=l 

(52) 
m=l 

where 
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10 km 0 01 fj,=msin 6i, .7i=mcOS 8i9 (581 
k, 0 0 0 

‘= I 0 0 0 k I * 

0 0 k, : 

We now seek a canonical transformation to diagonalize 
both 8F and 82P. The appropriate transformation may be 
written in the form 

q=SQ, p=TP, (54) 

where Q:= (/iI, Q2, Q3, Q>), P:=(i?, , Y2, P’s, P4), and the 
4X4 matrices S and T are given in Appendix B. In terms of 
the new variables, we find 

S2F= 5 
?f+& L@+QZ 

w+ ‘+--o- - 
2 *=I 

we arrive at 
(53) 

cPF= i: (#.~,---~*~o+~3-W_~4)mr (591 
*=l 

+w+ 
*@+@ lF$+& 
---cd- - 

2 1 2 m 
(55) 

and 

S2P= i k, 
.Yy+@ .?-$+& 
T- T 

(56) 

where 

1 
02 := 

km 2(1+/c;) +u2 

+ Jm) 1’2>o* (57) 
Making one further canonical transformation to action-angle 
variables, 

S2P= it km(Y,-- 3-z-.jG+.$dm. 
*=I 

60) 

The $i3i(mI will be recognized as corresponding to the 
four eigenmodes of Fig. 1, and the negative energy character 
of branches 2 and 4 is now explicit in the Hamiltonian. To 
further illustrate the correspondence, let us write the per- 
turbed energy (45) and momentum (52) in terms of the Fou- 
rier coefficients for the electric field E, : = - &km&, , We 
obtain 

S2P= i k,j L aE(;;‘o’ [E,iij, 
*=I 

(61) 

(62) 

where w( k,) is one of the four roots (positive or negative) of 
the dispersion relation e(k, ,o)=O. We immediately identify 
the wave action, which is now clearly seen to be the Hamil- 
tonian action, as 

63 

Again we see that the sign of the wave energy is given by 
w(Mdw). 

3. IVanlinear coupfing 
We now consider cubic terms of the perturbed energy. 

Taking the third variation of F, inserting the Fourier expan- 
sions, and carrying out the integration we obtain 

S3F= i + C.C.) 
I,*= I 

AL 

i 

NmN,N-cmto NmN-lN-(rn-~) -- 
6 (l+k~)(l+k~)(l+kg,,)+(l+k~)(l+k:)(l+k~-,)+C*C~ 11 

- w2)-LPI + %)m-I+(P4- Lq3)m(P3- bq4lItP3 

+ q4Lz+l+(P4- q3)m(P3- q4)-dP3+ Lqq)m-ll+Pl.m[(P2-L4, fp4- v3MPz- LqlfPil- Lq.i)lfPZ+ ‘41 +Pa 

f qj)m+ll+P-l,m[(P2- &4,+P4- w3)m(P2- L4, +p4- KJ3)-r(P2’ bql +p4+ ~43LrJ+C.C.l% (64) 
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where 

The only nonlinear terms surviving the integration are those 
corresponding to wave triplets that satisfy the wave number- 
matching conditions, n,k(‘)+n2k’“j+nlkt3)=0, where the 
IZ~ are integers satisfying In r I+ In21 + 1n31=3. This condition 
corresponds to the conservation of wave momentum. 

We can now substitute the transformations used earlier 
in Eqs. (54) and (58): 

qi= 2 Sij@j= 2 SijJ2,Fj sin 9j 9 
j=l j=l 

(661 

pi=i Ti&=i TijmCoS t9j. 
j-1 j=i 

Rather than attempt to write the general expression, we sim- 
ply note for now that the general cubic term will have the 
form (up to a constant phase factor) 

a~$~,~‘2~$~b~‘2~$$2 sin(~,e,+~beb+tt2,e,), (67) 

where /maI + [m,[+ lmal =3, and where LY here represents 
some combination of the a;, and p-r-l., and the matrix ele- 
ments Sij and Ti/ . 

For later reference we note how the coefficients of the 
cubic terms scale with the equilibrium quantities. Using the 
S, and Tij defined in Appendix B. we find that for wave 
numbers of order mkl , 

m3’2ky 
S’F- R. 

