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Abstract 

Lagrangian symmetries are found for hydrodynamics and magnetohydrodynamics, which result in conservation of potential 
vorticity and of cross helicity, respectively. These symmetries, which persist in the reduction from Lagrangian to Eulerian 
variables, directly give rise to Casimir invariants of the Hamiltonian formalism. The mechanism of spontaneous symmetry 
breaking in a fluid is also presented. 

1. Introduction 

We find, in Section 2, a symmetry of the ideal com- 

pressible fluid Lagrangian, which is an infinite con- 
tinuous group parametrized by an arbitrary function. 
The corresponding generalized Bianchi identity, which 
must exist by Noether’s second theorem, gives rise to 
Ertel’s theorem of conservation of potential vorticity 

[ 11. The symmetry we find is a velocity-dependent 
transformation, unlike the point symmetries of fluid 

field theories, and their consequences due to Noether’s 
(first) theorem that have been explored earlier [ 2-51. 
The symmetries here involve only a transformation of 
the fluid element labels, hence we follow Ref. [5] in 

naming them “relabeling symmetries”. (See Ref. [ 61 
for more details, where a related but less general sym- 
metry is discussed.) 

In Section 3 we show that the potential energy func- 
tional obtained by expanding about a stationary equi- 
librium possesses a Bianchi identity. Also, in this sec- 
tion a relationship to spontaneous symmetry breaking 
and the existence of null eigenfunctions are shown. 

Section 4 is concerned with the Hamiltonian frame- 

work. We show that the map from Lagrangian vari- 
ables (or material variables) to Eulerian variables for 

a fluid has the same relabeling symmetry. This sym- 
metry is then used to directly construct the Casimir 

invariants for the noncanonical Poisson bracket [ 7,8] 
for the fluid in Eulerian form. This rounds out the 
usual picture of reduction from Lagrangian to Eule- 
rian variables (see e.g. Refs. [ 8,9] ). 

We deal with magnetohydrodynamics (MHD) in 
Section 5. Relabeling symmetry of MHD results in the 

cross helicity invariant for barotropic flows. This in- 
variant has previously been linked to Lagrangian sym- 
metries [ 10 1, but not to fluid element relabeling. Other 
symmetries of the reduction from material to Eulerian 

variables give rise to Casimir invariants too, including 
a little explored family of invariants that incorporates 
magnetic helicity as a special case. 

2. Relabeling symmetry in hydrodynamics 

The variables q( a, t) keep track of the position of 
the fluid element labeled a. At any time the mapping 
between q and a is an invertible mapping of a domain, 
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D, and to simplify matters, D is assumed time inde- 
pendent although the fluid is compressible. The fluid 

Lagrangian density, C, may be written as [ 6,1 l-131 

C(a, q,o, @) = PO] ;4* - U(P, s) - Q(4) I > (1) 

where po = pn( a) is the initial density distribution and 

4 denotes the time derivative of q keeping the label 

lixed. The internal or potential energy per unit mass 
is denoted by U and is assumed to be a function of 
two thermodynamic quantities, viz. the density, p and 

the entropy, s. Additional forces on the fluid can be 

accounted for by including a potential, Q(q). We also 
assume adiabaticity, that is s = sn( a) only. Conserva- 
tion of mass implies pd”q = pad”a, hence we have 

p(a, I) = po( a)/J, where ,Y denotes the Jacobian 

of the transformation, a(q) /a (a), and is restricted to 
be positive. Dependence of C on derivatives of q is 

indicated by dq. 

Upon seeking an infinitesimal relabeling transfor- 

mation & = u + Sa and Aq := G(&, t) - q(a, t) E 0, 

the action, S = s s, C d”adt. is invariant when 

Sa( u, aq, aLj,c?q, &) = 
vso x VE 

PO ’ 

where E = E(Q,~, a) is an infinitesimal, arbitrary func- 
tion of its arguments and QS is an abbreviation for 

I 
Qs := -$74; x Vq’ Vso. (3) 

