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In Part I of this work [Phys. Plasmas 2, 1926 (1995)], the behavior of linearly stable, integrable 
systems of waves in a simple plasma model was described using a Hamiltonian formulation. 
Explosive instability arose from nonlinear coupling between positive and negative energy modes, 
with well-defined threshold amplitudes depending on the physical parameters. In this concluding 
paper, the nonintegrable case is treated numerically. The time evolution is modeled with an explicit 
symplectic integrator derived using Lie algebraic methods. For amplitudes large enough to support 
two-wave decay interactions, strongly chaotic motion destroys the separatrix bounding the stable 
region in phase space. Diffusive growth then leads to explosive instability, effectively reducing the 
threshold amplitude. For initial amplitudes too small to drive decay instability, slow growth via 
Arnold diffusion might still lead to instability; however, this was not observed in numerical 
experiments. The diffusion rate is probably underestimated in this simple model. 0 1995American 
Znstitute of Physics. 

I. INTRODUCTION 

In this paper we continue the treatment of chaos in 
plasma wave-wave interactions begun in a. companion 
paper,’ which we refer to as Part I. In Part I the simple beam 
plasma model to be studied was introduced, the Hamiltonian 
structure of the model was elucidated, and normal mode 
variables representing ion-acoustic modes were derived. The 
behavior of sets of .two or three modes interacting via a 
single nonlinear coupling term was described. 

Here we discuss the behavior’of larger numbers of 
modes interacting via two or three nonlinear terms in the 
Hamiltonian (and thus comprising two and three degree-of- 
freedom systems). Such systems are nonintegrable, necessi- 
tating the use of numerical methods. It is demonstrated that 
the intrinsically chaotic behavior of such systems has a pro- 
found effect on their stability. The problems treated in Part I 
and here are of general importance in Hamiltonian dynamics 
with a long history of application in fluid and plasma phys- 
ics. (See, e.g., the references of Part I; also Ref. 2 and refer- 
ences therein). 

In Sec. II we describe the numerical method used. After 
a brief discussion of symplectic integration algorithms in 
general, we focus on the use of Lie transforms to obtain 
explicit expressions for time advancing the dynamical 
variables.3-7 In Sec. III we present numerical results for a 
number of systems described by Hamiltonians of one, two, 
and three degrees of freedom. We demonstrate the role of 
chaotic diffusion in destabilizing such systems. Section IV 
provides a summary and conclusions. 

II. SYMPLECTIC INTEGRATION USING LIE 
TRANSFORfvlS 

As discussed in Part I, chaotic motion in a system of 
waves allows phase space diffusion that can have dramatic 
consequences for long-term stability. At the same time, the 
Hamiltonian nature of the phase space may place strict limits 

on the possible motion. In doing numerical work, therefore, 
we must ensure that the Hamiltonian structure is properly 
reproduced, so that the observed chaotic motion and phase 
space diffusion are true properties of the Hamiltonian and 
not spuriOus results of the numerical method. This is facili- 
tated by symplectic integration methods. (For a review of 
such methods, see Ref. 8 and the references therein.j 

A major drawback of many symplectic algorithms is that 
they are implicit. For example, the well-known Runge-Kutta 
algorithm is symplectic when expressed in implicit form.g*‘O 
The solution of the implicit equations turns out to be verjr 
problematic for some of the systems of interest here. An 
alternative approach that provides an explicit symplectic al- 
gorithm involves the application of Lie transforms.” We 
show presently how this method is used to obtain an explicit, 
small time step integrator. Besides eliminating troublesome 
implicit formulas, this algorithm was three times faster than 
Runge-Kutta for systems of interest in this paper. 

In Ref. 4, Dragt and Forest show that for any polynomial . 
Hamiltonian, the time evolution of the dynamical variables Zi 
may be expressed as a product of operators, 

zf=“.&T~i:=...e Lf4~$p3~‘leLf2~‘lzi, 
(1) 

where f n is a homogeneous polynomial of degree n. Each 
operator eLfn*‘] is evaluated by expanding the exponential: 

elfn,‘lzi : =zi+ [f, ,zJ + & If;, ,[f, ,zi]] 

where Lf,g] is the usual Poisson bracket, 

(2) 

(3) 
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that acts on any functions f and g of the dynamical variables. 
A transformation of the form (2) is an example of a Lie 
transform. 

Each operator in the product (1) describes a symplectic 
transformation, and the product of any number of such op- 
erators is likewise symplectic. Each y1 th-order operator 
eVn “I in the product represents the action of the n th-order 
terms in the Hamiltonian H. If this infinite product is trun- 
cated at any order n, then the remaining finite product of 
operators will describe the motion accurately up to order 
n - 1 in the dynamical variables. 

