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The equations of motion for interacting elliptical vortices in a background shear flow are derived
from a Hamiltonian moment formulation. The equations reduce to the sixth order system of
Melanderet al.[J. Fluid Mech.167, 95 (1986] when a pair of vortices is considered and shear is
neglected. The equations for a pair of identical vortices are analyzed using a number of methods,
with particular emphasis on the implications for vortex merger. The splitting distance between the
stable and unstable manifolds connecting the hyperbolic fixed points of the intercentroidal motion—
the separatrix splitting—is estimated with a Melnikov analysis. This analysis differs from the
standard time-periodic Melnikov analysis on two cou@sthe “periodic” perturbation arises from

a second degree of freedom in the system which is not wholly independent of the first degree of
freedom, the intercentroidal motionp) this perturbation has a faster time scale than the
intercentroidal motion. The resulting Melnikov integral appears to be exponentially small in the
perturbation as the latter goes to zero. Numerical simulations, notably Posesiens, provide a
global view of the dynamics and indicate that, as observed in previous studies, there are essentially
two modes of merger. The effect of the shear on chaotic motion is also discussetio96>
American Institute of Physic§S1070-663(196)00104-1

I. INTRODUCTION description. In this way, the Hamiltonian structure of the
eprobIem is preserved in a natural wagee Appendix A for
background information on noncanonical Hamiltonian dy-
gamics and the method of reductipfhe Hamiltonian na-

In this paper, we first present a simple approximat
model of the dynamics oN elliptical vortices in a two-

dimensional shear flow. We subsequently use this model t t th i f tion i licit d th
examine the conditions under which a pair of vortices carfure of the equations of motion is more explicit, an €

merge in the presence of a shear flow. This model has man?eriyation is somewhat simpler than in MZS because of re-
similarities with other discrete vortex models, most notablyduction and the noncanonical f.ormah.éﬁn.
with the uniform elliptical vortex in shear of Kidé1981)" The analysis of the model is motivated by the phenom-
and the interacting uniform elliptical vortices of Melander €N0N Of vortex mergefSec. Il). In the absence of any ex-
et al. (19862 (hereafter referred to as MZSThe essential ternal ﬂ%wl,5 like-signed vortices will merge when clgsg
difference lies in the simultaneous presence of vortex—vorteféoget_he'l- 7 But when background shear is present, it is
and vortex-shear interactioRé. These processes both possible for even well separated vortices to merge if they are
complement and compete with one another. Vortex-vorteﬁrie“ted appropriateﬁ/.Converser, these two basic interap—
and vortex-shear interactions are especially common iffONsS can interfere: the shear flow may sweep the vortices
geophysics;” and they may also be found in other settings.paSt one another before they can merge, or each vortex may
The emergence of quasi-uniform vortices and their compleﬁdveCt the other in a direction normal to the shear, making it
interaction with one another is recognized as an importangasier for the shear to separate them.
feature of geostrophittwo-dimensional turbulencé° An inherent limitation of our analysis is the approximate
As in MZS, the vortices in our model are approximatedhature of the model. In the derivation, it is assumed that the
as elliptical patches of uniform vorticity and an expansionvortices are small and well separated and that they remain
based on spatial moments of the vorticity distribution is em-€lliptical for all time; during a vortex merger event, however,
ployed. However, the derivation of the resulting Hamiltonianthe model loses its asymptotic consistency since real vortices
system is considerably differefec. ). Instead of deriving deviate increasingly from ellipticity as a merger event pro-
the equations of motion by manipulating the moments, theeeds. It has been shown that the “elliptical model” of Leg-
procedure of Flierlet al. (1995 (hereafter referred to as ras and Dritsche(1991),* which is a Galerkin-like approxi-
FMM) is followed; this is a powerful approach which pro- mation to the contour dynamics equations, gives a better
vides a simple and generalizable route to the equations afpproximation than the model of MZS to some of the defor-
motion. Beginning with a Hamiltonian description of the full mations seen during mergeérNevertheless, in the absence
(infinite-dimensional system, approximations are made of background shear, both the elliptical model and the model
within this framework so as to obtain a reduced Hamiltonianof MZS give similar predictions for the onset of merger.
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exponentially small as the perturbation amplitude goes to
Y zero?*# and this is what we find.