IV. RESONANCES AND NONLINEAR INSTABILITY 

Our interest is in resonant interactions between linearly 
stable modes; we therefore consider only sets of modes that 
interact resonantly (or near-resonantly) via the cubic terms of 
Eq. (64). Other modes yield nonlinear terms with rapidly 
varying phase and may be removed by averaging. The third- 
order resonance conditions- to be satisfied are 

nlk _ i~)+,&‘2)+n3,@=0, i (69 

n~W~--f”p2+n303=0, (70) 

where oi denotes w(kcn), and the ni are integers satisfying 
i er or er interactions will not be b+&d+b;1=3- Hgh - d 

We first consider the integrable cases of either two 
modes from the same branch of the dispersion relation, or 
three modes from different branches, interacting via a single 
nonlinear term, and then look at nonintegrable systems in- 
volving several nonlinear terms. 

-.015 ’ I 
0 1 2 3 4 5 

k/h 

FIG. 2. Three modes that form two near-resonant doublets. 

A. Phase space structure: Single resonance 

1. Two-wave interactions 

A very important interaction is that of two nearly reso- 
nant modes from the same branch of the dispersion relation. 
This situation is generic for long wavelengths (small k), 
where we have W* .M k,[ 3 + u* t &Z7]1’2, so that 
any pair of waves satisfying 2kl =k2 will also satisfy 
201~oz. The frequency matching condition cannot be satis- 
fied exactly, but is approached in the limit k-+0. For a large 
system (kldl), there may be many such nearly resonant 
pairs of modes. We will see later that this can be a strong 
source of chaos. 

Three modes for which this occurs are shown in Fig. 2. 
Here modes Jr, J,, and J, have wave numbers k,, 2k,, and 
4kl, respectively. For k,e 1 we will simultaneously have 
near-resonance between modes J1 and J2 and between modes 
J, -and J3. For now consider only modes J, and J,. The 
Hamiltonian is 

H=wlJl+~2J2+~Jl~ sin(2e1-e2), .~ (71) 
where 

~3(k,))2~~;(2,1)-f3~2~,~) 

+ 
(1 +k$2(1+4k*j 

(72) 
1 

(Thensubscripts in parentheses are the values of k at which Lii 
and bi are evaluated.) Since the angles et, 0, occur only in 
one combination, this can be reduced to a one-degree-of- 
freedom system. We do this by employing a canonical tratis- 
formation to a new set of variables, which we call ‘Yeso- 
nance variables.” One such transformation is provided by the 
mixed-variable generating function, 

F(z1,z3,e1,e2)=z1(281-.e2)+z3e2, _ (73) 
which yields 
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J,=g=21,, 
I 

*,=g=2e,-e2, 
I 

(74) 

J*=$=I3-.l,, 
2 

*?=$=e,. 

The Hamiltonian becomes 

H=H-0~13=fl,l,+2crI, Jr,-I, sin Jr,, (75) 

where 

n,:=20,-W* 

is the “detuning” of the resonance and 

(76) 

Z3:=J2+~J,=const. (77) 

(The choice of notation “I, ,13” rather than “I, ,I,” was 
made for later convenience.) Note that the constant of mo- 
tion I3 is just proportional to the wave momentum 
kl(J,+2Jd. 

For arbitrary pairs of waves, the phase space topology is 
determined by the “effective detuning” Ifinrt/trl, where “+” 
denotes waves of positive or negative energy. Expanding fiLt: 
for small k, we find 

3 1 +4u2t Jl+suz 
=k3 - 

v2 XhTGd 

+d’(k5). 
1 +2rJ2+ &G 

(78) 

The detunings a+ and &. are nearly equal in magnitude for 
most u, differing in magnitude only for u near 1 (since &. 
diverges as u -+ 1). 

Recalling from Eq. (68) that (u-m3’2kT/A for small tnk, , 
we find for the effective detuning, 

m3k:A A 
m312k2 1 

-,3/2k,A-^-,3/2 L, (79) 

with a weaker dependence on v. We will therefore have the 
strongest resonance for the smallest A (dense plasma). We 
will also obtain stronger resonance by considering smaller k , 
(larger L); however, since k, enters into both fi and a, this 
also increases the time scales required for the system to 
evolve. 