The functions fi and f3 (all that we will require) in (1) 
are found as follows. If the Hamiltonian is H = Hz + H, + *+a , 
where H, denotes terms of order II, then the polynomial fi is 
given simply by 

f2= - H,At. (4) 

The polynomial f3 is given by the integral of H3 over the 
lowest-order orbits, 

f 3 : = lo” dt Hdz;), 

where H,(zl) means the polynomial H3 evaluated at zl 
=&z*~lzi~ 

Any operator elf,.‘1 for n>2 will, in general, yield an 
infinite series containing all powers of the zi ; the series can- 
not be truncated at any order without destroying the sym- 
plectic property.6 It turns out, however, that closed-form ex- 
pressions exist for the general operator.7 As a first step in 
obtaining such expressions, it is often desirable to decom- 
pose the polynomial operator into a product of monomial 
and/or polynomial operators via the Campbell-Baker- 
Hausdorff theorem.3 It is easily found that a cubic polyno- 
mial operator eU3v’I may be approximately reexpressed as a 
product of operators: 

.i’...l:=exp[[ 2 ~~‘,.I)~~ (eEf(l)*‘l), (6) 

where the error is of fourth order in the ii. 
After decomposing an operator into such constituent op- 

erators, the resulting operators are then used to obtain ex- 
plicit transformations. For a function f, that is linear in the 
dynamical variables (pi ,qi), the resulting transformation 
truncates at first order. For a quadratic function f2, the re- 
sulting transformation is linear; the infinite series is summed 
to give the constant coefficients. For a monomial f, of cubic 
or higher order, general closed form expressions have been 
derived by Gjaja.7 Specific examples will be described in the 
Appendix. 

An alternative method of obtaining explicit polynomial 
transformations from Lie operators was developed in Ref. 5. 
This method, known as kick-factorization, consists of find- 
ing, for any polynomial operator e Vn “I, a new operator 
t&n+‘], where g, has terms of the form cu(ap+-bq)‘. The 
series expansion for such an operator terminates at order 
n - 1, so that the full transformation for the time advance 
may be written as a composition of explicit polynomial 
transformations. This method was used in an earlier version 
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FIG. 1. Five modes comprising a negative-energy resonance and two 
positive-energy near resonances. 

of the work described here,” but its application is more dif- 
ficult than the method of Ref. 7, which was used to produce 
the results in this paper. 

Ill. NUMERICAL RESULTS 

We now present numerical results for several simple sys- 
tems of interest. Results are grouped according to the num- 
ber of degrees of freedom, which will correspond to the 
number of nonlinear terms included in the Hamiltonian. 
Three cases are considered: one degree of freedom (to see 
how well our algorithm reproduces the known integrable 
motion); two degrees of freedom (to examine the effect of 
nonintegrability and resultant separatrix breaking in the sim- 
plest case); and three degrees of freedom (to study the effect 
of strong chaos on explosive instabilities). 

The systems to be considered will comprise various sub- 
sets of the set of ion-acoustic modes shown in Fig. 1. As 
described in Part I, the “negative-energy resonance” be- 
tween modes J,, J4 and J, leads to explosive instability, 
while the near-resonant interaction among the modes J, , J2, 
and J3 leads to decay instabilities. The only positive-energy 
resonances considered in this paper will be these near reso- 
nances that occur generically for pairs of long-wavelength 
modes. Three-wave positive energy resonances may aIso be 
important in generating chaotic motion, although only in iso- 
lated regions of parameter space. The effect of such reso- 
nances on explosive instabilities, discussed in Ref. 11, is 
omitted here. 

The normalization introduced in Part I was such that 
time is measured in units of the inverse ion plasma frequency 
UP ’ . The actual characteristic frequency of an ion-acoustic 
oscillation with wave number k r : = 2 r/L is k , c, in physical 
variables, or k, in our dimensionless variables. For compu- 
tations we therefore renormalize by multiplying the Hamil- 
tonian and time by l/k, and k, , respectively, so that one unit 
of time now corresponds to one ion-acoustic oscillation time 
k-l. To make the Hamiltonian’s coefficients closer to unity, 
it is multiplied again by a factor of 1Q4, so that the unit of 
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time finally used in computations is ten thousand ion- 
acoustic oscillation times, lO%, . 

A. Integrable cases 

Before looking at numerical studies of chaos, we first 
check that our algorithm properly reproduces the known be- 
havior of the integrable, single-resonance systems. We con- 
sider both a two-wave positive energy resonance and a tbree- 
wave negative energy resonance. 

7. Positive energy resonance 

The numerical method is first applied to the single two- 
wave doublet described by the Hamiltonian of Eq. (71) of 
Part I: 

H=wiJr-t waJz+ cvJr & sin(28, - 0,). (7) 

Modes Jt and J, (seen in Fig. 1) have wave numbers kl and 
2k,, respectively, where k: =2dL. (Thus J, is the longest- 
wavelength mode possible in our system of size L.) In terms 
of the “resonance variables,” 

I1 = ;J, , e1=2e1- e2, 

b=iJ,+Jz> clr3=&, (8) 

this takes the form 

H=Cltzt +2aI&=&- sill +* 

=+ (P;+Qf) 
c 

+~QI~(P:+Q;K- 1 U’:+Q:))v (9) 

where 

PI= fi cos @I, 

and 

Q,=&-%h (lI1, I3 = const, 

$-&=20,-C+. 

The modes Jz, J4, and J5 are illustrated in Fig. 1. In terms of 
the resonance coordinates, 

1 

I3=J,, &=@,+e,+f&T, 

14=J4--Jz, +4=04, (11) 

z~=Js--Jz, h=h, 

While the resonance variables are convenient ones in 
which to view the phase space topology, numeric$ compu- 
tations were carried out using coordinates (Pi ,Qi) intro- 
duced in the Appendix, where the Lie algorithm used is also 
described. For the discussion here we need refer only to the 
resonance variables; the transformations between these and 
the (ki ,&) were done internally by the computer. 