Although it is convenientand naturalto present Melni-
kov's method in the Hamiltonian context, it is the model's
underlying phase space geometry that is fundamental. Our
hyperbolic fixed point numerical study of vortex merger and chaotic motion is

based upon this general geometric approach to the dynamics
(Sec. \J. Two-dimensional Poincargections of the intercen-
troidal motion are the primary tool. They provide a global
X view of the dynamics, and as they are constructed at constant
= energy, they complement previous interpretations of vortex
merger which are based on energy arguméatg., Ref. 4.
In particular, they enable one to make a useful geometrical
distinction between a predominantly vortex-vortex mode of
merger and a predominantly vortex-shear one. In addition, it
is observed that the chaotic dynamics in the vicinity of the
separatrix are weaker than in the interior, in agreement with
the asymptotic Melnikov analysis.

separatrix 3
separatrix

hyperbolic fixed point

II. HAMILTONIAN MOMENT FORMULATION

FIG. 1. Phase space geometry for a point vortex pair in shear with  In this section, the equations of motion fidr elliptical
w—e<0. vortices in a background shear flow are derived. Using a
Hamiltonian moment formulation in which the quadratic vor-
ticity moments are the dynamical variables, FMM were able
) . ) to derive the equations of motion for the Kida vortex. Our
Thus, there is reason to believe that the model considered iggrk generalizes that of FMM by extending the analysis to
this paper should provide some insight into the interaction ofy interacting vortices. Briefly, our derivation proceeds(by
uniform vortices in shear. _ o expressing the Poisson bracket for the two-dimensional
~ For simplicity, the analysis is restricted to a pair of iden- >_p) Euler equations in terms of the first and second order
tical vortices in .shear'. Its centerpiece is a Melnikov analysis,orticity momentsii) determining the cosymplectic matrix
of the separatrix splitting between the stable and unstablgik from the bracket;(iii) computing the Hamiltonian in
manifolds connecting the hyperbolic fixed points of the in-terms of the moments; anv) obtaining the equations of
tercentroidal motioriSec. IV). The equations of motion fora  yotion fromH and J%. Background information on nonca-

pair of identical vortices reduce to those for a point vorteXyonjcal Hamiltonian dynamics and on the notation adopted
pair in shealsee Appendix B and Ref)3when the vortices’ here may be found in Appendix A.

internal degrees of freedom are eliminated; for sufficiently _
strong strain, the phase plane of this system exhibits a pair df- Poisson bracket

hyperbolic fixed points which are connected by a separatrix  First, consider a 2-D Euler flow with a spatially and
(see Fig. 1 Thus, a question which immediately comes totemporally varying vorticity distributiong(x,t). We make

mind is what happens to the Separatrix under the perturbatiOﬂhe assumption thai approaches a uniform, constant Va|ue,
due to the elliptical vortices’ internal degrees of freedom: insay «, sufficiently rapidly as |x| =, and we set

dynamical systems theory, the separatrix splitting, besideg(x,t)=w+q’(x,t).

leading to chaotic motion, controls transport across(the The Poisson bracket for 2-D Euler flowf§<’

perturbed separatrix’ 1 This is interesting because it sug-

gests a route by which widely separated vortices could inter- (F,G}= f q 5_': E

act at close range and possibly merge. ' oq' " &g’
For the unperturbed point vortex pair in shear, the closeqynereF andG are functionals of vorticitys/5q’ denotes a

orbits in the interior are divided from the open orbits in the,nctional derivative, [a,b]=ab,~b,a, is the two-

exterior by the separatritsee Fig. 1, with a perturbation, & gimensional Jacobian, and the constant background vorticity

trajectory could pass from the exterior to the interiand e not appeafThe background vorticity will enter in the

vice versa. However, because of the unusual form of they,mijtonian by virtue of the dynamical role associated with

perturbation and the presence of multiple time scales, a stafyje hackground flowWe introduce a finite set of functionals
dard Melnikov analysis cannot be applied. The approach wgs e perturbation vorticity which we callmoments
have developed differs from some previous applications O{aj[qr]:j =0,... K—1}. For a subset of functionals af
Melnikov’s method to fluid dynamié8=2% because the per- depending (;nly ,orq’ as functions of the moments, e.g
turbation is not imposed externally, but rather arises naturallgrq1=(a%[q'], . . . a5~ 1[q']), o
from the internal structure of the problem. A consequence of _

the separation of time scales between the perturbed and the 6F  df sa

unperturbed motion is that the Melnikov integral should be  &q’ gal 5_q’