The motion for the Hamiltonian (75) may be solved ex- 
actly in terms of elliptic integrals.7*‘0 Our discussion of this 
and other integrable systems will focus primarily on graphi- 
cal representations of the phase space to understand the mo- 
tion. For nonintegrable systems to be considered later, there 
is, of course, no exact solution, and numerical methods will 
be used. 

We now examine the phase space structure for the 
Hamiltonian (75). For graphical representations it is conve- 
nient to use the Cartesian form of the resonance variables: 

(4 

.15 

(b) 
-.I5 

FIG. 3. Phase space topology for two-wave decay instability described by 
Hamiltonian (75) with A= 100, u= 1.4796, I,=O.Ol, and (a) L= 1000; (b) 
L = 5000. 

In Fig. 3 we display constant-energy contours for two values 
of L and fixed A and v. Here Z3 was chosen to be 0.01. The 
motion is confined to the region P: + QTG21,. When 
ISZ, /al<2 a, there is an unstable fixed point at the origin 
and two stable fixed points on the positive and negative Q, 
axis. As I&/cul passes through 2 &, one of the stable fixed 
points merges with the origin, which then becomes stable for 
I,Rr /+2Ji;. 

Recall that in the Hamiltonian (75), I, = ;J, , so that in 
Fig. 3 we are examining the behavior of J,. We could 
equally well have eliminated J1 in order to examine the be- 
havior of J2. Equivalent to this, and more useful for later 
reference, is looking at the behavior of J2 when coupled to 
the mode J3 of Fig. 2. (In either case we will be considering 
the behavior of the high-frequency mode of a pair.) The 
Hamiltonian for this system is given by 

H=w~J~+c+J~+~J~,/& sin(2e2- es), (811 

where 
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.15 

-. 15 
03 

FIG. 4. Phase space topology for two-wave decay instability described by 
Hamiltonian (84) with A=lOO, u =1.4796, fx=0.02, and (a) L=SOOO; (b) 
L= 10 000. 

kf n 
p=-.-- 

I-Y- ~7(2k1)(2~3(4kl)b1(2kl) +&(2k1)&(4k1)) 

A 
-iil(2k,)(2~1(4kl)b3(2kl) +&(2k1)&WI)) 

Applying the canonical transformation- 
- .M 

Jz=I3-212, &= e,-2e,, 

J3=f2, &= e2, 

the Hamiltonian becomes 

I?=H-wzr,=~~2-P(13-212)~ sin $2, 

where 

i&=6+-2w2 

and 

fX:=Jz-t-2J3rconst. 
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(83) 

(84) 
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w I 
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FIG. 5. Three modes that form a negative energy resonance. 

is again just proportional to the,momentum. [Like the trans- 
formation (74) and dther coordinate transfdrmations to fol- 
low, the transformation (83) can be obtained from a ,mixed- 
variable generating function analogous to (73).] 

- 

v.30- 
-.30 

p3 
.30 

(4 

.20 

Q3 

t----------- 

-.30 
04 p3 

.30 

FIG. 6. Phase space plots for Hamiltonian (90) with 14+1,=0. Here 
h=lOO, L=5000, and (a) u=1.4795944 (&=O); (b) u=1.4795926 
w&O). 
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The Hamiltonian (84) describes the behavior of the high- 
frequency wave of a near-resonant doublet, whereas Hamil- 
tonian (75) describes the behavior of the low-frequency 
wave. Figure 4 shows the Cartesian phase space variables 
E’,,e, for two values of L. We find that the origin is no 
longer a fixed point, no unstable fixed point ever occurs, and 
the two stable fixed points on the positive and negative Fz 
axis always exist, changing only in position as fi2, is varied. 

2. Three-wave interactions 
A large number of three-wave resonances is possible in 

our system. This may be seen graphically from Fig. 1. If the 
point (k=O, w=O) on one of the negative-w branches 3 or 4 
is translated along branch 1, then its intersection with branch 
2 defines a three-wave resonance. In the continuum limit 
such resonances occur regardless of the equilibrium param- 
eters; for a finite system only discrete values of the param- 
eters will yield exact resonances. 