In Fig. 2 we plot Q, vs. P, for the Hamiltonian of Eq. 
(9); the parameters (A= 100, L=5000, u = 1.4796) here are 
the same as in Fig. 3(b) of Part I; the time step used was 
bt=0.2. (Recall A, L, and u measure one-dimensional 
plasma parameter, box size, and drift velocity, respectively.) 
Good agreement with the analytical curves is observed. Our 
numerical algorithm was iterated up to time corresponding to 
3.5X lo6 ion-acoustic periods (or t=350 in computational 
time units) for each of the orbits shown; this provided 
enough data points to illustrate the curves clearly. In order to 
assess the long-time effects of numerical error, single curves 
from Fig. 2 have also been calculated for O<t<lO’O ion- 
acoustic periods (5X lo6 computational time steps). As with 
most of the work to be described in this paper, computations 

introduced in Part I, this Hamiltonian takes the form 

H=d13Z3+ yJZ3(Z4+Z3)(Z,+Z3) sin es, (12) 

where ,Rs=w,-w,-o,, 14=const, and Zs=const. For the 
special case Z4= Zs = 0 (corresponding to J2=J4= Js), the 
Hamiltonian reduces to the polynomial form 

H=R,Z, f yIi’2 sin *s 

0.z 
=y (P;+Q;)+ 2 Q&‘;+Q:>, (13) 

where P3 = & cos +!rs and Qs = m sin &. In this form 
the Hamiltonian is now amenable to the Lie transform meth- 
ods described in Sec. II. 

In Fig. 3 we reproduce Fig. 6(b) of Part I, showing the 
phase space for the Hamiltonian of (13) for the parameters 
h=lOO, L=5000, and u 11.479 592 56 (&#O). The trans- 
lation from the dimensionless variables (P3 ,Q3) back to 
physical variables is given by 

pq =dQqTg (14) 
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FXG. 2. Numerical orbits for the Hamiltonian (7), with A=lOO, L=5000, 
and v = 1.4796. 

were done using 64-bit arithmetic (i.e., 15-16 digit preci- 
sion). No numerical diffusion of the orbit was observed. 

2. Negative energy resonance 

We now consider the three-wave negative energy reso- 
nance described by the Hamiltonian of Eq. (87) of Part I: 

H=~~J~-~~J~-~~J~+~~~sin(e~fe~fe~). 
(10) 
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FIG. 3. Phase space plots for Hamiltonian (13) with I,=I,=O, A= 100, 
L=5000, and u= 1.479 592 6 (R,+O). 

where E is the electric field magnitude for the mode 
J2’Z3”(P:+Q$/2 in units of T,leh,, the constant .A is 

) (15) 

and E is the dielectric function, 

1 1 
(o-ku)2+ (w+ku)’ (16) 

For the parameters of Fig. 3, .,X-7.7X10-*. Thus, for a 
Debye length h=0.005 cm and an electron temperature of 
0.65 keV, the distance from the origin gives the electric field 
of this mode in V/m. 

Curves obtained by numerically iterating the Lie trans- 
form for the Hamiltonian of this system are shown in Fig. 4; 
good agreement with the analytical curves of Fig. 3 is seen. 
The orbits shown were computed for total times ranging 
from 106-lo* ion-acoustic periods. Some orbits were again 
iterated up to t= 10” ion-acoustic periods to check for any 
numerical diffusion; none was observed. 

0.30 

Q3 

-0.30 
-0.30 0.30 

p3 

FIG. 4. Numerical orbits for the Hamiltonian (13) with the same parameters 
seen in Fig. 3. 

B. Nonintegrability: Two degrees of freedom 

We now consider a nonintegrable Hamiltonian with two 
degrees of freedom. The case examined here involves the 
interaction of two positive-energy resonances. The interac- 
tion of a single positive-energy resonance with a single 
negative-energy resonance, less relevant to our purposes 
here, was discussed in Ref. 11, 

Consider the Hamiltonian describing the interaction of 
the three positive energy modes shown in Fig. 1: 

H=w,J,+~~J~+w~J~+aJ~&sin(2~9,--8~) 

+pJ2& sin(2&- 8,). (17) 

The transformation to resonance variables is 

J,=2Z,, h=2f4-e2, 

J3=12r &= 62% 

which yields 

H=H-wZ13=n,Z,+n2Z2~a2Z1J~-sin $, 

-/%&-2&-z,)& sin $2, (19) 

where fi,=03-2w, and I,= $JJI+ Jz+2J3=const. If the 
mode I, was absent from this liarniltonian, we would have 
the Hamihonian (84) of Part I, with the phase space structure 
shown in Fig. 4 of that paper. If instead the mode Z2 was 
absent, we would have the Hamiltonian (75) of Part I [Eq. 
(9) of this paper], with the phase space structure seen in Fig. 
3 of that paper and partially reproduced in Fig. 2 of this 
paper. We saw that that Hamiltonian had an unstable fixed 
point at the origin when ]a, la] < 2 &; we expect a condi- 
tion close to that to also hold for the Hamiltonian (19). It is 
along the separatrix associated with this unstable fixed point 
that chaotic motion will arise. 