The relabeling transformation defined by Eq. (2) sat- 

isfies 

V.(PO&z) =o, Sa.Vso=O, (4) 

which assure that the relabeling does not alter the mass 
and lies within isentropic surfaces, however it does al- 

ter the velocity field, A4 = -VSO x V( &/at) .Vq/po. 
Later it will be clear that QS, and hence .s(Q,~,u), 

has no time dependence on the orbits, so the veloc- 
ity field is unchanged only on the orbits. (There does 
exist a simpler point symmetry [ 61 for which &Z van- 
ishes identically and there is no change in the velocity 

field. For this symmetry, E depends only on a and the 
Lagrangian density itself is invariant. The symmetry 
given by Eq. (2) depends on space and time deriva- 
tives of q and is more general than the point symme- 
try.) Evidently, relabeling means that each component 
of q transforms as a scalar. 

This symmetry being of an infinite continuous 
group, there exists a generalized Bianchi identity, 

po!.g+v si ( > .vq’xvso=o, 
PO 

(5) 

where Si denotes the functional derivative of the ac- 

tion, &S/&r’. Generalized Bianchi identities are valid 
for any q(u, t) and indicate that not all equations of 

motion are independent. (For more on this see Refs. 
[ 14-161; for a summary see e.g. Ref. [ 61.) When the 
equations of motion are satisfied S, s 0 and Eq. (5) 

reduces to 

(6) 

where the chain rule has been used to convert a deriva- 
tives to q derivatives to yield the Eulerian expression 

above. The gradient operator in q space is denoted 
by 6, the velocity u(q,t) := Q(a,t), the entropy 
s( q, t) := sg( a), and the density p( q, t) are obtained 
from the inverse map, u(q, t) The Lagrangian or ma- 

terial derivative is d/dt := a/&], = a/&], + L’ . q. 

In Eq. (6) the quantity, &(q, t) := 6s . e x o/p, 

which is the Eulerian expression of Qs(a, t) on the 

orbits, is called the potential vorticity associated with 
the advected quantity, s, and Eq. (6)) which expresses 

the advection of Qs, is called Ertel’s theorem of con- 
servation of potential vorticity. The conservation of 
potential vorticity was derived from a (different) La- 

grangian point symmetry in Ref. [ 41 for incompress- 

ible stratified flows. In Ref. [5] conservation of po- 
tential vorticity is derived from a constrained varia- 
tional principle; the relabeling transformation is not 

stated explicitly. The treatment in Ref. [3] expresses 
the symmetry in terms of 6q rather than 6a, however 

the arbitrary dependence of l on Q,$ is not stated. For 
the symmetry presented here, we can express 6q Eule- 
rianly as: Sq = Aq-Ga.\Jq = ( QE x ds) /p, where E is 
understood to be the Eulerian equivalent to E( Qs, a). 

The use of relabeling symmetry seems to have been 
made first in Ref. [ 21 where an “exchange symmetry” 
is found for an incompressible, ideal fluid without in- 
ternal energy, U. In Refs. [2] and [3] relabeling sym- 
metry is related to Kelvin’s circulation theorem. One 
can easily proceed to show that Ertel’s theorem gives 
rise to Kelvin’s circulation theorem on material sur- 
faces of constant entropy [ 61. (In the barotropic case 
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the circulation theorem holds on any material surface 
since the entropy in Ertel’s theorem may be replaced 

by any advected quantity.) 

3. Spontaneous symmetry breaking 

In the stability analysis of stationary fluid equilibria 

(in particular MHD) one often considers the second 
variation of potential energy functionals. Consider the 
fluid potential energy functional, 

W[ql := J po[fJ(p,s) -t@(q)1 d3a> (7) 

D 

for which, 

(8) 

where S,q = -Sa . Vq and Sa is given by Eq. (2)) but 
without any restriction on the time dependence of l , 

i.e. E = E( a, t). (The symbol S, specifies the symme- 
try transformation for the sake of clarity in what fol- 

lows.) Eq. (8) leads to a generalized Bianchi identity, 

v ;$ xvq’.vso=o. 
( > 

(9) 