For our symmetric equilibrium there are only two physi- 
cally distinct possibilities: a resonance involving two slow 
modes and one fast mode (where branch 4 connects branches 
1 and 2), or two fast modes and one slow one (where branch 
3 connects branches 1 and 2). Note that if the equilibrium 
parameters are such as to allow a resonance of either type, 
then there is another resonance given by the reflection of 
these modes about the k axis (i.e., a resonance involving 
branches 1, 2, and 3 will be accompanied by a resonance 
involving branches 3, 4, and 1). This degeneracy is a result 
of the symmetry, which was included for analytical simplic- 
ity; general equilibria will yield isolated resonances. 

Resonances involving modes of different energy signa- 
ture result in explosive instability. If we go to a reference 
frame moving with speed U, the signed frequencies w go to 
o-ku. [This does not affect the resonance condition (70).] 
The quantity &(k, w- ku)ldw is invariant under the frame 

shift, but the energy signature ( w - ku) [ de (k, w - ku)ldo] 
is not. Thus, if w-ku has opposite sign from w (i.e., if the 
branch crosses the k axis), then the energy signature of the 
mode changes. If there exists a reference frame where all 
modes of a triplet have the same energy signature, then the 
conservation of momentum and energy imply nonlinear sta- 
bility (i.e., stability under the linear dynamics and where 
only limited growth is possible for sufficiently small 
perturbations).‘2 It can be shown for general three-wave in- 
teractions that if and only if the wave of highest frequency 
has an energy signature opposite in sign to that of the other 
two waves, then no such reference frame exists.13 It is easily 
seen from the dispersion diagram for our system that this 
frequency relation holds if and only if the coupling is be- 
tween one positive energy wave and two negative energy 
waves. These resonances therefore lead to explosive instabil- 
ity, while those involving two positive energy modes and one 
of negative energy will exhibit only decay instability and 
limited growth. 

We now discuss three-wave resonances involving modes 
from different branches of the dispersion relation. We first 
look at “negative energy resonances” (involving two nega- 
tive energy modes and one of positive energy) and then at 
“positive energy resonances” (two positive energy modes 
and one of negative energy). 

a. Negative energy resonance. Consider a three-wave 
negative energy resonance, involving the modes shown in 
Fig. 5. Modes J2, J4, and J5 have wave numbers 2 k I, 2 k, , 
and 4kt , respectively. (The labeling convention is chosen so 
that we may later couple these modes to those of Fig. 2 
without changing mode labels.) The Hamiltonian is given by 

where 

2k: / 

-ci3(2k,)a^4(4n,)1;4(2k,~+Ci*(2Ly)~4(2k,));4(4kl)+ 

@1(x+ -63,2,,))(~2(2k,)--4(2k,))(~2(4k,)-~4(4ii,i) 

(1 -I-4k;)2( I+ 16k;) 
(881 

I 

The canonical transformation from the variables 
( J2 ,J, , J, ,8,, e4, 0,) the variables to resonance 
(I3 ,I4 ,Is, $3, 1ci4, $4 is given by 

=1131,+ y Z3(14+Z3)(Z5+Z3) sin G3, (90) 

where 

J2=13, ti3=e2+e4+e5, 

J,=l,+I,, +bJ//4= 6 

.f,=w13, *5= e5, 

which yields the new Hamiltonian, 

H=H+q14f~g15 

(89) 

‘R3:=02-04-05, 14:=J4-J2=const, 
(91) I5 : = J5 - .i2 = const. 

[The wave momentum is just -2k,(Z,+ Z5).] 
The negative energy resonance condition 649 - 04- fo5 =O 

is relatively insensitive to the value of L; the main control 
parameter is now u . For a given L, we may choose u to yield 
either exact resonance or a stable region of a desired size. 
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FIG. 7. Three modes that form a positive energy resonance. 