Surface of section plots for the Hamiltonian (19) are 
shown in Fig. 5 for A= 100, u = 1.4796, and L ranging from 
2500 to 15 000. The constant I, was set to 0.01; the time step 
was again At=0.2. The orbits of Figs. 5(a) and 5(b) were 
computed to times of t =2 X 10’ and t = 10’ ion-acoustic pe- 
riods, respectively. For each orbit, initial conditions are 
P,=O, Q2=10w6 (~,&=7r/2, Z2=5X lo-i3). The variables 
(P, ,Q,) are initialized at a sampling of values, and are plot- 
ted each time that $z passes through ~12. (Since the time step 
must remain constant to preserve symplecticity, the actual 
points plotted are determined by linear interpolation between 
the values immediately before and after the orbit passes 
through the &=?r/2 plane.) Note that the various orbits in 
each plot correspond to different values of Z?; these values 
are nearly equal to the values for the orbits plotted in Fig. 2, 
for which the mode I2 was absent. Now, however, the second 
nonlinear term in (19) will lead to growth of I, via decay 
instability, with a strong perturbing effect on the system. 

The phase space topology is determined primarily by the 
effective detunings Kt,l~y and fi2//S, which are both propor- 
tional to k, = 1 lL. The smaller the magnitudes of these two 
quantities, the more chaotic the system’s behavior will be. 
For L=2500 (Rila=0.19, fi2/#---0.53) a very thin chaotic 
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FIG. 5. The P,=O surface of section plots for Hamiltonian (lY), with (a) 
L=2500; (b) L=5000; and (cj I,=15 000. Each orbit was started with 
Q2= lo-“, so that each corresponds to a different value of i?. 

layer exists along the separatrix through the fixed point at the 
origin. For L=5000 (Rlla=0.09, Cl,/@=-0.27), the chaotic 
layer through the origin has become more prominent, and 
when L=15 000 (slrl(~~O.04, &/fi--0.09) most of the ac- 
cessible phase space is occupied by chaotic orbits; all points 
shown in Fig. 5(c) are part of a single such orbit. 

C. Chaotic transport in three degrees of freedom 

We now consider a system consisting of all five of the 
modes seen in Fig. 1. Modes Jz, J,, and J, form a negative- 

energy triplet, while mode J2 forms two near resonances 
with modes J, and J,. We have seen that the two near reso- 
nances involving modes J, , Jz, and J3 can generate strongly 
chaotic motion, depending on the value of k, . The negative- 
energy resonance will drive explosive instability when a,=0 
is satisfied, so that almost any perturbation will lead to im- 
mediate explosive growth. By changing u we detune this 
resonance, opening an islet of stable motion around I,=O. If 
the system is strongly chaotic then fast diffusion can occur in 
phase space, allowing initially “stable” orbits to attain large 
enough amplitude for explosive instability to occur. If the 
motion is mostly regular, this fast diffusion will not occur. 
The many three-dimensional invariant surfaces existing in 
that case cannot partition the five-dimensional energy sur- 
face, however, so that even an orbit lying in the thinnest 
chaotic layer near the origin may in principle still find its 
way to large amplitude and subsequent explosive growth.‘2z’3 
This process (Arnold diffusion) is generally quite slow. 

This system is of course much simpler than is likely to 
occur in reality. In general, many more modes would be 
present and interacting via two-wave near resonances, which 
would likely provide faster diffusion rates. However, the sys- 
tem is of interest as the simplest highly chaotic system of 
more than two degrees of freedom that we can obtain from 
our counterstreaming ion model. 

The Hamiltonian for the five-wave set is given by 

H=olJ,+w2J2+~3J3-w4J4-~SJs 

+aJI~sin(281-~2)+~J2~sin(282-~3) 

-t yJ= sin( 8,+ 6)4+ 0,). (3-N 

The transformation to resonance variables is given by 

5,=21*, +,=24-e,, 

d2=13--212-11, *2= e3-2e,, 

J3=Iz, q3=e2+e4+e5, 

J4=14+13r *4= e4, 

(21) 

which yields the three degree-of-freedom Hamiltonian, 

Xsin @1-/3(13-212-11)&sin & 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ sin *3, (22) 

where I,= J4-($Jl + J,+ 2J3):const and 
I, = J5 - ( iJ1 + J2 + 25,) =const. We will consider the case 
Z4=Z5 = 0, for which the Hamiltonian can be transformed to 
a three degree-of-freedom polynomial, as described in the 
Appendix. 

We consider initial states where modes Jz, J4, and J5 
(those involved in the explosive instability) are of significant 
(and approximately equal) amplitude, while modes J1 and J3 
begin with very small amplitudes. In the transformed vari- 
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FIG. 6. Surface of section plots of (a) Q, vs P, and (b) Q3 vs P,. for 
L=SOOO and Q&0)=-0.1513. Escape occurred at r-2.8X lo9 ion-acoustic 
periods. 

ables, this means that I, starts with a significant amplitude, 
while I, and Z2 are small. We will therefore see what is 
essentially a perturbation of the constant energy curves of 
Fig. 3 due to the coupling to modes I, and I,. We again 
expect that if the mode I, has amplitude above a threshold 
given roughly by & > 1 Cl, /2 cy[, then we will have the pos- 
sibility of chaotic motion arising from decay instabilities. 
This chaotic motion will then drive diffusion in the value of 
I,. If the initial value of I, is below this threshold, we expect 
the motion to be mostly regular and any diffusion to be slow. 

