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Abstract 

Area preserving nontwist maps, i.e. maps that violate the twist condition, are considered. A representative example, the 
standard nontwist map that violates the twist condition along a curve called the shearless curve, is studied in detail. Using 
symmetry lines and involutions, periodic orbits are computed and two bifurcations analyzed: periodic orbit collisions and 
separatrix reconnection. The transition to chaos due to the destruction of the shearless curve is studied. This problem is 
outside the applicability of the standard KAM (Kolmogorov-Arnold-Moser) theory. Using the residue criterion we compute 
the critical parameter values for the destruction of the shearless curve with rotation number equal to the inverse golden 
mean. The results indicate that the destruction of this curve is fundamentally different from the destruction of the inverse 
golden mean curve in twist maps. It is shown that the residues converge to a six-cycle at criticality. 

1. Introduction 

In this paper we consider a special class of  dis- 

crete area preserving maps, M, of  a two-dimensional 

domain onto itself. Such maps will be represented as 

xi+l = M ( x i ) ,  where x i  = ( xi ,  Yi) denotes a point in 

the domain at the i-th iteration of  the map. To be area 

preserving, the Jacobian of  the transformation from xi 

to Xi+l must equal unity. The special class of  area pre- 

serving maps of  interest here violate the so-called twist 

condition, which will be described presently. These 

maps arise naturally in the study of  Hamiltonian sys- 

tems and also, as will be detailed below, in the study 
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of transport problems in plasma physics,  fluid dynam- 

ics, ray optics, celestial mechanics, condense matter, 

and other areas. 

A large class of  area preserving maps can be cast 

in the form, 

Xi+l = X i + ~(2(Yi+l) "k- f ( x i ,  Yi+l) 

Yi+l = Yi "+- g ( x i ,  Yi+l ) , ( 1 ) 

where the area preservation condition is Of /Ox i  + 

cgg/c~yi+ 1 = 0. This form is often encountered in ap- 

plications and is particularly suited for addressing a 

problem of  paramount importance in Hamiltonian dy- 

namics: the study of  the behavior of  an integrable 

Hamiltonian system with Hamiltonian, H0, under the 

effect of  a nonintegrable perturbation. I f  the system 

is bounded, the Hamiltonian for this problem can be 

written as 

0167-2789/96/$15.00 © 1996 Elsevier Science B.V. All rights reserved 
SSDI 01 67 -27 89 (95)00257-X 



D. del-Castillo-Negrete et al. ! Physica D 91 (1996) 1-23 

H =  Ho( J)  + H l ( O , J , t )  , (2) 

where (0, J)  are the angle-action variables associ- 

ated with H0 and where Hj describes the perturbation, 

which is assumed to be periodic in 0 and t. It is well- 

known that maps of the form of Eq. (1) can often 
embody the essential features of Hamiltonian systems 
of the lorm of Eq. (2) [6]. Because of this and the 

fact that maps are simpler, they have been the sub- 
ject of much study. The association between the two 

is made by identifying the map variables x and y with 

the angle-action variables 0 and J, respectively, and 

identifying the index i with intervals of t separated by 

the period of HI. 
Further, the map function /2 is identified with the 

frequency of the unperturbed Hamiltonian, OHo/OJ, 

and f and g represent the perturbation H1 (e.g. [ 1 ] ). 

A considerable amount of work, both analytical and 
numerical, has been devoted to the study of maps of 

the form ofEq. (1) (e.g. [2,3] ); however, most stud- 
ies have been restricted to maps that satisfy the twist 

condition, 

Oxi+ j 
- -  ~ 0 ,  ( 3 )  

8yi 

which is the map analogue of the nondegeneracy con- 

dition for Hamiltonian systems, 

O2 Ho 
- -  ~ 0 .  ( 4 )  
OJ 2 

A map that violates Eq. (3) will be called a non- 

twist  map. There are several ways in which Eq. (3) 
can be violated; here we consider the special case in 

which c~xi+l/cgyi = 0 at a single value of y. One of the 
main reasons why the twist condition is assumed in 
most studies is because it arises naturally in classical 
Hamiltonian particle mechanics. Also, the twist con- 
dition is a crucial assumption in the proofs of several 
important theorems, e.g. the standard proof [4] of the 
KAM (Kolmogorov-Arnold-Moser) theorem. 

One of the simplest area preserving nontwist maps 
is 

xi+ 1 = xi + a(  l P - Yi+l ) ( 5 )  

yi+l = yi - b sin (2¢rxi) , (6) 

where a and b are real numbers, p > 1 is a positive in- 

teger, and the domain of interest is D := {(x, y) ] y E 

( - ~ , c ¢ )  and x C ( - 1 / 2 , 1 / 2 )  mod 1}. Equa- 
tion (5) can be viewed as the first two terms in the 

Taylor expansion of the function /2 about the point 
where the twist condition fails; thus it describes the 
behavior near such a point in a general map. In the 
present paper, we restrict attention to the special 

case where p = 2, and, following the terminology of 
[5], we call the resulting map the standard nontwis t  

map. Some aspects of this map have been previously 

studied by [7,8,5,9,10]. 
For b = 0 the standard nontwist map is integrable - 

succesive iterations of initial conditions lie on straight 

lines that wrap around the x-domain. Orbits for which 

the rotation number (cf. Eq. (7) below) is irrational 

are called invariant circles or KAM curves. Under the 
effect of the perturbation, some KAM curves are de- 

stroyed whereas others persist. The study of the de- 

struction of KAM curves is of importance in many 
applications since, in a two-dimensional phase space, 

KAM curves are barriers to transport and their breakup 

signals the lack of confinement. In the b = 0 limit, 

we call the y = 0 line the shearless curve because 

along it the shear, Oxi+l/Oyi, vanishes. The rotation 

number (Eq. (7))  of the shearless curve depends on 

the parameters a and b, and there are curves in the 

(a, b)-plane corresponding to constant shearless rota- 

tion number; these curves are called bifurcation curves 
and will be discussed in Section 2.2. As the values of 
a and b change the shearless curve bends and even- 
tually breaks. One of the objectives of this paper is 
to understand when and how this happens; this is the 
problem we call the transition to chaos in nontwis t  

maps. In particular, we compute the ( a , b )  critical 
parameter values for which the shearless curve with 
the rotation number equal to the inverse golden mean, 
1 / y  := ( x/~ - 1 ) /2,  is destroyed. Since the twist con- 
dition fails along the shearless curve, this problem is 
outside the range of applicability of KAM theory. The 
numerical results presented here show that, due to the 
violation of the twist condition, the destruction of the 
1 / y  shearless curve is fundamentally different from 
the destruction of the 1/y KAM curve in twist maps, 
such as the standard map. 
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The study of the transition to chaos presented here 

relies upon the use of periodic orbits to determine the 
existence of KAM curves It is for this reason that we 
first discuss periodic orbits in the standard nontwist 
map. However, independently of its use in the study of 

KAM curves, the study of periodic orbits in nontwist 

maps is interesting in its own right. The violation of the 

twist condition gives rise to a rich variety of bifurca- 

tions. We discuss two of them: periodic orbit collision 

and separatrix reconnection. Periodic orbit collision is 
a bifurcation that takes place when periodic orbits on 
each side of the shearless curve approach each other, 

merge at the shearless curve, and eventually annihilate. 
Understanding this bifurcation is crucial when using 

periodic orbits to study KAM curves. The other bi- 

furcation studied, separatrix reconnection, is a global 
bifurcation of the phase space topology in the vicinity 

of the shearless curve. Some aspects of this bifurca- 

tion have been studied in [7,12,5,9,10]. Here, we pro- 

pose a general criterion for determining the separatrix 
reconnection threshold in the standard nontwist map. 

The breakup of KAM curves in area preserv- 
ing maps exhibits universal critical scaling behavior 

[14,15]. This means that there is a state, called the 

critical state, in which the system is scale invariant 

and that this property depends only on very general 

features. The renormalization group method is a gen- 

eral technique for studying systems of this type. In 

a way akin to what is done in the theory of phase 

transitions, universality classes can be introduced for 

classifying the fundamentally different ways in which 
a K.AM curve can be destroyed. In a future publi- 
cation [16], we study the critical behavior of the 
shearless curve in the standard nontwist map by using 
the renormalization group formalism for area preserv- 
ing maps [ 17-19]. In particular, we show that the 
scaling properties of the 1/y shearless curve at criti- 
cality are different from the scaling properties of the 
1 / y  KAM curve in twist maps. Also, it is shown that 

the standard nontwist map at the threshold parameter 
values for the destruction of the shearless curve is 
on the stable manifold of a period-twelve fixed point 
of the renormalization operator. This period-twelve 
fixed point defines a new universality class for the 
destruction of the inverse golden mean KAM curve, 

the one corresponding to nontwist maps. Moreover, 

it is shown that the period-twelve fixed point has at 
least two unstable eigenvalues. 

Since nontwist maps have not hitherto been studied 
in great detail, we describe now some of the applica- 

tions of such maps. Recently, the problem of passive 

advection in two-dimensional incompressible flows 

has gained attention in the fluid dynamics community. 