The functional derivatives of W, which are set to zero 
to obtain the extremal point, are thus not entirely in- 

dependent of each other. 
Taking a second variation of (8) and evaluating on 

an equilibrium point, qe, yields 

s; w, = 
~~2wqel 

69’ 
Sqisqj 

.S,qLd3a G 0, (10) 

where the dot indicates that the operator on the left 

acts on the quantity to the right and since the second 
Sq is arbitrary, it follows that 

(11) 

The case S,qk = 0 is trivia1 (since it implies qe = 
qe ( SO) alone), therefore S2 W [ qe] /SgiSg has S,qt as 
a null eigenvector, and symmetry is “spontaneously 
broken”. (See e.g. Ref. [ 171; in the context of non- 
canonical Hamiltonian theory see Ref. [ 181.) Observe 

that &q, is a zero frequency eigenfunction of the 
linearized equations of motion written in Lagrangian 

variables. 
Since relabeling is a symmetry group, it is clear that 

one can make a finite displacement from the equilib- 

rium point and remain on the same level set of H. For 
example, the next variation evaluated on qe gives 

s”,we = 6,q’ J ( s3w[@z1 .&j 
6q%$6q’ 1 

.Sqk& 
D 

GO. (12) 

This procedure is analogous to Taylor expanding a po- 

tential energy function about an equilibrium of a finite 
system that lies in a trough. This was worked out ex- 
plicitly to all orders for the special case of toroidal ge- 
ometry in Ref. [ 191, Although in terms of Lagrangian 

variables the equilibria that are connected by the rela- 
beling transformation are distinct, it is evident by the 

definition of relabeling that in the Eulerian description 
these equilibria are identical. 

The argument outlined above also holds for the po- 

tential energy functional for barotropic MHD. How- 

ever, the symmetry is not an infinite parameter group; 
thus there does not exist a generalized Bianchi iden- 
tity for MHD. 

4. Symmetry of the Eulerian variables 

We now consider the Hamiltonian formulation of 

hydrodynamics (see e.g. Ref. [ 81). Expressed in La- 
grangian variables the Hamiltonian has the form 

H[r,q;a] := J 7-&r,q&,u)d3u 

D 

which together with the canonical Poisson bracket, 

[F,G]= I( SF SG 6G SF 

G . hi- 
--%.% d3u, 

> 
(14) 

D 

produces the ideal fluid equations of motion. On 
making the transformation 6 = a + %(a, t), Aq := 

B(6, t) - q(u, t) = 0 and Arr := i;(& t) - ~(a. t) = 
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(Sa . Vpa) (r/pa) (so that A(r/pe) E 0) it is seen 
that the action and the Hamiltonian density are in- 
variant for the relabeling symmetry given by Eq. (2)) 

but with 4 replaced by r/pa. The existence of this 
symmetry of the Hamiltonian density indicates that 
one may be able to obtain an alternative formulation 
of the dynamics in terms of variables which inher- 

ently possess this symmetry. This is indeed the case 
for the reduction (see e.g. Refs. [ 8,9] and references 

therein) to Eulerian variables, 

p(q,t) := 9, g(q,t) := po(ay(a), 
da, t) 

M(q,t) := 7 7 (15) 

where a = a( q, t). The variations of the Eulerian vari- 

ables p, CT, and M, that are induced by relabeling, 
JcTp = v . (poSa), &7&T = sov . (po Su) + posa. vs() 
and poJSil4 = TV . (~08~) , vanish for the relabeling 
transformation under consideration. 

In the framework resulting from the reduction to 
Eulerian variables, we are naturally interested in func- 

tionals expressible in terms of the Eulerian variables, 
F[q, T] = F[p, u, M]. For a functional, F[q, r], 
to be thus expressible, it is necessary (although not 

sufficient) that it possess the symmetry of the Euler- 
Lagrange map. This enables us to construct Casimir 
invariants, special invariants that arise in the Eulerian 

framework, from knowledge of the symmetry. The 
variation of F must vanish when the variations 6q and 

Sn= arise from the relabeling symmetry, Sa, hence 

SF = %?q +$&T 
3 

d”a=O. ( 16) 