Fixing the value A= 100, we examined various system 
sizes L. For each value of L, the equilibrium drift speed u 
was chosen so that the “unperturbed” separatrix would be of 
the size seen in Fig. 3. The system was always initialized 
with the values (P,,Q,)=(P2,Q2)=(0,10-6). The time 
step was At=0.2. An arbitrary amplitude of 100 was chosen 
to indicate “escape” if any of the computational variables 
(Pi ,Q,! became large; than this. The growth of amplitudes 
from (Pi ,Qi)< 1 to (Pi ,Qi)+lOO occurs very quickly once 
explosive growth sets in. Mode amplitudes are not monitored 
once this occurs; we are interested only in how the modes 
achieve sufficient amplitude for this growth to begin. 

Surface of section plots (&=rr/2) for L =5000 are 

0.25 , 

QI i 

-0.25 - 
-0.25 0.25 

0.25 

Q3 

Pl 

(b) 

p3 

FIG. 7. Surface of section plots of (a) Q, vs PI and (b) Q3 vs P,, for 
L=SOOO and Qs(O)=-0.05. No growth in amplitude of I, is visible at 
t= 10” ion-acoustic periods. 

shown in Figs. 6 and 7, and for L = 15 000 in Figs. 8 and 9, 
All initial values of (P3,Q3) were chosen well within the 
unperturbed separatrix, which is indicated by a solid line. For 
reference, the separatrix passes through the points (0, 0.1) 
and (0, -0.2). For L=5000, the orbit shown in Fig. 6 has an 
initial value of I,= (P:+ Qz)/2 sufficiently large that the 
evolution of both I, and I, is strongly chaotic, and i3 even- 
tually experiences explosive growth. (Interestingly, the orbit 
spends some time near amplitudes associated with the sepa- 
ratrix before explosive growth occurs.) For another orbit ini- 
tialized with much smaller Z3 (Fig. 7), there is no growth of 
I, from its initial small value, and the motion is very regular. 
No diffusion in i, was observed during IO’” ion-acoustic 
periods. 

For L = 1.5 000, explosive growth sets in at a much 
smaller wave amplitude (Fig. 8). With an even smaller initial 
amplitude of I,, we see a very restricted chaotic layer in the 
(P, ,Q t) motion, and no visible diffusion in I, was observed 
by the end of 10” ion-acoustic periods (Fig. 9). 

For the orbit of Fig. 8, the electric field magnitude E for 
mode Z3= J2 is plotted as a function of time in Fig. 10. (The 
data in this figure comprise the electric field only at times for 
which points were plotted in Fig. 8; these discrete points are 
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FIG. 8. Surface of section plots of (a) Q, vs P, and (b) Q3 vs P,, for 
L= I5 000 and Q.&O) = -0.06. Escape occurred at t-8.4X IO8 ion-acoustic 
periods. 

connected with straight lines.) The steady growth in ampli- 
tude over time is evident, until explosive growth takes over. 

For the case L=SOOO, Fig. 11 shows the escape time as 
a function of initial value Q3(0), for P3(0)=0. Initial values 
of Q3 were chosen progressively closer to the origin, until 
for one of them the arbitrarily chosen time t=2X lOlo ion- 
acoustic periods was reached without escape; the value of 
IQ,(O)/ for which this occurs will be denoted lQ31max, for the 
“maximum” stable value. The sharp rise of escape .time near 

!z3!max 
occurred for all vaIues of L, but the precise value of 

3 max was strongly dependent on L. These regions of 
sharply rising escape times may be thought of as defining an 
effective boundary for stability, i.e., a “reduced separatrix.” 

Figure 12(a) shows IQ31max as a function of L; Fig. 12(b) 
shows the same data where Q3 has been translated back to 
the electric field E. For the integrable system of Eq. (13), the 
largest stable perturbation would be at IQ3(0)I=0.2; this is 
indicated by the dotted line in Fig. 12(b). We see that the 
reduced separatrix size decreases with increasing wave- 
length, due to the strong chaos generated by two-wave inter- 
actions. 

Since a defining characteristic of chaotic motion is ex- 
treme sensitivity to initial conditions, orbits that start very 

-0.25 
-0.25 0.25 

0.25 

Q3 

p3 

FIG. 9. Surface of section plots of (a) Q, vs P, , and (b) Q3 vs P,, for 
L=l5 000 and Q&0)=-0.03. No growth in amplitude of I, is visible at 
t = IO” ion-acoustic periods. 

near one another will in general evolve quite differently. 
Plots such as those of Figs. 11 and 12, each point of which 
represents a single orbit, will therefore be extremely spiky. 
Another consequence of the sensitive dependence on initial 
conditions is that it is intrinsically impossible to accurately 
follow a chaotic orbit with any finite-precision algorithm, 
since roundoff error will grow exponentially. “Shadowing” 
arguments may be invoked to show that in cases where the 
numerical algorithm is not following the original orbit accu- 
rateIy, it is nevertheless following some nearby true 
orbit.‘4*‘5 In any case, the average behavior of orbits as a 
function of equilibrium parameters and initial conditions is 
clearly seen. As a check of the effects of numerical precision, 
Fig. 12 includes data points obtained using 128-bit arithmetic 
(32 digit precision); these results did not differ significantly 
from those obtained using 64-bit arithmetic. 