Part of the appeal of this problem is that it can be 

formulated as a Hamiltonian dynamics problem with 
the streamfunction playing the role of the Hamiltonian 

(e.g. [20] and references therein). Hence, one can 
use methods of Hamiltonian chaos theory for studying 
transport and mixing in fluids. An application of this 

approach is the study of transport by traveling waves 

in shear flow. This problem is of interest in geophysi- 
cal fluid dynamics, where wave propagation in strong 

global shear flows, which are known generically as 

"jets" or "zonal flows," is an ubiquitous phenomena. 

In [21,5,22] it was shown that all shear flows with 
nonmonotonic velocity profiles give rise to degener- 

ate Hamiltonian systems and therefore to maps that 
violate the twist condition. Experimentally it has been 

observed [23], and in simplified models shown [5], 

that nonmonotonic shear flows possess a strong trans- 

port barrier that is located in the region where the 

velocity profile attains its maximum. Understanding 

when and how this transport barrier breaks is an im- 

portant problem. In the standard nontwist map model 

[5], the shearless curve corresponds to the barrier, 

and the problem of transition to chaos corresponds to 
the problem of global transport due to the destruction 
of the barrier. Other work on the application of non- 
twist maps to fluid transport problems is that of [8], 

where the traveling wave map (which corresponds to 
the standard nontwist map with a = b) was used to 
study diffusion by traveling waves, and that of [24], 

where a modification of the traveling wave map was 
used to study mixing in terms of finite-time Liapunov 
exponents. 

An important application of area preserving maps, 
and historically one of the earliest, is to the study of 
magnetic field lines in toroidal plasma devices, such 
as tokamaks and stellerators (e.g. [25] and references 
therein). In the equilibrium configurations of such de- 
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vices, magnetic field lines lie on and wrap helically 

around nested tori. The average pitch (rotation num- 
ber) of this wrapping is described by the "q-profile", 

and monotonicity of the q-profile is tantamount to the 

twist condition of the associated maps. Under usual 

conditions the q-profile is monotonic; however, there 

are important situations in which it is not. For example, 
nonmonotonic q-profiles can occur during the early 

stage of tokamak discharges if the current rise is suffi- 
ciently fast. An understanding of the magnetic field in 

such a situation might shed some light on the exper- 
imentally observed anomalously fast current penetra- 

tion [26]. The standard nontwist map provides a sim- 

ple model for studying magnetic field line stochastic- 

ity and reconnection in nonmonotonic q-profiles [ 21 ]. 

A remarkable feature of the standard nontwist map 

is the robustness of the shearless curve (cf. Fig. 13), 

which suggests that a reduction of the magnetic field 
shear could be directly related to higher confinement. 

Some experimental evidence for this exists [27]. 
Another area where nontwist maps occur is in the 

study of E x B transport in magnetized plasma. The 

E x B drift equations of motion are Hamiltonian with 

the electrostatic potential being the Hamiltonian [29]. 

Accordingly, transport in the plane perpendicular to 

the magnetic field can be modeled with an area pre- 

serving map which violates the twist condition if the 

radial electric field is not monotonic. Nonmonotonic 
radial electric fields are believed to be present in the 

tokamak edge during the high confinement (H-mode) 

regime [28]. 
Nontwist maps also arise in celestial mechanics. 

Planetary potentials are not exactly spherically sym- 

metric, in particular, the oblateness of the planets in- 
troduces corrections to the Keplerian orbits. The ef- 

fect of these corrections can be analyzed by studying 
the dynamics of a particle in a general axisymmetric 
gravitational potential. This problem can be reduced to 
a one and a half degree-of-freedom Hamiltonian sys- 
tem, from which an area preserving map can be con- 
structed [30]. The map so derived is a nontwist map 
because for a particular orbit inclination dJ2/dy  = O. 

Understanding the implications of the violation of the 
twist condition on the particle trajectories is an inter- 
esting problem. 

Degenerate Hamiltonians have also been studied 

by Zaslavsky, Sagdeev and collaborators (e.g. [31] 
and references therein). However, there are some im- 
portant distinctions between their work and the work 

presented here. These authors have studied nonlinear 

perturbations of linear Hamiltonians. Hamiltonians of 

this type appear, for example, when studying the mo- 
tion of a particle in a constant magnetic field and the 
field of a plane wave traveling perpendicularly to the 

magnetic field. Since linear Hamiltonians (i.e. ones 

for which H o ( J )  o ( J )  are degenerate for all values 

of the action, degeneracy in these systems is global,  

whereas in the systems studied in the present paper the 

degeneracy is local (i.e. Eq. (4) is violated at a sin- 

gle value of the action J) .  When a specific resonance 

condition is met, global degeneracy gives rise to the 
so-called stochastic web which exhibits an interesting 

and rich dynamics [31]. However, globally degener- 
ate Hamiltonians are not structurally stable: the pres- 
ence of a nonlinearity in the unperturbed Hamiltonian 

and a small resonance detuning (both to be expected 

in physical applications) will render the global degen- 

eracy local. Locally degenerate Hamiltonians of the 
type discussed here are, on the other hand, structurally 

stable. In addition to the issue of structural stability, 

locally degenerate Hamiltonians are better suited for 

the study of the breakdown of KAM theory because 

in these systems the degeneracy is localized and the 

destruction of KAM curves in the region of degener- 
acy can be isolated. In globally degenerate Hamiltoni- 

arts, the destruction of KAM curves is hard to isolate; 
as soon as the perturbation is present, all the unper- 
turbed KAM curves are destroyed due to changes in 

the phase space topology. 
Another relevant application is the work of [32], 

where it is shown that the dynamics of a particle in 
a cylindrically symmetric potential well, subjected to 
time-periodic radial kicks, can be reduced to a degen- 
erate Hamiltonian system, from which a nontwist map 
can be constructed. The author shows that this problem 
is equivalent to that of the dynamics of rays in a cylin- 
drical waveguide with a periodic array of lenses along 
its axis. Other uses of nontwist maps include work on 
particle accelerators [33], plasma wave heating [34], 
plasma stellerators [ 35 ], and condense matter [ 36]. 
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The paper is organized as follows: Section 2 con- 

tains a study of periodic orbits in the standard non- 

twist map. First it is shown how these orbits can be 
computed with the aid of symmetry lines and involu- 

tions. Following this, we discuss periodic orbit colli- 

sions and bifurcation curves. Section 3 is devoted to 

a study of separatrix reconnection. The reconnection 
thresholds for period-one and period-two orbits in the 

standard nontwist map are calculated, and a general 

method for computing the reconnection threshold of 
period-n (n > 2) is presented. In Section 4 we ad- 

dress the transition to chaos in the standard nontwist 
map. The shearless curve is defined using the periodic 

orbit approximation and the critical parameter values, 

(ac, be), for its destruction are found using the residue 

criterion. The results presented in the present paper 
are based on [9]. In a forthcomming publication [ 16] 

we present a renormalization group study of the tran- 
sition to chaos in nontwist maps. 

2. Periodic orbits 

A point x generates a periodic orbit of order n 

if Mnx = x.  The rotation number associated with a 
periodic orbit is the rational number m/n ,  where n is 

the order of the periodic orbit and m is the integer 
number of times the orbit cycles through the x-domain 

before returning to its initial position. In general, the 
rotation number w of an orbit generated by a point 

(x, y) is defined, when it exists, by the limit 

w := lim --xn, (7) 
n ~ o o  n 

where, in this definition, the x-coordinate is lifted to 
the entire real line (i.e. xn is not taken modulo 1). 

Periodic orbits comprise a template that guides the 
study of Hamiltonian systems, in particular, one that 
is useful for studying the destruction of KAM curves. 
In this section we discuss periodic orbits of the stan- 
dard nontwist map. We begin by showing how these 
orbits can be computed using symmetry lines and in- 
volutions, and then we discuss periodic orbit collisions 
and bifurcation curves. 

al. / Physica D 91 (1996) 1-23 

2.1. Symmetry lines and involutions 

The numerical search for periodic orbits is in gen- 
eral a difficult two-dimensional root finding problem. 

However, the use of symmetries reduces this to one- 
dimension, thereby making the problem tractable 

[37,13]. Discrete symmetries of Hamiltonian sys- 

tems, unlike continuous symmetries, do not give rise 

to integrals of motion. However, they are of value for 

organizing and finding periodic orbits. A transforma- 
tion T is called a symmetry of a map M if 

M = T - ~ M T ,  (8) 

that is, if the map remains invariant under T. For ex- 

ample, it can easily be checked that the standard non- 

twist map has the following symmetry: 

T ( x , y )  = ( x +  1 / 2 , - y ) .  (9) 

This symmetry will be useful for organizing the peri- 

odic orbits. 

A transformation I0 will be called a time reversal 

symmetry if 

M -1 = I o  1 Mlo.  (10) 

That is, applying a time reversal symmetry to a map 
is equivalent to running the map backwards in time. 