D 

(Note that 6 is to be distinguished from A; Aq is 

the first order change, G( ii, t) - q( a, t), at the trans- 
formed point, while Sq represents the first order 
change, @(a, t) - q(a, t), at the same point.) It is 

clear that if there exists a functional, C [ q, T] , such 
that 6q = -6C/&r and &r = GC/Sq, then its Poisson 
bracket with any F[ q, 7~1 belonging to the class of 
functionals satisfying Eq. (16), vanishes. This will 
be the case when the Poisson bracket is expressed 
in terms of Eulerian, noncanonical variables [ 71 and 
therefore, by definition, C is a Casimir invariant. Ev- 
idently, Casimir invariants are constants of motion 
for any dynamics with a Hamiltonian that can be 

expressed in terms of Eulerian variables. It is easily 
checked that the functional defined by 

C[q, rl := I PO(U) Z<Q,, a) d’u, (17) 

;: 

is the generator of the symmetry, i.e. it satisfies 
[C,q’] = -K/&i = -Sa. Vq’=: Sq’ and [C,r;] = 

SC/&j = Ari - 6~. VT; =: 6~;. We note that Qs is 
written in terms of ST/PO rather than 4 and the E that 
appeared earlier in the expression for the symmetry 

is related to 5 by E(Q,, a) = Js(Q,v,a)/@Y. The 
Eulerian expression for the Casimir invariants yields 

C[p,s,ul := 
s 

pW,&)d”q, (18) 
D 

where C is an arbitrary function of both arguments and 

s(q, t) := a(q, t)/p(q, t) = so(a(q, t)). 

In the noncanonical Hamiltonian formulation of the 
fluid, a Casimir has to satisfy the conditions 

9. p& =o, ( > $9 ; =o, 0 (19) 

The equivalence of these conditions to the symmetry 
conditions, Eqs. (4)) is seen when one notes that if C 

can be expressed as a functional of p, u, and M, then 

Relating the above expressions to the symmetry gen- 
erated by C, i.e. setting SC/&r = Sa.Vq and SC/Sq = 
-PO Sa.V(~/po), leads to Eqs. (19) and (20) when 
6a satisfies Eqs. (4) and vice versa. 

For barotropic flow, s may be replaced by any ad- 
vetted 7. Therefore one can use Qr to generate yet 
another advected quantity, QQ, and so on; from one 
advected quantity we can generate an infinite family 
of advected quantities. Thus the Casimir has the form 

C[p,~,ul = 
I 

pf(dd&,,...)d3q, (22) 

D 
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where f(7, CA, QQ,, . . .) is an arbitrary function of the 

arguments. 

5. Relabeling symmetry in MHD 

The Lagrangian density for MHD [ 131 is given by 

1 
CMHD = L - -8qidkqB’Bk 

2J .’ 1 0 0’ (23) 

where L is the fluid Lagrangian density given by 

Eq. ( I ) and Bb( a) are components of the magnetic 

field as a function of the labels, e.g. the initial mag- 
netic field. The introduction of the magnetic field 
term leads to overspecification of conditions on I%, 

and consequently there is no relabeling symmetry. (It 
is for this reason that the potential energy functional 

for MHD does not exhibit spontaneous symmetry 
breaking, unlike the fluid case discussed in Section 
3, and is thus reminiscent of the Higgs mechanism in 

quantum field theory.) 
Any integral of a function of the labels alone, if it 

has a representation in terms of p, s, and B, is ex- 
pected to be a Casimir of the noncanonical Hamilto- 

nian structure in Eulerian variables. This is because 

SC/Sq = 0 = 6C/6~ for such integrals, C, hence the 
Poisson bracket of C with any functional of q and n- 
vanishes trivially. It is easily verified that B . fT~/p = 
Bo . Vq/po, where T(q, t) := TO(U) is an arbitrary 
advected quantity. Similarly, the Lagrange-Euler map 
for the magnetic field, JB’(q, t) := B;(a) Jq’/Ja-j, 
and its corresponding vector potential representation, 
Ai( q, t) = Ao,j( a) &tj/c?q’, lead to the conclusion that 