IV. CONCLUSIONS 

We have considered the role of intrinsic chaotic motion 
on the stability of plasma equilibria with free energy. Free 
energy permits the existence of negative-energy waves. A 
system with negative-energy waves, even if linearly stable, 
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FIG. 10. Electric field magnitude E (in units of T,leh& as a function of 
time (in ion-acoustic periods) for the points plotted in Fig. 8. 

may become nonlinearly unstable due to the resonant inter- 
action of positive- and negative-energy modes. Previous 
work, which assumed integrable behavior in order to de- 
scribe the nonlinear explosive instability, was complemented 
here by consideration of the chaotic motion that is ubiquitous 
in nonlinear dynamical systems. 

Describing a simple example via a Hamiltonian formu- 
lation allowed us to exploit the wealth of techniques avail- 
able for understanding the behavior of such systems. Strict 
constraints on the phase space structure led to conclusions on 
what to expect in the nonintegrable case. The same con- 
straints also led us to explore techniques for symplectic in- 
tegration of the equations of motion. The application of Lie 
algebraic methods led to a fast explicit numerical algorithm 
that was used to study a number of simple subsystems of 
interacting waves. Regions of parameter space near explo- 
sive three-wave resonances were examined. Strong two- 
wave interactions that turned out to be generic for this sys- 
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FIG. 11. Escape time in ion-acoustic periods as a function of Q,(O), for 
L=5000. 
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FIG. 12. (a) Largest jQa(O)[ for which escape had not yet occurred at 
t=ZX 10” ion-acoustic periods, as a function of L; (b) the same data ex- 
pressed in terms of electric field E, with a dotted line corresponding to 
/QJO)[=O.2. Data indicated by circles are obtained using &t-bit arithmetic: 
data indicated by triangles are obtained using 12%bit arithmetic. 

tern led to highly chaotic motion. This was a destabilizing 
influence, causing fluctuations in wave amplitudes and sub- 
sequent explosive growth for initial amplitudes below the 
critical value calculated for the integrable case of an isolated 
three-wave resonance, but above the threshold necessary to 
support the decay instabilities that generate chaotic motion. 

This paper considered only a very small portion of the 
possible parameter space. The glimpses obtained here of the 
phase space structure and diffusion invite further study, as 
has been done for other many-dimensional Hamiltonian 
systems.*6 For more detailed numerical studies of diffusion, 
it would be desirable to obtain a surface of section mapping 
describing the time advance between successive intersections 
with the &=~/2 plane in a single iteration. Such mappings 
have been derived for other Hamiltonians,‘7*‘8 but a satisfac- 
tory one has not been obtained for the three degree-of- 
freedom Hamiltonian of Eq. (22). Such an algorithm 
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would greatly ,extend the range of parameters and initial con- 
ditions that could be studied, and would facilitate detennina- 
tion of diffusion rates and comparisons to theoretical esti- 
mates obtained by Nekhoroshev and others.‘9*20 It would also 
decrease the cumulative numerical error. 

While the two and three degree-of-freedom systems con- 
sidered here represent an improvement over the integrable 
approximation for three-wave interactions, they still include 
drastic simplifications. One major approximation is the ne- 
glect of a large number of other possible wave-wave inter- 
actions, particularly the two-wave interactions that lead to 
very chaotic motion even when only three waves are in- 
volved. At long wavelengths many such interactions can oc- 
cur simultaneously. The explosive resonances are isolated in 
parameter space, but the highly chaotic nature of the system 
broadens the region over which they are important. It would 
be interesting to carry out further numerical modeling of this 
system, considering more than three resonances. One would 
guess that a more realistic number of near-resonant interac- 
tions would lead to stronger chaos and faster diffusion than 
was seen in this paper. 

Another effect that might lead to faster diffusion rates is 
scattering in phase space due to collisions, which is not de- 
scribed by the fluid model developed in this work. The fre- 
quency of ion-electron collisions is roughly vlk,w, 
- Jtnilm,llklR3?1 Thus, for A=100 and L=SOOO, the 
typical time for a collision to occur is At-30 ion-acoustic 
periods. Collisions might enhance the diffusion rates by scat- 
tering orbits off of invariant surfaces and into thin chaotic 
layers that provide channels for escape.‘2 The effect of such 
extrinsic noise on Hamiltonian systems has been considered 
by a number of authors.23-25 This effect might be crudely 
modeled by incorporating small random perturbations in the 
numerical algorithm. 

Linear Landau damping is not included in the lluid 
model; this process normally limits the existence of ion- 
acoustic waves to times shorter than the diffusion time scales 
considered here.‘4 It would be interesting to consider how 
flattening of the particle distribution functions might elimi- 
nate this damping; general nonlinear wave-particle reso- 
nance effects such nonlinear Landau damping and particle 
trapping are of course outside of the fluid model treated. 