An example of a time reversal symmetry in a time 

continuous Hamiltonian system is the transformation 

p ~ - p ,  which in a Hamiltonian of the standard form 
H = p2/2m + V(q), is equivalent to time reversal, t -~ 
- t .  If  the time reversal symmetry I0 is an involution, 

that is, if 

I02=1, (11) 

then it can be used to construct another time reversal 
symmetry of M: 

I1 := Mlo (12) 

which is also an involution. With the aid of the invo- 
lutions I0 and 11, the map M can be factored as 

M = 11 I0. (13) 

In general, maps that can be factored as a product of 
involutions are called reversible maps [38,37]. The 
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standard nontwist map has the following time reversal 

symmetry 

27 

Io(x,  y)  = ( - x ,  y - bsin(2crx))  , (14) 

which is easy to show is an involution and, according 

to Eq. (12),  can be used to generate the second time 
reversal symmetry, 

2 , l l ( X , y )  = ( - x  + a ( 1 - y  ) y ) .  (15) 

Thus, using Eq. (14) and Eq. (15),  the standard non- 

twist map can be factored as Eq. (13).  

The invariant sets of  the involution maps, 

2 - 0 A = { x I 1 0 , 1 x = x } ,  (16) 

are one-dimensional sets called the symmetry sets of 

the map. Once the sets Z0,1 are known, the search for 

periodic orbits can be reduced to a one-dimensional 

root finding problem using the following result: 

If  x E 2-0,1 then 

M ~ x = x  if and only if 

M '/2 x C Z0,1 for n even 
M('7±l)/2x C Zl,o for n odd. (17) 

That is, according to this result, periodic orbits can be 

found by searching in the one-dimensional sets 2-0,1, 

rather than in the whole domain. To prove this result 

for the case when n is even, let x c 2-0,1 and suppose 
that Mnx  = x.  Then 

lo,lMn/2x = lo , lM-n/2x  = Io,1M-n/21OAX = Mn/2x ,  

(18) 

and therefore Mn/2x E 2-0,1. The first equality of  
Eq. (18) follows from Mnx  = x, the second from 

lo3x = x ,  while the third requires writing out the 

involution decomposition of  M. Conversely, assume 
Mn/2x C 2-0,1, then 

Mnx  = Mn/21OAIo,1Mn/2x = Mn/21o,lMn/2x 

= 10.iX = X, 

which establishes half of  Eq. (17).  The proof for the 
case when n is odd is similar. In general, the j- th 
involution is defined as l j  := MJlo and its invariant 

-05  O0 0 5  

X 

Fig. 1. Symmetry lines of  the standard nontwist map, which 
are used to reduce the computation of periodic orbits to a 
one-dimensional root finding problem. Generically, for each m/n 
there are two periodic orbits, called the up and down orbits, on 
each symmetry line. 

sets are higher order symmetry sets 2"j := { x l l  j x = x }. 

Periodic orbits of  different orders can then be found 

at the intersection of  these sets; for example, if x E 
Zj N Zk, then M J - k x  = X. 

The symmetry sets Zo,, = {x[lo, lx = x} for the 

standard nontwist map are depicted in Fig. 1. The set 

2-o is the union of  the following symmetry lines: 

S l = { ( x , y )  I x = 0 } ,  

s2 = { ( x , y )  Ix  = 1 /2} ,  (19) 

while the invariant set 2-1 is the union of  

S 3 = { ( x , y )  I x = a(1 - y 2 ) / 2 } ,  

S 4 = { ( x , y )  I x = a ( 1 - y 2 ) / 2 + l / 2 } .  (20) 

Given the symmetry lines, periodic orbits can be 

found relatively easily using Eq. (17).  For example, 

periodic orbits with n odd on the sl symmetry line 
are obtained by looking for points x = (0, y)  on sl 

that are mapped to s3 or s4 after (n + 1 ) / 2  iterations. 
This is implemented as a one-dimensional root finding 

problem by seeking the zeros of  the function F ( y )  = 
sin [2rr ( 2 -  a(1 -332) /2) ]  = O, where 2 and 33 are 
functions of  y via (2, 33) := M(n+l)/2(O, y ) .  The sine 
function in F ( y )  is included to remove the distinction 
between s3 and s4; however, it is a simple matter to 
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ascertain this after the periodic orbit is found. Similar 

ideas are applied to find other periodic orbits. 

Periodic orbits follow a routing pattern, i.e. a visi- 

tation sequence to the various symmetry lines. In par- 

ticular, a periodic orbit  with rotation number m/ n  that 

starts on a symmetry line si is mapped to another sym- 

metry line sj after q < n iterations, according to the 

following routing pattern: 

If  m / n =  

odd/even  

odd /odd ,  

even /odd  

then 

S ~.~-S 2 

S 3 ~-  S 4 

S ~,~-S 4 

$2 ~ $3 

S ~ S 3 

S 2 ~ S 4 

where si ~- sj means that a point on s i (S j) is mapped 

to sj (si) after n /2  iterations when n is even, or after 

(n 4- 1 ) / 2  iterations when n is odd. See for example, 

Fig. 1, where the circles and crosses represent periodic 

orbits with m / n  = 1/3. 

Because of  the violation of  the twist condition, pe- 

riodic orbits in the standard nontwist map come in 

pairs; contrary to what happens typically in twist maps, 

there are two periodic orbits with the same rotation 

number on each symmetry line. This is clearly evi- 

dent in the l imit  b = 0, for which periodic orbits with 

rotation number m / n  on Sl, for example, are given 

by (0, +V/1 - ( m / n ) / a ) .  We call the periodic orbit 

with the larger y-coordinate the "up" orbit and that 

with the smaller y-coordinate the "down" orbit (cf. 

Fig. 1 ). The up and down periodic orbits on the sym- 

metry lines can be related by the symmetry of  Eq. (9) .  

I f  ui and di denote, respectively, the coordinates of  the 

up and down periodic orbits on the symmetry line si, 

then 

d 2 = T ( u l ) ,  u 2 = T ( d l )  ( 2 1 )  

d4 = Z ( u 3 ) ,  u4 = T ( d 3 ) .  (22)  

Therefore, it is enough to compute periodic orbits on 

s~ and s3. 

2.2. Periodic orbit collisions - bifurcation curves 

In this subsection we study periodic orbit  collision, 

a bifurcation that takes place when the up and down 

periodic orbits on a symmetry line meet as the standard 

nontwist map parameters are varied. 

As said before, when b = 0, there are two periodic 

orbits with the same rotation number m / n  on the sym- 

metry line sl.  To study the behavior of  these orbits 

as we depart from b = 0, we have plotted in Fig. 2 

the y-coordinate of  the m/n  = 3/5  periodic orbit  on 

sm as a function of  b for fixed a = 0.618. As ex- 

pected, at b = 0 there are two periodic orbits with y = 

+X/1 - ( 3 / 5 ) / a .  As the value of  b increases, the up 

and down orbits approach each other and, at the bifur- 

cation value b = 0.44, they coll ide and annihilate. For 

higher values of  b the 3 /5  orbits no longer exist in Sl. 

The bifurcation value of  b depends on both a and m/n.  

The outcome of  the periodic orbits coll ision is 

closely related to the stability properties of  these or- 

bits. The stability of  a periodic orbit  is determined 

by the value of  its residue [ 13], R, which is defined 

as R := ¼ [ 2 -  T r ( L ) ] ,  where L is the map M n lin- 

earized about the periodic orbit  of  interest and Tr 

denotes the trace. I f  0 < R < 1 the orbit  is stable, or 

I _ _ _ ~ up  orb i t  

o I 

[ a = 0 618  d o w n  orb i t  
I 

rrdn = 3 /5  

O O q  I 
I 

bt furca t ion  p o m t  " ~ ' e  
i 

- 0 1 1  

i / 
I 

- 0 2  
oo Ol 02 03 O4 05 

b 

Fig. 2. Periodic orbit collision for m/n = 3/5 on the Sl symmetry 
line. For b < 0.44 there are two periodic orbits; at the bifurcation 
value b = 0.44 they collide and for b > 0.44 the orbits no longer 
exist. The bifurcation value depends on a and m/n. The shape 
of the bifurcation curve shown here is typical of periodic orbit 
collisions. 
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elliptic; i f R  < 0 o r  R > 1 it is unstable or hyper- 
bolic; and in the degenerate cases R = 0 and R = l, 

it is parabolic. In Fig. 3 we have plotted the residues 
of  periodic orbits on sl, with m/n = 3/5,  8/13 and 

21/34,  as functions of  a for fixed b = 0.7425. These 

plots illustrate the following generic properties of  the 
residues. (a) At the bifurcation point the residues of  

the up and down orbits are zero. (b) Close to the 

bifurcation point, periodic orbits with n odd (even) 
have different (the same) stability type. (c) For m/n 
of the form odd/even, the up and down residues are 

equal. The residues exhibit an interesting dependence 

on the map parameters which remains to be explored. 

For example, in Fig. 3b a sort of  interchange of insta- 
bility is taking place between the up and down peri- 

odic orbits. Also, as shown in Fig. 3c, some periodic 

orbits exhibit a kind of  stability recurrence. 