In Fig. 6 we plot Qs vs P, for L=5000 and two values 
of u , for the special case I, = I5 = 0 (corresponding to equal 
mode amplitudes J2= J4= J,). Figure 6(a) illustrates the 
case of exact resonance. All orbits (except for the equilib- 
rium point P,= Qs=O) go to infinity. Figure 6(b) shows the 
detuned case SZ,#O, with a small stable region around the 
equilibrium point and an accompanying unstable fixed point 
on the Qs axis. Orbits outside the separatrix still experience 
explosive growth, while those inside execute stable oscilla- 
tions. The size of the stable region increases with I&/j. 

When one of the constants I4 or I5 is nonzero (i.e., either 
J4 or J5 has an amplitude different from J2), the origin I,=0 
will still be a fixed point, but will only become stable for 
1 as 1 > fi or &. Thus, there is a range of nonzero fi, that 
yields instability at the origin. If both 14 and 1, are nonzero 
(i.e., neither J4 nor J5 is equal to J,), then no fixed points 
exist for small !2s. When IA?,,1 is large enough, a pair of fixed 
points (stable and unstable) appear, but the stable point is 
shifted off the origin I,=O. 

b. Positive energy resonance. We now consider a three- 
wave resonance involving two positive energy waves and 
one negative energy wave. This resonance will lead to decay 
instability, just as in the case of two-wave interactions. An 
important difference is that a given wave triplet can be in 
exact resonance for some u ; however, the resonance condi- 
tion is strongly dependent on v. 

We consider the modes shown in Fig. 7. The. wave num- 
bers of JzLI J6, and J7 are 2k,, k, and 3 kl, respectively. 
Mode J2 is the same one featured in Figs. 2 and 5; the num- 
bering of the other two modes was chosen to avoid confusion 
with the modes already discussed. The Hamiltonian is given 
by 

H=~*J~+~~J~--~J~+S~~ssin(e,-e~+e,), 
(92) 

where 

A A n 
+ii lrk,)a4(3k,)bl(2k,)-~2(ks)Ci3(k,)b?~~k1) 
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FIG. 8. Phase space topology for three-wave decay instability described by 
Hamiltonian (9.5), with L&=0 and (a) I,=O; (b) I,#O. 

A A 
+~~(k,)~3(2kl)b2(3k,)-~,(2ktj~3(k,)b4(3kt) 

n 

(93) 
Analysis of this Hamiltonian proceeds exactly as in the 
three-wave negative energy case. The transformation 

J2=12, q2=e2-e6+e7, 

J6=16-12, 51/,=e6, 

J7=~7+l,, $7=e7, 

yields 

H= H+ 0616- 0717 

=Cn,I,+ S sin & 

where 

fi4:=w2--6-0,7 

and 

I6 = J6 + J2 = c~onst, I7 = J7 - J2= const. 
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The motion will be bounded by the restriction I,< I,. If 
Z, =0 ( J2 = J,) , then the Hamiltonian has exactly the form of 
Hamiltonian (73, and the same analysis applies, except that 
we may now have exactly fi,=O. When I,>O, we find the 
same behavior as that of Hamiltonian (84). The phase space 
is shown in Fig. 8 for K&=0. The topologies of Figs. 8(a) and 
8(b) look similar, but in the latter case there is no fixed point 
at the origin. We could also have Z,<O, corresponding to 
J,>J, ; this would imply a forbidden region around the ori- 
gin of the P2 - Q2 plane. 

B. Multiple resonances and chaos 

For the integrable systems just considered, small- 
amplitude motion about the stable fixed points will be stable 
for all time. Thus, when a negative energy resonance is de- 
tuned, only motions with large enough amplitude (outside 
the separatrix of Fig. 6) will exhibit explosive instability. 
However, if we consider coupling to other modes via other 
nonlinear terms in the Hamiltonian, then chaotic motion will 
generally arise. In its mildest manifestation, this chaotic be- 
havior will occur in thin layers near the separatrices. Thus, 
the separatrix between the stable and unstable orbits will be 
“smeared out.” When chaotic motion is more widespread, 
many of the invariant curves within the stable region may be 
destroyed, effectively decreasing the size of the region. 
Moreover, in any chaotic system of more than two degrees of 
freedom, trajectories can make their way across the “stable” 
islets via Arnold diffusion,17 so that a small perturbation may 
grow until it reaches the separatrix region. The speed of this 
transport may vary widely, depending on the how nearly 
resonant the various waves are. We now examine this phe- 
nomenon in detail. 