Other physical systems can also be studied using the 
methods and concepts described here. The plasma equilib- 
rium considered was chosen partly because it allowed ana- 
lytical reduction to the simple action-angle form (59) of Part 
I; this is not possible for all systems. Nevertheless, the @F 
arguments addressing nonlinear stability are widely appli- 
cable, and the physical processes considered are quite com- 
mon, so it is hoped that the results obtained will spur further 
investigations in these areas. 
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APPENDIX: NUMERICAL ALGORITHM 

The Hamiltonian systems studied in this work were vi- 
sualized graphically using “resonance coordinates.” These 
coordinate systems are convenient for viewing the phase 
space, but are ill suited for numerical computations. We 
therefore employ a different set of “computational coordi- 
nates,” which reduce the Hamiltonians to forms amenable to 
the Lie transform methods of Sec. II. 

Consider first the five degree-of-freedom Hamiltonian 
(20): 

H=wlJl+~2J2+w3J3-~qJ4-~sJ5 

+aJ& si11(28,-8~)fPJ~& sin(202-&) 

+YJmsin(82+@4f05). (Al) 
The transformation to computational variables is obtained 
from the generating function, 

F=i,e1+i3e2+~2e3+(f4+~3+2i2+&)e4 

+(i,+i3+2i2+~~1)e5. h42) 
This yields the transformation 

J,=&, ii1=~1+~(~,+~5), 

J&3, &*,= e,+w,+ 84, 

J3=i*, $3==2+4+esr 643) 

Jq=i4+i3+212+$i1, $~4=84, 

Js=fs+i3+2i2+$1, fjs=e5, 

giving us the new Hamiltonian 

fi=H-~n,i,=B,i,+A,i,+A,i,+ai,~ sin(2&1-$3) 

+ pi3 & sin(2 4s - $2) 

fy f3(i,+f3+2f?+~~l)(i5+j3f2j2+~~i)sin JJ~, 

644) 
where the new frequencies, 

fL1=$((n,+n3), &=Q&Xl3, t13=fJ3, 645) 
are expressed in terms of the resonance detunings, 

sZ,=2Ol-O2, C&=W3-2W2, Cl3=W*-O4-O5. 

646) 
For the special case j4= i, , we write this in Cartesian coor- 
dinates, pi = J2li cos 13/i and di = fl sin t$i, as follows: 

A 
a-2 (F:+@>+ 2 (Ff+Q;)+? (I;;+& 

ff I,.* n  

+ - [2Q,W’,-Q3(&@)1 
2v2 

This work was funded by the U.S. Department of Energy 
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the derivation of explicit algorithms using Lie transforms. 

+ --$ [2~3~3&&(&@)]+ 2 d3[&,5 

+ ; (F:+g>+(r;;+@)+ f (i+@)]. (-47) 

Phys. Plasmas, Vol. 2, No. 11, November 1995 C. S. Kueny and P. J. Morrison 4157 

Downloaded 25 Nov 2008 to 128.83.179.53. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



We now apply the techniques described in Sec. II to 
derive a small time step integrator for the Hamiltonian (A7), 
correct to third order in 4 t and to second order in the dy- 
namical variables ii : = ( Qi ,Pi). We seek operators of the 
form 

+&.f3*‘l~tf2~‘lzi~ WV 

From the definition of the Lie transform, Eq. (2), the follow- 
ing transformations are easily derived: 

(9’=4> 
f= w?(q)- 

i 
pt=p+a g-f, (A9) 

& 
f= Q(P)* q’=q-ff dp’ (A101 

p’=p, 

f=cYpq* ;:=;:;q* 
i 

(All) 

q'=q cash a---p sinh (Y, 
p'= -q sinh a+p cash cy, (A12) 

p2+q2 f=LY --j--a 
i 

q'=q COS a+p sin LY, 
p'=-q sin a+p cos ff. 

For cubic polynomials, we use the following 
Gjaja:7 

f = ffPrn@, 

(A13) 

formula of 

m+n=3* 
q~~q[~+cu(n~m)q~-Ipm-l]ml(m-n~, (A*41 
p’=p[ 1 +(y(n--m)qn-‘pm-‘]n’(n-m). 

We now write the Hamiltonian of Eq. (A7) as 

H=H,+H3=H2+H~‘+H\P’+H&Y) , (A151 

where H2 comprises the three terms quadratic in the $i ,Bi 
(linear in the r,), and the H(:PFY) are the three terms cubic in 
the Pi .Qi (nonlinear in the Zi). The function f2 is given by 

f2=-k2 At, (-416) 

yielding the linear transformations 

a; 
I I[ @; = 

cos(fii At)sin(& At) bi 
-sin(b,i At)cos(iZi At) @i . I[ I 

(A171 

It is easily shown from the Campbell-Baker-Hausdorff 
formula3 that our algorithm can be made accurate to order 
At3 rather than At* by splitting the linear transformation into 
two parts: 

zI~~~fz’*.‘l~~f3~‘l~E12~~.‘lz, 
I t ’ 

This was done in our computations. 
The polynomial fs is given by 

(Al% 

f3 : = - /oA’dt H3(i;) =f(;‘+.@)+f(3’) 7 6419) 

where 

f(3U’=(A,$3-A21;))(~:-~:)+2d,B,(A,~~iAz&j), 
L420) 

.f3P’=(B,~2+B2B2)(g:-~~)+2~3B3(B,~2-B2~2), 
L4W 

f’3Y’=(C*~3+C2~3)[$(j;:+~::)+(~:+~22) 