To illustrate periodic orbit collision behavior, we 

have plotted in Fig. 4 the evolution in phase space of 
the 3 /5  periodic orbits, with fixed a = 0.618 as b in- 

creases. Case (d) depicts the collision point where the 
elliptic and hyperbolic orbits annihilate. The topology 

changes shown in the intermediate stages will be dis- 

cussed in the next section. The behavior of all m/n 
periodic orbits with odd n is qualitatively the same 

as that of  the 3 /5  orbit discussed here. Consider now 
periodic orbits with even n. In this case, contrary to 

the odd case, the up and down orbits on a given sym- 
metry line always have the same stability type, i.e. 

both are elliptic or both are hyperbolic. Fig. 5 depicts 

the evolution in phase space of the 1/4 periodic or- 
bits, with fixed a = 0.2625 as b increases. This is the 

generic scenario in the standard nontwist map for the 

case when n is even (except for the case n = 2, where 
the elliptic orbits never collide). Note that, when n is 
even the collision/annihilation process has two stages: 

during the first stage, cases (b) and (c) of  Fig. 5, 
the hyperbolic orbits collide and "scatter" in a direc- 
tion transverse to the symmetry line while the elliptic 
orbits form a "dipole". In the second stage, case (d) 
of  Fig. 5, the two elliptic orbits forming each dipole 
annihilate, together with the two adjacent hyperbolic 
orbits. 

Although these bifurcation pictures are visually 
pleasing, their existence is problematic when one is 

311 

2 0 -  
i 

1 0 -  

"~ O0 

3/5 o r b i t  ~ b  

b=0.7425 

~ - -  up orbit 

q 

- IO~ , i 

~' bifurcanon 
-2 0 - POint 

(a) 
-30 

(1660 0665 0670 0675 0680 0685 0 690 
a 

4.0 

1.0 2 ' , bifurcation 
t point 

2 0 :  

,/L 
3.0 ~ 8/13 ---K--- down orbit // ! ! / 

0 ] b=0.7425 ---o-- up orbit / [ 

o.o ~ :' 
I 

\ 
\ 

(b) 
0682 

i 
0 684 0686 0 688 0690 0 692 a 

I 
i 
r 

- 5  

21/34 down orbit 
b=O. 7425 ~ up orbit 

bifurcation / 
~ /  point __ # /  

\ 
i 

(c) 

0.685 0 686 0687 0 688 0.689 0.690 0.691 0.692 
a 

Fig. 3. Residues of up and down periodic orbits on sj with 
m/n = 3/5, 8/13 and 21/34as  functions of a for fixed b = 0.7425. 
At the bifurcation point the residues of the up and down periodic 
orbits are zero. Close to the bifurcation point periodic orbits with 
n odd (even) have different (the same) stability type. For m/n 
of the form odd/even the residues of the up and down periodic 
orbits are equal, 
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Fig. 4. Separatrix reconnection and periodic orbit annihilation for m/n = 3/5. In case (a), (a,b) = (0.6180,0.4000) and heteroclinic 
topology is shown, while in (b), (a,b) = (0.6180,0.4215) and separatrix reconnection is shown. Case (c) displays the homoclinic 
topology with (a, b) = (0.6180,0.4300). The annihilation of the 3/5-periodic orbits due to periodic orbit collision is shown in case (d), 
for which (a, b) = (0.6180,0.4410). This is the typical pattern for rain-periodic orbits with n odd in the standard nontwist map. The 
reconnection values of case (b) agree well with the prediction of Fig. 9b. 

using periodic orbits to approximate KAM curves. 

The main difficulty is that, in general, it is not known 

a priori which periodic orbits have collided and which 

have annihilated. To overcome this problem we con- 

struct in the ( a , b )  space bifurcation curves. For a 

given r /s ,  the r/s-bifurcation curve is the locus of 

points (a,  b), for which the r / s  periodic orbits are 

at the point of collision. For the case when n is odd 

this corresponds to the hyperbolic-elliptic collision, 

e.g. Fig. 4d, and for the case when n is even this 

corresponds to the hyperbolic-hyperbolic collision, 

e.g. Fig. 5b. In all the cases considered here, the bi- 

furcation curves are graphs (cf. Fig. 6), which we 

denote by b = ~r/s (a) .  One of the main features of 

bifurcation curves is that for (a,  b) values below the 

curve b = Cr/s(a) ,  the r / s  periodic orbits are below 

the collision point and hence will exist. Also, by con- 

struction, for (a,  b) values on Cr/s, the periodic orbit 

with rotation number r / s  is by definition shearless. 

Finally, as we will discuss in Subsection. 4.1, the Cr/s 
bifurcation curves are useful for defining the locus 

of points (a, b) for which the shearless curve has 

constant rotation number. 
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Fig. 5. Separatrix reconnection and periodic orbit annihilation for m/n = 1/4. In case (a), (a, b) = (0.2625,0.4400) and the topology is 
heteroclinic. Hyperbolic orbit collision and separatrix reconnection are shown in case (b), for which (a, b) = (0.2625,0.4364). Case (c) 
displays the dipole formation at (a, b) = (0.2625,0.4500), after the hyperbolic collision. The annihilation of the 1/4 periodic orbits is 
shown in case (d), for which (a, b) = (0.2625,0.4580). This is the typical pattern for m/n periodic orbits with n even in the standard 
nontwist map. 

3. Separatrix reconnection 

The objective of this section is to discuss separatrix 

reconnection in the standard nontwist map. This is a 

global bifurcation that changes the phase space topol- 

ogy in the vicinity of the central barrier, as shown, for 

example, in Figs. 5 and 4. Previously, aspects of sepa- 

ratrix reconnection were studied by [7,12,5,9,10]. In 

the first subsection we apply to the standard nontwist 

map a known method [7] for obtaining reconnection 

criteria of period-one and period-two orbits. In the sec- 

ond subsection, a new general criterion for computing 

the reconnection thresholds of higher order (n > 2) 

periodic orbits in the standard nontwist map is pre- 

sented and applied. 

3.1. Period-one and period-two separatrix 

reconnection 

Fig. 7 displays the standard nontwist map for three 

different sets of ( a , b )  values. The change in topol- 

ogy observed is due to the separatrix reconnection of 

period-one resonances that are located in the vicin- 

ity of the central region. To derive the reconnection 

threshold, observe that the first order resonances near- 

est to the central barrier can be described by the Hamil- 

tonian 
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Fig. 6. The r/s-bifurcation curves, b -- q'r/s(a), for 
r/s = 2/3,  3/5,  5/8, 8/13 and 21/34. These curves are the lo- 
cus of (a, b) points for which the r/s-periodic orbits collide. For 
(a, b) values below b = 4~r/s(a), periodic orbits with m/n < r/s 
are below the collision threshold, and therefore these orbits exist. 
The bifurcation curves shown in this figure converge to the 1/y  
bifurcation curve which is the locus of (a, b) values for which 
the rotation number of the shearless curve is equal to 1/% 

b 
H(x, y) = -ay  + 3 y3 + ~ cos 27rx . (23) 

The period-one orbits are located at (x, y)  = (0, 4-1 ) 

and ( 1/2, ± 1 ), and reconnection takes place when the 

hyperbolic orbit emerging from ( - 1/2, - 1 ) joins the 

hyperbolic point at (0, 1). In order for this to happen 

the value of  the Hamiltonian must be the same at both 

points, i.e. H ( - 1 / 2 , - 1 )  = H(0 ,  1). This condition 

gives the reconnection threshold: b -- 4~ra/3. Due to 

the scaling of  the x variable used here, this threshold 

has an extra factor of  2~  as compared to the result 

reported in [ 5 ], and is equivalent to that reported pre- 

viously in [7] for the logistic twist map. When b < 

4~a/3 the map should exhibit an heteroclinic type 

topology, whereas for parameter values satisfying b > 

47ra/3 the map should possesses an homoclinic type 

topology. We have numerically tested the reconnec- 

tion threshold: for small values of  a and b the recon- 

nection process is clearly observed (cf. Fig. 7). For 

large parameter values, the map exhibits widespread 

stochasticity and the concept of  reconnection has no 
visible meaning. For intermediate parameter values, 
the stochastic layer of  the primary islands is visible 

and so it would be more appropriate to refer to this 

process as stochastic layer reconnection. 
The reconnection scenario for even n is different 
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from that for odd n. As shown in Figs. 8 and 5, re- 

connection occurs when two hyperbolic points col- 

lide on a symmetry line. Now we consider the special 
case of  n = 2, for which an analytic threshold can be 

derived. The periodic-two orbits on Sl are located at 

(0, ~:V/1 - 1 / ( 2 a ) ) .  Note that the location of  these 

orbits is independent of  the value of  b, a degenerate 

situation that only occurs for n < 2. To find the peri- 

odic orbits on s3, consider a point (xt ,  yl ) initially on 

s3; i.e., Xl = a(1 - y~)/2. According to the involu- 

tion formalism, this point will be a period-two orbit if 

(x2,y2) E s4; i.e., if x2 = a(1 - y~)/2 + 1/2, where 

x2 = xl + a(1 - y~) and Y2 = Yl - bsin(2~-xl) .  In 
general, there will be two solutions of  these equations, 

X ± ' ,  1 Yl ) corresponding to the up and down periodic 

orbits on s3. Since these orbits are hyperbolic, recon- 

nection occurs when they collide; that is, when there is 

only one such solution (Xl, yt)  to the previous equa- 

tions. It easy to check that for b = 2X/1 - 1/2a only 

one solution exists, (xl ,  yt ) = ( 1/4, b/2), and there- 

fore this is the reconnection threshold. This reconnec- 

tion threshold, which is equivalent to the one obtained 

in [ 7 ] for the logistic twist map, agrees quite well with 

the numerical results, especially when there is not a 

lot of  chaos and the separatrices are well defined (cf. 