1. General discussion 

Hamiltonians of the form 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (981 

where F and G are higher-than-linear functions of the Ji, 

have been discussed by Contopoulos.29 A particular case in- 
volving exact resonance in both nonlinear terms (i.e., 
mlwl+m202+m303=n101fn2wzfn303=0) was stud- 
ied numerically by Ford and Lunsford3’ and analytically by 
Kummer.3’ It was shown that, in general, globally chaotic 
motion occurs for arbitrarily small but nonzero a! and /3. This 
involves the breaking of most invariant surfaces and the con- 
sequent wandering of orbits over most of the energy surface. 
Contopoulos examined the transition to this situation from 
the nonresonant case. One exact constant of the motion be- 
sides H clearIy exists, since there are only two combinations 
of angles in the Hamiltonian. If only one resonance condition 
is satisfied (e.g., Ci,:=mlwl+m202fm303=O), then an- 
other approximate constant can be constructed, indicating the 
existence of invariant curves over most of the phase space. In 
this case chaotic motion will be confined to thin layers 
around broken separatrices. Very slow diffusion may occur 
along these thin layers; general estimates of the diffusion rate 

by Nekhoroshev3’ have been specialized by others33 to the 
simple case of coupled linear oscillators that we are consid- 
ering. As the other resonance condition is approached 
(S22:=nlw,+n202+n3w3-+O), and the “effective perturba- 
tion” E/& becomes large enough, then the approximate con- 
stant cannot be constructed, and the widespread dissolution 
of invariant surfaces occurs. This allows fast transport in 
phase space. 

2. Mu/iip!e resonances in the coimYerstreaming 
plasma problem 

We now consider what sorts of multiple resonances oc- 
cur in our counterstreaming ion model. We have seen that 
exact three-wave resonances are possible, involving either 
decay instability (“positive energy resonance”) or explosive 
instability (“negative energy resonance”). In addition, iong- 
wavelength modes from the same branch of the dispersion 
relation will interact strongly due to the near-resonance that 
always exists between them. Whenever we include more 
than one nonlinear term in the Hamiltonian, we expect to 
find chaotic behavior originating in thin layers near separa- 
trices. One result is that the weIl-defined stability boundary 
associated with a single negative energy resonance will be 
destroyed. We then expect that perturbations that were within 
the unperturbed separatrix may now become explosively un- 
stable by crossing the chaotic layer. Another important con- 
sequence involves the breaking of separatrices associated 
with the positive energy resonances. Since these separatrices 
involve confined motion, the chaotic orbits that replace them 
can provide a long-time driver for chaotic transport through 
the phase space. When the system includes a negative energy 
triplet coupled to one or more such positive energy reso- 
nances, this chaotic motion may allow orbits that are initially 
deep within the “stable” negative energy islet to grow in 
amplitude until explosive instability occurs. 

The extent of these chaotic regions may range from very 
thin layers to the entire phase space, depending on how many 
positive energy resonances or near-resonances occur. The 
two-wave near-resonance conditions may be arbitrarily well 
satisfied, depending only on the wavelengths, so that we 
would expect the possibility of approaching global chaos. 
This effect may be even stronger if a three-wave positive 
energy resonance condition is satisfied, which can occur for 
modes of any wavelength. With most or all invariant surfaces 
destroyed, orbits may reach any point in phase space via 
“thick-layer” diffusion, If positive energy resonance condi- 
tions are not nearly satisfied enough, then stochasticity will 
be confined to thin layers. Transport across large distances in 
the phase space may then be expected via Arnold diffusion 
(although on slow time scales) if the Hamiltonian has three 
or more degrees of freedom. We investigate these issues nu- 
merically in Fart II of this work.’ 