+@;+&I, 64221 

and 

Al=- &L, sin(O, At), 

-_- 
AZ- &i, 2 sin2 , 

B1=- a:, WR2 At), 

B2= - & 2 sin2 , 
b423) 

Cl = - y sin(fi3 At), 
fifi3 

C,=-_Y 
603 

From straightforward application of Eqs. (A9)-(A12), the 
first two terms of Jd3”’ yield the transformations 

&=& cash 2(A,p,-A,&) 
* . A * 

-PI m-h 2(&P,-A,Qd, 

6424) 

*I n A n 
P,=-Q, sinh 2(A2P3-A,Q3) 

A A ,. 
SF’, cash 2(A,P,-A,Q,), 

&=&-A2(&@), 

F;=i,-A,(&& 

and 

Qi=Q, exp(-2A,$3-2A2Q3), 
*I . * n 

PI=PI exp(2A1P3+24Q3>, 
*I * L/ n 
Qs=Q~-~A,PIQ, v 

6425) 

&I * n A 
P,= P,+2A,P,Q,. 

The operator elfY’~’ 1 has exactly the same form as &?‘,.I, 
and is treated in the same way, 

The first two terms inside the bracket of Eq. (A22) yield 
the transformations, 

(j;=Q, COS i(C,b3fC263)+B, sin $(C,Qj+C2+3), 

$[=-b, sin ~(C,&+C#3)+~, cos $(C,Qs+C$3), 

A 

P;=P3+g,(F:+@) 

(A261 
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and 

&=& cos 2(c,&+c& 
n A II 

‘tP2 sin 2(ClQ3+ CzPd, 
n a 1 

a;= -Q2 sin 2(ClQ3+C2P3) 

-i-P2 cos 2(C&+C*&), 627) 

&=&-c,c~;+a;>, 

i$=&+c*(I;;+@). 

Splitting the remaining term of Eq. (A22) into four monomi- 
als yields the four transformations, 

Q;=d,, 
n 

Fj= Pg+ $c&, 
n 

&=Q,-;C,k$, 

WV 

(~29) 

6430) 

(A3 1) 

We now have an explicit symplectic algorithm with 
which to follow the time evolution of the Hamiltonian (Al). 
In earlier sections we discussed other Hamiltonians corre- 
sponding to subsets of the five modes described by (Al). 
Computational coordinates for these Hamiltonians could be 
obtained by simply setting irrelevant coordinates to zero in 
the generating function (A2). In some cases, however, this 
would result in Hamiltonians with frequencies C& that are not 
small compared to the oi’s. These large frequencies may be 

. eliminated via a preliminary time-dependent canonical trans- 
formation to a rotating reference frame. For each of the 
Hamiltonians considered in this paper, we now indicate the 
appropriate transformation between the original coordinates 
(JI, 0,) and new coordinates (ji, 8,). (In each case, we have 
ji = Ji ; only the angles are changed.) Once this transforma- 
tion is carried out, the final transformation from (ji, Pi) to 
(ii, &) is obtained from a generating function with the same 
functional form as EQ. (A2), with 6’, replaced by Pi, and 
irrelevant terms dropped. Derivation of the algorithms then 
proceed as above. The time-dependent transformations 
change only the linear parts of the final algorithms; the non- 
linear pieces are unchanged from those derived above, ex- 
cept that modes not included in a given Hamiltonian are set 
to zero. 

The first Hamiltonian considered in Sec. III was (7): 

H=wlJ1+w2J2+aJ1& sin(26$- 0,). 632) 

We employ the time-dependent generating function, 

E;(j,e,t)=J1(81-02t/2)+52(e2-W2t), 6433) 

which provides the transformation 

J,2=j1, 
de1 

8,2+l,-y, 
1 

J22Lj2, 
de2 

i&g = I!&- qt. 
2 

(A34) 

The new Hamiltonian is given by 

aF[J,e(&t>l fi(~,$>=HCJ(j),8(~,t)l+ dt 

=~.i,+a~*Jj;sin(2~l-ii2). (.435) 

Now, using a generating function analogous to (A2), we ob- 
tain the final transformation to computational coordinates: 

+i*, &=ci*, 

&=i3, lJ23/2- i3, 6436) 

giving us the new Hamiltonian 

ii=~i,+cri,Jj;sin(2~*-P,). (A37) 

The other integrable Hamiltonian that was studied nu- 
merically was (10); in this case straightforward application 
of (A2) yields a Hamiltonian whose frequency is equal to the 
detuning Q, so that no preliminary coordinate transforma- 
tion is necessary. 

Now consider the Hamiltonian (17): 

H=w~J*+~~J~+w~J~+cYJ~~~~~(~~~-~~) 

+pJ2& sin(2f32- e,). (A38) 

We employ a transformation obtained from the generating 
function 

F(j,e,t)=.?l[e,-(4W2-W3)t/4]+j2[e2-(4W2 

-w3)t/2i+j3[e3-(4~2-~3)tl, 6439) 

to obtain the new Hamiltonian, 

ri(j,&=(+n,+ ~c12).?,+2i12~2+ ;n,.?, 

+ a.?, J‘j; sin( 2 G1 - G2) 

+/?.i2& sin(2G2- is). (A40) 

The final transformation is 

j*=&, &=i,, 
.T:!=&, &=i&, (A41) 

&=i2, $3= i2. 
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