Fig. 8). 

3.2. Higher order separatrix reconnection 

Consider now separatrix reconnection of  higher 

(n > 2) periodic orbits. For even n the computation 

of  the reconnection threshold can be done using the 

same idea as that used for period-two orbits: one just 

has to find the (a,  b) values for which the hyperbolic 

orbits on the appropriate symmetry line collide. For 

example, for a = 0.2625 the collision of  the 1/4 

hyperbolic orbits on sj occurs at b = 0.4364. These 
threshold values agree very well with the numerical 

results of  Fig. 5, where the complete evolution of  the 

1/4 periodic orbits is shown. 
The computation of  the threshold in the general 

case of  odd n is more difficult; in what follows, we 

propose an approximate criterion. Consider periodic 

orbits with rotation number m/n with n odd. In this 
case, on each symmetry line, there is one elliptic orbit 
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Fig. 7. Separatrix reconnection of period-one resonances in the standard nontwist map. In case (a),  (a ,b)  = (0.080,0.125) and the 
map displays the heteroclinic topology. The homoclinic topology is shown in case (c) for which (0.024,0.300). Case (b) displays the 
reconnection point, which in good agreement with the reconnection threshold formula, b = 4~ra/3, has (a ,b)  = (0.048,0.2000). This 
reconnection pattern is generic for m/n periodic orbits with n odd. 

and one hyperbolic orbit. Without loss of generality, 
assume that the down periodic orbit on s~ is the hy- 
perbolic orbit (cf. Fig. 4), and let xl = (Xl, yj ) be its 

coordinates. Let x2 = (x2, Y2) denote the coordinates 
of the m/n up hyperbolic periodic orbit closest to Sl. 
The magnitude of the slope of the line joining xl and 
x2 i s /z (a ,  b) = I(Y2 - Y l  )/(x2 - x l  )I. Let L be the 
matrix representing the linearization of the map at xt 
and let v := (Vl, v2) be the unstable eigenvector; i.e., 
Lv = ,,iv with a > 1. Then, the magnitude of the slope 
of the unstable manifold at xl is u(a,b) = Iv2/Vll. 
According to the criterion proposed, the reconnection 
threshold is given by the set of (a, b) values for which 

the slope of the unstable manifold of the down hy- 
perbolic point matches the slope of the line joining 
the up and the down hyperbolic points; that is, when 

/z(a, b) = v(a ,  b). 
As an example consider the case when m/n = 3/5. 

In Fig. 9 we have plotted the magnitude of the slope of 
the line joining the two hyperbolic points,/z, and the 
magnitude of the slope of the unstable manifold, v, as 
functions of a for fixed b = 0.4215. For a < 0.6183 
(a > 0.6183), v < /z (v > /z), and the topology 
is homoclinic (heteroclinic). The predicted reconnec- 
tion threshold is (a,b) = (0.6184,0.4215), which 
agrees well with the numerically determined threshold 
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Fig. 8. Separatrix reconnection of period-two resonances in the standard nontwist map. In (a),  (a, b) = (0 .51 ,0 .25)  and the map displays 
the heteroclinic topology. The dipole topology is shown in (c) ,  for which (0 .51,0 .31) .  Case (b) displays the reconnection point, which 

is in good agreement with the reconnection threshold formula, b =-2V/I  - l / ( 2 a ) ,  has (a, b) = (0 .51,0 .28) .  This reconnection pattern 
is generic for m/n periodic orbits with n even. 
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Fig. 9. Comparison of unstable manifold slope and fixed point 
slope, for an m/n = 3 /5  periodic orbit as a function of a for fixed 
b = 0.4215. According to the criterion proposed, reconnection 
occurs when the two slopes match. Reconnection is predicted for 
(a,b) = (0 .6183,0 .4215) ,  which is in good agreement with the 
threshold of Fig. 4. 

(a ,b)  = (0.6180,0.4215),  as shown in Fig. 4 (b).  
The reconnection patterns discussed here are generic 
for the standard nontwist map; however, other nontwist 
maps might exhibit different reconnection scenarios, 
see for example [ 11,12,10]. Typically, area preserv- 
ing maps exhibit a self-similar hierarchy of ever higher 
order resonances. In the nontwist map this hierarchy 
includes successive changes in the topology, as seen 
for example in Fig. 10, and in Fig. 9 of  [39].  The sys- 
tematic study of this hierarchy of  topology changes is 
a fascinating open problem, one that we plan to ad- 
dress in a future publication. 
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Fig. 10. The standard nontwist map at (a, b) = (0.0716,0.4500) 
illustrating the possibility of "nested topologies". On the first 
level, the period-one resonances display the homoclinic topology; 
at a higher level, resonances close enough to the shearless curve 
display the heteroclinic topology. 

4. Transition to chaos 

Now we consider the destruction of  the shearless 

KAM curve, i.e., the transition to chaos in the standard 

nontwist map. We restrict to the case in which the ro- 

tation number of  this curve equals the inverse golden 

mean 1/y = (v '~  - I ) / 2 .  In the first subsection the 

approximation by periodic orbits for the standard non- 

twist map is discussed and the shearless KAM curve 

defined. In the second subsection, the parameter val- 
ues for the destruction of  the shearless curve are com- 
puted using the residue criterion. 

4.1. Approximation by periodic orbits - the 
shearless curve 

The approximation of  a KAM curve by periodic or- 
bits requires finding a sequence of  periodic orbits with 

corresponding rotation numbers {mi/ni) that limit to 
the (irrational) rotation number, w, of  the curve that 

is to be approximated: w = l i m i ~ o o  mi/ni. In the limit, 
the periodic orbits approximate the KAM curve in 
the phase space as the sequence of  rational numbers 
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{mi/ni} approach the irrational number w [ 13]. 

In the standard nontwist map, the approximation by 

periodic orbits presents some difficulties since, con- 

trary to what happens in twist maps, not all of  the 

desired periodic orbits exist. To illustrate this, con- 

sider the approximation of  the 1 /y  KAM curve in the 

special case when (a, b) = ( I / y ,  0). In this case the 

standard nontwist map is integrable and the 1 /y  KAM 

curve is the shearless curve. In general, the best ap- 

proximation by rationals of  an irrational number w 

is given by the convergents obtained from successive 

truncations of  the continued fraction representation of  

w [41 ]. In the case when w = 1 /y  the convergents are 

given by the sequence of  Fibonacci ratios {Fi_l/Fi},  

where F/is the i-th Fibonacci number with F0 = Fl = 1 

and Fi = F/_I + Fi-2. Accordingly, to approximate the 

1/y KAM curve we need, in principle, to find periodic 

orbits with rotation numbers {mi/ni} = {F/_i/Fi}.  

However, in the standard nontwist map, for (a,  b) = 

(1/y ,O),  only periodic orbits with m/n < 1/y ex- 

ist and therefore in the approximation we have avail- 

able only half of  the Fibonacci sequence {mi/ni} = 
{Fzi-]/F2i}. This is because, for any i, F2i/F2i+l > 
1/y and Fzi-l/F2i < 1/% For arbitrary values of  

(a, b) it is not trivial to decide which of  the elements 

of  the Fibonacci sequence correspond to periodic or- 

bits that exist. However, if the (a,  b) values are on 

appropriate bifurcation curves the problem becomes 

considerably simpler: if (a,  b) is on the F 2 N / F 2 N + I -  

bifurcation curve, then all the periodic orbits with rota- 

tion numbers corresponding to the half-Fibonacci se- 

quence {F2i-l/F2i} for i = 1,2 . . . . .  N exist, as well 
as all the periodic orbits with rotation numbers be- 

longing to the full-Fibonacci sequence {Fk/Fk+l } for 

k = 2 N +  1 , 2 N + 2  . . . . .  

An important thing to realize is that for (a,  b) val- 

ues on the F2u/F2u+i-bifurcation curve there are two 
1/y KAM curves. This is clearly seen in the limit 

b = 0 for which there is one 1 /y  curve going through 
( O, - V / 1 - 1 / (ay) ) ,  the down curve, and another go- 
ing through (0, V/1 - 1/ (ay ) ) ,  the up curve. The up 
and down KAM curves are approximated by the up 
and down periodic orbits, respectively. For (a,  b) val- 
ues on the F2N/Fzu+vbifurcation curve (cf. Fig 6),  
the up and down KAM curves (when they have not 
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0.3 
been destroyed) are separated by a finite distance pro- 

portional to ]Fzu/Fzu+l - 1/3/I. Accordingly, as N 

increases, the distance between the up and down I/3/ 
K A M  curves approaches zero and in the limit N --~ y 

oc both curves merge and become the 1/3/shearless 

curve. In this l imit  the F2N/F2N+l-bifurcation curves 

converge to the 1/3/-bifurcation curve b = ¢ ' l / : , ( a ) ;  

that is, cl)~/~(a) := l i m i _ ~  q~F,/F,+~(a) (cf. Fig. 6) .  