A . B/p = A0 . Bo/po, within a gauge restriction. We 
note that one may add to Ao(u), the gradient of a 
gauge, 40 (u, t) , which leads to a corresponding gauge 

choice, 4(r.t) := &(q-‘(r,t),t), for A(r,t). But 
for the validity of A. B/p = Ao.Bo/po, we must restrict 

the gauge to be advected, 4(1, t) := &(q-’ (r, t) ), 
which is equivalent to demanding that all explicit time 
dependence be removed from Ao. With this choice it 

can be seen that the vector potential in Eulerian coor- 
dinates satisfies the equation 

dA 
- = ~1 x B - v(A. u) . 
dt 

(24) 

(This gauge choice and the corresponding invariant 
is discussed by Gordin and Petviashvili [ 201.) Thus, 

more generally, the Casimir invariants are expressed 

by 

C[p,s,Al := J ( A.B B..?s 
pg s, -9 -t 

!$(!+),!!+&$!\ ,...) d3q, 

(25) 

where B is understood to be an abbreviation for 6 x A. 
Operating within the restricted choice of gauges men- 

tioned earlier, we note that the addition of a gauge, 

A -+ A + f74, changes A ’ B/p by the term B . 
9$/p, which is also advected. The numerical value 

of C[p, s, A] thus depends on the gauge, but after 
the initial choice of the gauge has been made, it nev- 

ertheless is a constant of the motion. It is clear that 
magnetic helicity, s A. Bd’u, is a special case of this 
family of invariants. 

A nontrivial symmetry can, however, be found if 
one eliminates the second of Eqs. (4) by considering 

a barotropic flow, i.e. U and hence p depend only on 

the density, p. (A solution can also be found without 
imposing the restriction of barotropicity in the case 

where the entropy, so, is a flux label, i.e. Ba.Vsa = 0.) 
Then one has the symmetry 

6u = s(xo,yo); 9 (26) 

where x0( a) and ya( a) are flux labels. In other words, 
the initial magnetic field is expressible as Vxa x Vyo. 

However the existence of flux labels x0( a) and ya( a) 
is not crucial; if they do not exist one simply thinks 

of E as an infinitesimal constant parameter. 
For this symmetry, Noether’s (first) theorem gives 

~(g,BoTqi)+WIBo(;-U-p$+)] 

=o. (27) 

Integrating over the domain and passing over to the 
Eulerian form using the relation B& = JB’&, we get 

the conservation law 

$C[c,B] :=$ 
s 

o.Bd3q=0, 

D 

(28) 

where C [ u, B] is commonly referred to as cross helic- 
ity. The existence of this symmetry also leads to spon- 
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taneous symmetry breaking for a stationary barotropic 
plasma, the argument for which closely follows that 

of Section 3. Prior to this work conservation of cross 

helicity was derived from a Lagrangian symmetry in- 
volving Clebsch potentials and the polarization in Ref. 

[IO]. (See also Ref. [21].) 
The Casimir for the barotropic case is written most 

generally as 

D References 

+.f y,y (y) ,...)I d’q, (29) 

where f is an arbitrary function of its argument. In 

the case where flux labels exist globally, the Casimir 

is given by 

C[L’,X,_~] = J f(x-.vlo.V~ x Vyd3q. (30) 

D 

where f is an arbitrary function of the flux labels, 

x(q, t) := x~(a(q, r) 1 and y(q, t) := yovo(a(q. t) ). 

6. Conclusions 

We have described the consequences of Noether’s 
theorems associated with the relabeling transformation 
for the ideal fluid and MHD. The action and Hamil- 

tonian were seen to be invariant under the contact 
transformation we presented for hydrodynamics and 
the point transformation for barotropic MHD. These 
transformations were also seen to be symmetries of the 
Lagrange-Euler map, giving rise directly to Casimir’s 
of the reduced Hamiltonian description of the fluids 
in terms of Eulerian variables. In addition Ertel’s the- 
orem, the Kelvin circulation theorem, cross and mag- 
netic helicity, and other Casimir invariants, including 
a little known family of invariants in MHD, were dis- 

cussed. 
The formalism described is quite general and ap- 

plies to a large class of ideal fluid models. More exotic 

fluids such as the Chew-Goldberger-Low model and 

gyroviscous fluids [ 21 possess a similar development. 
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