V. CONCLUSIONS 

We have described a simple plasma system that, even 
when linearly stable, supports negative energy waves which 
lead to explosive instability via resonant wave-wave inter- 
actions. Using a Hamiltonian formulation, these interactions 
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were illustrated for cases where only a single resonance was 
considered. In Part II of this work’ we turn to numerical 
modeling to study the behavior of the system when several 
resonances or near-resonances are considered. The Hamil- 
tonian approach used here to describe the interactions will 
also guide us in the development of simple, fast numerical 
algorithms. This system will be shown to exhibit strongly 
chaotic behavior under very general circumstances, which 
will alter the thresholds for explosive instability that were 
described for the single-resonance case. 

Other physical systems can also be studied using the 
methods and concepts described here. (For example, a com- 
plete kinetic description of the linear Hamiltonian theory has 
been done.a4) The plasma equilibrium considered was chosen 
partly because it allowed analytical reduction to the simple 
action-angle form (59); this is not possible for all systems. 
Nevertheless, the t?F arguments addressing nonlinear stabil- 
ity are widely applicable, and the physical processes consid- 
ered are quite common, so it is hoped that the results ob- 
tained will spur further investigations in these areas. 

APPENDIX A: TRANSFORMATION OF THE BRACKET 

The type of transformation described here was carried 
out by Gardners4 in describing the Hamiltonian structure for 
the Korteweg-de Vries equation. We begin with Eq. (36): 

{$v$)=p 2 ~oL&(g~g~g~g). 
CY=-t a ry LY 

In terms of the perturbed quantities Sn, and 2% n, this be- 
comes 

{sTq=A-L c JoLdx(g$-I&) 
cU=C a (Y 
SF a SY -~-~ 

1 S(Su,) ax S(Sn,) * (Al) 

Now if u = 21L=+,ume ckmx is one of our variables Sn, or 
&J a, then 

as7 L s5r au i SF 
au,= I 0 Sududx= I oSue rkmx dx. WI m 

We then have, for the Fourier expansion.of a functional de- 
rivative, 

SF 1 m dF ‘k x -=- 
su L c 

m= --la ze m* 

Using this in expression (Al), we have 

m 
=cc !g 

i Ii 
6JF cw- a.P- a57 ---++- 

ru=r m=l au”_, au; au”_, au; Ii 
a.9 cw a.YF c3.F + ----- 

av:, av; au”, au; 11 . 

APPENDIX B: DIAGONALIZATION OF 8F 

We have seen that the quadratic part of the perturbed 
energy and momentum may be written as 

ca 
S’F= $ c (GAq+ijBp),, 

- m=l 
031) 

S2P=i 2 ($zq+$zp),, 
IlL=l 

032) 

b43) 

L,:== A, v^:=u&q. @3) 

(Note that it and I? both depend on the mode number m, 
whereas k, and u do not; since the former occur only inside 
matrices that depend upon a single m, this will not lead to 
confusion.) 

The equations of motion are then 

dz 
z=Jc VH=Mz, 034) 

where A, B, and C are defined by Eqs. (50) and (53). For 
convenience we will define where 
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z=(ql ~42,43.94,Pl,P2,P3,P4) 

and 

0 B 
M= 1 1 -A 0’ 

The eigenvalues of M are given by 
X2’ - “2, 

where 

(W 

m 

WI 

d=i;(;+iF+ &zF). 038) 

By taking appropriate linear combinations of the complex 
eigenvectors of M, eight real eigenvectors are obtained; 
these provide a basis for a transformation of z that diagonal- 
izes both 81F and #P. The eigenvectors contain eight un- 
known constants: the requirements (55) and (56) yield eight 
equations. The transformation decouples into separate trans- 
formations for p and q, given by 

q=SQ, p=TP 

where 

i 
-b3 -b4 -b, -bZ 

a2 a3 a4 

b, b3 b4 

1 a3 a4 aI a2 

t 

1 al -a2 -a3 a4 1 
T= I b, -b, -b3 

The matrix elements are given by 

ai :=ai kJ,v^, A JA 

where 

;++v” 
-J 

A I 
6,:=y==&, L,:= *+ , 

;-+c i2:c$!ig c2 : 
62:= dzt ’ . 

and we have defined 

R:=&z, cJ+ :=W+lim. 
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