By construction, for (a ,  b) values on @l/:, the rotation 

number of  the shearless curve equals 1/3/. 

In order to define the shearless curve we need -03 

some terminology. Given two integers r and s, an 

r/s-nontwist map is a map that satisfies the following ! 

two conditions: ( i )  It has either no periodic orbits I 
i 

with rotation number greater than r/s, or it has no 

periodic orbits with rotation number less than r/s. 
( i i )  It does have periodic orbits with rotation number 

equal to r/s,  and these orbits have zero residue and 

zero Poincar6 index. (For  a definition of  Poincar6 

index and an explanation of  its role in bifurcations 

of  periodic orbits refer to [40] . )  For example, the 

standard nontwist map with (a ,  b) values restricted to 

the F2x/F2u+l-bifurcation curve is a one-parameter 

F2u/F2u+l-nontwist map since, as discussed before, 

in this case there are no periodic orbits with rotation 

number greater than F2N/F2N+I. In addition, in this 

example, the F2u/F2u+l periodic orbits exist and 

have zero residue. The condition on the Poincar6 in- 

dex is imposed to assure that the zero residue periodic 

orbits are at the bifurcation point where the up and 

down periodic orbits coll ide (cf. Fig. 3, and subsec- 

tion 2.2). For an irrational number o-, and a sequence 

of  rationals {ri/si} such that limi~o~ ri/s i = O', we 

define a o--nontwist map as the limit of  the cor- 

responding ri/si-nontwist maps. In particular, the 

1 /y-nontwis t  map is the limit of  the F/ /F i+l -nontwis t  

maps as i ~ oc. Since @1/:, = limi--.o~@F#F,+~, the 

standard nontwist map for (a ,  b) values restricted to 

the b = @l/r(a) bifurcation curve is a one-parameter 

1/y-nontwist map. 

For a o--nontwist map, a shearless curve is defined as 

a curve with rotation number equal to o-. Throughout 

this paper we concentrate on the study of  the l/3/ 
shearless curve. This curve, when it exists, can be 

found approximately as follows: First, construct an 

! , • I 

: . . • 
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o o o 
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-0 .5  O.0 x 0 .5  
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I 

Fig. 1 I. Depiction of the periodic orbit approximation of the 1/7 
shearless KAM curve. Shown are the first four elements of the 
half Fibonacci sequence. The up and down periodic orbits bracket 
the shearless curve. 

approximation to the ~ l / r  bifurcation curve. (Here 

we do this by computing ~F,/F,t for Fi/Fi+l up to 

75 ,025 /121 ,393 ,  and by using the scaling relation 

in Eq. (26)  below.) Second, approximate the 1/3/- 

shearless curve for an (a ,  b) value on 4:h/y by the set 

of  up and down periodic orbits with rotation numbers 

{F2i_l/F2i}, a s  shown in Fig. 11. 

4.2. Destruction of  the shearless curve 

The objective of  this section is to use the residue 

criterion to find the critical parameter values, (ac, bc), 
for the destruction of  the 1/3/shearless curve. In order 

for this to be a well-posed problem the 1/3/shearless 
curve must be defined for all the (a ,  b) values consid- 

ered. Accordingly, in the search for the critical point  

(ac, be), we are constrained to the one dimensional set 

(a ,  b) = (a ,  @l/~,(a)) defined by the 1/3/-bifurcation 

curve. 

The residue criterion [ 13 ] establishes a correspon- 

dence between the existence of  a KAM curve and the 

stability of  the periodic orbits that approximate it. Let 

{Pi} be a sequence of  periodic orbits, with correspond- 

ing residues {Ri}, approximating a K A M  curve. Then, 

according to the residue criterion, if  limi__.~ Ri = 0 
then the KAM curve exists. On the other hand, if  
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l i m i ~ o ~  Ri = o<3, then the KAM curve does not ex- 

ist. The residue criterion has been used successfully 

in many cases to predict, to remarkable precision, the 

threshold lor the destruction of KAM curves. Recently, 

several theorems have been proven [42,43] that lend 

mathematical support to the criterion. The boundary 

in parameter space between the R i --+ 0 and the Ri ---4 

regimes corresponds to the critical state in which 

the KAM curve is at the threshold of destruction. 

In this critical state the residue convergence exhibits 

nontrivial behavior. In the simplest cases (e.g. the 

standard map on the dominant symmetry line [ 13] ) 

l i m i ~ o ~  Ri = R*, where R* 4= 0, oc. However, more 

complicated residue convergence patterns are possi- 

ble. In particular, it is possible that, at criticality, the 

residues converge to a cycle {R~', R~ . . . . .  R~}. The 

residue convergence pattern is important because it is 

universal within families of  maps. For example, there 

is a very large class of  one-parameter area preserv- 

ing twist maps that exhibit the same residue conver- 

gence pattern as that of  the standard map, namely 

l i m i ~  Ri = 0 , 2 5  ( o n  the dominant symmetry line). 

Relatively recently, nonstandard residue conver- 

gence patterns have been observed in standard-like 

maps with two harmonics (e.g. x,+l = x~ + Y,+t, 

Y,,+I = Y,, - cl s in(2pTr)xn - c2 sin(2qTr)x,, with 

p, q integers) [44-47]  and in piecewise-linear maps 

[48,49]. The convergence pattern of  the residues al- 

lows the classification of  the fundamentally different 

ways in which a KAM curve can be destroyed. Our 

numerical results (which will be discussed in detail 

below) indicate that, at the threshold for destruction 
of  the 1 /y  shearless curve, the residues in the standard 

nontwist map exhibit a period-six  cycle convergence 

pattern. This convergence pattern is different from 

that found in twist maps and it indicates that the 

transition to chaos in nontwist maps is fundamentally 
different from the transition to chaos in twist maps. 

In order to systematically study the destruction of  
invariant curves in the standard nontwist map it is 
useful to know the rules governing the stability of  
periodic orbits on the different symmetry lines. To 
get these rules, note that from the map symmetry of 

Eq. (9),  
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Table l 
Stability rules for periodic orbits on the symmetry lines. There 
are three cases: m/n = odd/even, odd/odd and even/odd. In each 
case only two residues, denoted here by Ri and R2, determine the 
residues of the up and down orbits on the four symmetry lines. 

Sl $2 $3 $4 

m/n = odd/even up orbit Rt RI R2 R2 
down orbit Ri Ri R2 R2 

m/n = odd/odd up orbit RI R2 R2 Rj 
down orbit R2 RI RI R2 

m/n = even/odd up orbit RI R2 RI R2 
down orbit R2 Rl R2 Ri 

Rul = Rd2 , Rd~ = Ru2 

(24) 

Ru3 = Rd4 , Rd3 = Ru4 , 

where Ru~ (Rai) denotes the residue of  the up (down) 

periodic orbit on si. On the other hand, the routing 

pattern of  Eq. (21) implies 

m / n  = odd/even: 

Ru~ = Ru2 , Rdl = Rd2 

Ru~ = Ru4 , Rd 3 = Rd4 

m / n  = odd/odd: 

Rul = Ru4 , Rat = R d 4  

Ru2 = Ru3 , Rd2 = Rd3 

m / n  = even/odd: 

Ruz = Ru~ , Rdl = Ra3 

Ru2 = Ru4 , Rd2 = Rd4 

From these relations it is straightforward to get the 

stability rules summarized in Table 1. There are three 
cases: m / n  = odd/even, odd/odd and even/odd. Note 

that for each m / n ,  there are only two independent 
residues, denoted by RI and R2, that determine the 
stability properties of  the up and down orbits on the 
four symmetry lines. This is an important result that 
will be used when studying residue convergence at 
the transition to chaos. Consistent with the numerical 

results of  Fig. 3, periodic orbits on the same symmetry 
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Table 2 
Period-six convergence pattern of residues of the standard nontwist 
map for (a, b) values on the 1/y bifurcation curve near criticality. 
The first two columns denote the periodic orbit under consideration, 
where 1i] := Fi/Fi+l. The residues of the up and down periodic 
orbits on the various symmetry lines converge to the six-cycles 
{HI, H2 . . . .  H6} and {Gl, G2 . . . .  G6}. These two six-cycles are 
not independent. 

i] Fi/Fi+l Rul = Rd2 Rdl = Ru2 Ru3 = Rd4 Rd3 = R4u 

IJ 1/2 
13 3/5 
15 8/~3 
17 21/34 
19 55/89 
I1 144/233 

131 377/610 
151 987/1597 
171 2584/4181 

1191 6765/10946 
1211 17711/28657 
1231 46368/75025 

Gl HI H4 G4 
G2 H2 H5 G5 
G3 H3 H6 G6 
G4 H4 HI GI 
G5 H5 H2 G2 
G6 H6 H3 G3 

GI HI H4 G4 
G2 H2 H5 G5 
G3 H3 H6 G6 
G4 H4 HI Gt 
G5 H5 H2 G2 
G6 H6 H3 G3 

line with even n have the same stability properties. 

The table does not give information about the sign of  

the residues; however, numerical results indicate that 

close to the bifurcation point the residues of  the up and 

down m/n periodic orbits with n odd satisfy Rl R2 < 0 

and, for the particular case where m/n is of  the form 

odd/odd,  R1 = -R2.  
Table 2 shows the residue convergence pattern at 

criticality in the standard nontwist map. Depending 

on the symmetry line under consideration, the conver- 

gence is either to the six-cycle SC + := {Hi,  H2, H3, 

H4, Hs, H6}, or to the six-cycle SC-  := {Gl, G2, G3, 

G4, G5, G6}, where Hi and Gi are real numbers which 

will be computed below. The first two columns of  Ta- 

ble 2 list the rotation number label [i] := Fi/Fi+l of 
the periodic orbits under consideration. The rest of  the 

columns contain the values of  the residues on the var- 

ious symmetry lines, where, as before, Rui (Rdi) de- 
notes the residue of  the up (down) periodic orbit on 

the symmetry line si. From the Table 2 it follows that 
the residues of  the up periodic orbits on sl and s4 and 
the residues of  the down periodic orbits on s2 and s3 
converge to SC- .  On the other hand, the residues of  

the down periodic orbits on sl and s4 and the residues 
of  the up periodic orbits on s2 and s3 converge to 
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SC +. The two six-cycles are not independent. Using 

the stability rules, of  Table 1, it follows that Gj = Hi,  

G4 = n4, G3 = n6, and G6 = n3. Also, in each cycle, 
the second and fifth elements are the same: G2 = G5 

and H2 = Hs. Finally, there is numerical evidence that 

G2 = -/-/2; therefore, the only independent residues 

are H1, H2, H3, H4, and H6. 
Finding the numerical values of  the elements of  

the six cycles is difficult because only half of  the Fi- 

bonacci sequence is available and because the cycle of  

residues has period six. For example, to complete the 

six-cycle twice it is necessary to find periodic orbits 

up to m/n = 46368/75025, and this give us only two 

residues to compare for each Hi. To complete the cycle 

three times it is required to find periodic orbits with 

rotation numbers m/n up to 14 ,930 ,352 /25 ,152 ,817  

which is practically an impossible task due to com- 

putational limitations. However, a closer look at the 

residue convergence pattern of  Table 2 shows that with 

periodic orbits up to m/n = 46368/75025, there are 

four residues to compare for each Hi. The key is to 

realize that the convergence to the six-cycle along dif- 

ferent symmetry lines has a "phase shift" of  three. As 

an example, consider convergence to H1. From Table 2 

it is clear that, at the critical value, the residues of  the 

1/2 and 377/610 down periodic orbits on sl must be 

the same and equal to Hi. The important thing to real- 

ize is that the residues of  the 21/34  and 6765/10946 

up periodic orbits on s3 must also be equal to H1 and, 

therefore, we have four residues to compare to get the 

convergence to Hi. Similar ideas can be used for the 

computation of  H2, H3, H4, and H6. 
The precise determination of  the critical parame- 

ter values (ac, bc) is a delicate calculation because 

two problems must be solved at once: the construc- 

tion of  the 1/3,-bifurcation curve and the determina- 
tion of  the values of  (a,  b) on this curve for which 

the residues show convergence to the six-cycle. The 

I/y-bifurcation curve can be computed using the fact 

that, as a consequence of  the period-six cycle of  the 
residues, the bifurcation curves, for (a,  b) values near 
criticality, satisfy the following scaling relation: 

qb(a) [n+l i = q~(a)l/~, + B(n)81  n , (25) 

where qS(a)tn I denotes the [n] := Fn/Fn+l- 
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Table 3 
Period-twelve behavior of the scaling function B(n) of Eq. (25). 

n B(n) n B(n) 

1 -0.917 13 -0.590 
2 0.699 14 0.669 
3 -0.542 15 -0.456 
4 0.627 16 0.608 
5 -0.508 17 -0.473 
6 0.410 18 0.414 
7 -0.596 19 -0.590 
8 0.673 20 0.666 
9 -0.856 21 -0.852 

l0 0.609 22 0.606 
11 -0.474 23 -0.480 

bifurcation curve, al = 2.68 and B(n )  is a period- 

twelve function, i.e. B ( n  + 12) = B ( n ) .  In renormal- 

isation group language, the constant al is one of the 

two unstable eigenvalues of the critical six-cycle [ 16]. 

Evidence of this scaling relation is presented in 

Table 3, where the values of B ( n )  are shown. Note 

that the scaling function has period twelve, whereas 

the residues have period-six. This is because the ap- 

proximation of the 1/y-bifurcation curve employs the 

full Fibonacci sequence, whereas the approximation 

of the l / y  shearless KAM curve employs only the 

half Fibonacci sequence, i.e. period-six in the half 

Fibonacci sequence corresponds to period-twelve in 

the full Fibonacci sequence. 

From the scaling relation of Eq. (25) it follows that 

q)l /r(a)  

= lim 
~ln+l I~ln+121 - -  ~lnl~ln+131 

,,~oo (~ln÷l l  -- ~[nl)  -- (qOln+131 -- ~Pln+121) 
(26) 

We have numerically computed bifurcation curves 

(/)[N] up to [ N ]  = [ 2 4 ]  = 75,025/121,393 (note 
that 1 7 5 , 0 2 5 / 1 2 1 , 3 9 3 -  1/y  I ~ 10-11). With these 

numerical values, q~l/z, was approximated using 

Eq. 26: @1/~ ~ (qs[ 121@1231 _ ~/)l 11 ](P[ 241 ) / (  (qO1121 -- 

qOllll) -- (@t241 -- ~P[231)); all the values of @J/z, 
reported in this paper were computed using this ex- 

pression. Table 4 summarizes the numerical results 

for the determination of the critical parameter val- 

ues (ac, b~.) and the values of the six-cycle. The 

table has five rows, one for each independent ele- 
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Table 4 
Convergence of the residues to the six-cycle for (a, b) values on 
the I/y-bifurcation curve. Each row corresponds to each inde- 
pendent element of the six cycle {HE, H2, H3, Ha,/45, H6}. The 
third column denotes the residue under consideration, e.g. Rdj de- 
notes the residue of the down periodic orbit on the sj symmetry 
line. The last three columns give the values of the residues below 
criticality, at criticality and above criticality respectively. These 
numerical results are plotted in Fig. 12. 

( a - , b - )  (ac, bc) (a+,b + ) 

H1 I 11 Rdl 2.778 2.778 2.778 
[71 Ru3 2.397 2.398 2.398 

[13] Rdl 2.317 2.328 2.338 
119] Ru3 2.169 2.323 2.488 

H2 131 Rdl 2.652 2.652 2.652 
/45 [91 Ru3 2.554 2.555 2.557 

1151 Rd~ 2.569 2.595 2.622 
[211 Ru3 2.200 2.555 2.984 

H3 [5] Rdl --0.759 --0.759 --0.759 
[11] Ru3 --0.593 --0.593 --0.594 
[17] Raj -0.599 --0.609 -0.620 
[231 Ru3 --0.442 --0.589 --0.786 

Ha Il l  Ru3 --1.633 -1.633 --1.633 
[7] Ra~ --1.324 --1.325 --1.325 

1131 Ru3 --1.279 --I.283 -1.288 
[191 Ral --1.216 --1.282 --1.354 

//6 [5] Ru3 1.706 1.706 1.707 
[11] Ral 1.570 1.574 1.577 
117] Ru3 1.536 1.585 1.637 
1231 Ra~ 0.937 1.510 2.517 

ment of the six-cycle: H1, H2 = Hs, H3, /-/4, and 

H6. The first column gives the element of the six- 

cycle, the second column gives the rotation number 

[i] = F2i-l/F2i, and the third column gives the 

residue under consideration. The last three columns 

indicate the numerical values of the residues for 

( a - ,  b - )  = (0.686048, 0.742489259544), (ac, b,.) = 

(0.686049,0.742493131039),  and (a  + ,b  ÷) = 

(0.686050, 0.742497002412), respectively. All these 

(a, b) values are on the l /y-bifurcat ion curve. Note 

that the number of significant figures in a is different 

from that of b. This is because the sensitivity of maps 

close to the critical map (ac, bc) is much greater to 

deviations of the map parameters off the constraint 

b = q'l/~,(a) than it is to deviations of the parame- 

ters along the constraint. Thus in these calculations 

it is crucial to achieve twelve digit precision in b if 
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Fig. 12. Residue convergence to the six-cycle {Hi, H2, H3 H4, Hs, H6} for (a, b) values on the l / y  bifurcation curve; above criticality 
(a +, b + ) (circles), at criticality (ac, be) (crosses), and below criticality (a - ,  b- ) (squares). For the numerical values of Hi see Table 4. 

variations in the sixth digit of  a are to be meaningful. 

This precision in b can be obtained with the aid of  

Eq. ( 2 6 ) .  Since it is rather arduous to obtain b to the 
necessary precision, we have presented values here 
accurate to twelve digits for certain values of  a that 
are taken, for the purpose of  satisfying the constraint, 

to be exact. 

The numerical results of  the table are plotted in 

Fig. 12. For (a ,  b) = (a  +, b+) ,  the residues of  higher 

convergents increase in magnitude and, therefore, this 
value is above criticality. On the other hand, ( a - ,  b -  ) 
is below the critical value because the successive val- 
ues of  the residues are successively smaller. The re- 
sults indicate that the intermediate case 



20 D .  d e l - C a s t i l l o - N e g r e t e  e t  a l .  / P h y s i c a  D 91 ( 1 9 9 6 )  1 - 2 3  

i i J , , , , , , ~ i ' t  i - ,  , , i 1 ] 

y o :.:~:~!x .,!..:-i~i):,. i~ ;71:: !~?:.~::.L::2 

'<:?~] '3v ,~..::~ ,," ?<.".v:.%.÷..,'-..'.:c,.$..:..'.., ] 

~:'?. ~,. ~",!~¢..<-.:" . i " ; ~  .:.--.?.-. ;~!:.:y"! ~ :_.;:i ' ~ .  .: .~" ..~.,,"'""": ":-:.: ..:~'~ 

.£ 

Fig. 13. The standard nontwist map at the critical parameter values, 
(at ,  be) = (0.686049, 0.742493131039) for destruction of the 
l / y  shearless orbit. 

(ac, be) = (0.686049, 0.742493131039) (27) 

is the critical value for destruction of  the 1 /y  shear- 

less curve and, therefore, convergence to the six-cycle. 

From the numerical results of  Table 4 we get the lol- 

lowing values for the elements of  the six cycle: 

HI  = 2.325 ± 0.002, 

H3 = - 0 . 5 9 9  ± 0.010, 

H5 = 2.575 ± 0.020, 

H2 = 2.575 ± 0.020 (28) 

H4 = -1 .283  ± 0.001 (29) 

H 6 = 1.548 ± 0.037. (30) 

In Fig. 13 we have plotted the standard nontwist map 

at the critical value (ac, b,.) for the destruction of  the 

1/y shearless curve and convergence to the six-cycle. 

Observe the high degree of  stochasticity in the map; 

all elliptic orbits seem to have disappeared leaving a 

"chaotic sea" with a well-defined "shore" given by the 

shearless 1 /y  orbit. In the figure, several initial condi- 

tions below the shearless curve wander stochastically 
in the bottom part of  the phase space but do not cross 
the shearless orbit. To display the metamorphosis of  

the 1/y  shearless curve as the (a, b) values are in- 
creased, this curve is plotted in Fig. 14 for (a,  b) val- 
ues below criticality, at criticality, and above criticality. 
To show evidence of  the destruction of  the shearless 

curve, Fig. 14c also shows the up and down periodic 
orbits with m/n = 987/1597. The fact that the chaotic 
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Fig. 14. Shearless orbit (a) below criticality, (b)  at criticality and 
(c) above criticality. The fact that, in case (c) ,  the orbit shown 
crosses the up and down 987/1597 periodic orbits indicates that 
the shearless curve has been destroyed. 

orbit shown in the picture crosses these periodic orbits 

indicates the destruction of  the shearless curve. 
To analyse the structure of  the 1 /y  shearless orbit at 

criticality, this orbit is plotted in Figs. 15a,b using sym- 
metry line coordinates centered at the point where the 

shearless orbit intersects s3: ~ = x - a (  1 - y2) /2 ,  y = 

Y - Ys, where Ys = 0.222521. Fig. 15a displays the 
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Fig. 15. Self-similar structure of the l /y  shearless curves at crit- 
icality. In case (a)  the shearless curve has been plotted in sym- 
metry-line coordinates. Case (b)  is a magnification of (a) by a 
factor of  321.92 in the x-direction and 463.82 in the y-direction. 

shearless orbit in the right-upper quadrant of phase 

space, and Fig. 15b is a magnification of Fig. 15a by 

a factor of 321.92 in the x-direction and a factor of 

463.82 in the y-direction. This magnification is quite 
big; the area of the phase space region depicted in 

Fig. 15a is about 150,000 times larger than the area of 
the phase space region shown in Fig. 15b. It was shown 
in [ 14,15] that in the standard map, critical invari- 

ant curves exhibit self-similar structure. The remark- 
able similarity of Figs. 15a and 15b indicates that, in 

the nontwist map, the 1/3/shearless curve has a self- 

similar structure. Note that the scaling factors of the 

critical 1/3' shearless curve are different from the scal- 
ing factors of the 1/3" KAM curve in twist maps. In a 
forthcoming publication [ 16] we analyze the critical 
behavior of the shearless curve using the renormaliza- 

tion group formalism. 

5. Conclusions 

In this paper we have presented a study of periodic 
orbits and the transition to chaos in area preserving 

nontwist maps, maps that violate the twist condition of 

Eq. (3). Many mathematical results regarding KAM 
curves in nontwist maps remain to be established. Due 
to the violation of the twist condition, important theo- 
rems can not be applied to this problem; in particular, 
the standard proof [4] of the KAM theorem breaks 

down. One of the main contributions of this paper is a 

detailed numerical study of the destruction of the so- 
called shearless curve, the KAM curve located where 

the twist condition fails. The understanding of when 

and how a KAM curves breaks has important physical 

implications because, in two-dimensions KAM curves 

are transport barriers; their breakup heralds the lack 

of confinement in the system. In particular, the study 

of the shearless curve in nontwist maps sheds light 
on the transport and mixing properties of plasma and 
fluid systems. 

The study presented here has been based on the 

standard nontwist map, which is a simple paradigm 
nontwist map. The study of the transition to chaos re- 

lied upon the use of periodic orbits to determine the 

existence of KAM curves. For this reason a discussion 

of periodic orbits in the standard nontwist map was 

presented, prior to the study of the transition to chaos. 

Contrary to what typically happens in twist maps, pe- 
riodic orbits in the nontwist map (when they exist) 

come in pairs; that is, there are two periodic orbits 
with the same rotation number on each symmetry line. 

As the map parameters change, the two periodic orbits 
on the same symmetry line can approach each other 
and can eventually collide. The periodic orbit colli- 
sion phenomenoiogy was described in detailed. Peri- 

odic orbit collisions lead eventually to periodic orbit 

annihilation, which is problematic when one is using 

periodic orbits to approximate KAM curves. The main 
difficulty is that, in general, it is not known a priori 
which periodic orbits exists and which have been de- 
stroyed. To handle this problem the concept of bifurca- 
tion curves in (a, b) space was introduced. The main 
virtue of these bifurcation curves is that for (a, b) val- 
ues below the r/s-bifurcation curve, periodic orbits 
with m/n < r/s exist. 

Another important bifurcation discussed in this pa- 
per is separatrix reconnection, which is a global bi- 
furcation that changes the phase space topology in 
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the vicinity of  the shearless curve. Following a dis- 

cussion of  period-one and period-two reconnection, 

we presented a general approximate criterion for pre- 

dicting the threshold for higher order separatrix re- 

connection. The precise role of  separatrix reconnec- 

tion in the destruction of  the shearless curve remains 

to be elucidated. In going from the heteroclinic-type 

topology (cf. Fig. 4a) to the homoclinic-type topol- 

ogy (cf. Fig. 4c) the shearless curve seems to break 

and reconnect. The relationship between these topol- 

ogy changes of  the shearless curves and the destabi- 

lization of  nearby periodic orbits remains to be clari- 

fied. 

Following the discussion of  periodic orbits, the 

problem of  the transition to chaos due to the de- 

struction of  the shearless curve was addressed in 

Section 4. In the integrable limit of the standard non- 

twist map (b  = 0) ,  the shearless curve is the line 

y = 0, along which the twist condition is violated. In 

the nonintegrable case (b  :g 0) ,  the shearless curve 

was defined using approximation by periodic orbits. 

Intuitively, the shearless orbit is the orbit located in 

the region were the twist condition is locally violated. 

The threshold for the destruction of  the shearless 

KAM curve with rotation number equal to the inverse 

golden mean was determined using the residue crite- 

rion. After  studying the stability rules of  the periodic 

orbits, it was shown that, contrary to what happens 

in twist maps, at the threshold of  destruction the 

residues of  the periodic orbits approximating the 1 /y  

shearless curve converge to a period-six cycle. Using 

the scaling properties of  the bifurcation curves near 

the critical point, the 1/Y bifurcation curve was con- 

structed and the critical parameter values determined 

as well as the numerical values of  the elements of the 

six-cycle. It was shown that, at the critical point the 

l / y  shearless curve exhibits a self-similar structure 

different from that of  twist maps. In a future paper 

[16] this will be reinterpreted as a period-twelve 

fixed point of  the renormalization operator with two 

unstable eigenvalues. 
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