dxdy, 1)
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and (1) takes the form tion, I'; . The steady uniform background vorticity is associ-

ated with a flow that combines both background rotation and

of W 99 .
{F,G}= 51,‘]1 o (2a) strain:
1 1
where V= Zo(x+y?)+ 7e(-y?), ©)
ik [ sal sa
J :f a 59" 59" dxdy. b 4 ande being constants. This is the same background flow

o used in the Kida problem.
(Repeated sum notation is used here and hencefortte We now label the moments with a single suffix that com-

success of this approach depends on whether we are ablefqs information about both the polynomial used to gener-
approximate the Hamiltonian of the system as a function ofe the moment and the vortex with which it is associated.
the moments{a'}. This )’V'" in turn depend both on the (14 ayoid unnecessary confusion, we lower the indices on
nature of the scalar field’(x) and on our particular choice ¢ a’s.) After the reduction sketched above, we find that

of moments. _ o _ _ there are six moments associated with each vortex. One is
Let us move in the direction ddpatial moments by in-  ihe circulation of the vortex

troducing a finite(but as yet, arbitranyset of time-dependent
disjoint areag S;(t):j=0, ... N—1} and defining the set of

moments{al}, in terms of them by [ii=3a;.6 ;:f q; dxdy; (63
Dj
é]::J A" xk(X)xi Ox x*dxdy, 3 two are the first moments of the vorticity,
wherer and s are non-negative integers amd-s<2 for
0=Kk,I<N—-1. Herey;(x)=1if x € S; andx;(x)=0 other- 52+6i:f q/xdxdy, 53+6i:f q/ydxdy; (6b)
wise. The monomialsx" and x> may be associated with D D,

xk(X) and x,(x), respectively. Provided thaf’ is such that

we can choose thg5;} so thatg’ =0 on their boundaries, the
Jacobians in the integrands (b) are polynomials of at
most second degree. This ensures tHatakes the form

(4)

The c¥ are the structure constants of a Lie algebra and the
bracket,(2a), is a Lie-Poisson bracket with cosymplectic ma-
trix J.

If the perturbation vorticity field has the form of
“clumps,” so thatq’ is nonzero only on a set of compact,
disjoint regions{D; :i=0, ... N—1}, then we may obtain a
further simplification. Choosing th§; so that eacls; com-
pletely contains the correspondiily but does not intersect - 2
any of the remainin@®’s, the moments irf3) are zero unless Ma+6i = X%
k=I.

With these simplifications, we can think of our model as
approximating the vorticity distribution by a collection of
elliptical patches of uniform vorticity, one patch being as-
signed to each of the disjoint clumps in the origigal dis-
tribution. More formally, there is a simple correspondence
between the instantaneous state of the moments and the cdiPs-6i »Ms+6i1=4Ms .6 ,
figuration of a collection of uniform elliptical patches. First
order moments determine 'Fhe positions of the centro!ds, appﬁqswi M 61]=2Me- g1+
second order moments define the aspect ratio and orientation
of the equivalent ellipses. Each vortex embodies an infinite . - - -
number of degrees of freedom corresponding to the shape i?ﬂz““ ‘Mar6il =0, [My161,Me6i]=0,
each regiorD; and the distribution of the vorticity within it.  5nq
The moment reduction, as we shall see, restricts this number
to only two degrees of freedom per vortex, one associatefim, g ,Ms 4 g ]=Mo, 6 ,
with the vortex centroid and one with its ellipticity and ori-

entation. ~ ~ — ~
M3 6i \Masgi]l=—2Mo, g,
For the specific problem considered in this paper, we[ 36 Mol 28

and the remaining three are second order moments,

' ] a4+6i:f Qi'XZdXdM é5+6i:J ai xydxdy,
Jik=clka”, Di D
’ (60)

g+ 61= fD_QilydedY-

Thei’s identify the vortices.
It is convenient to define function?mj associated with
the integrands of the;:
M 6 = XY, m6+6i:y21
(73

My, =1.

My 6i=X, Mzig=Y,

The structure constantd® can then be evaluated from the
relations

[r~n4+6i fns+si]:2r~n4+6i )

[Ma6i,M3u6i]=1, (7b)

[m2+6i vm6+6i] = 2m3+6i )
(70

[Fn3+6i fﬂs+6i]= _ﬁ]3+6i .

adopt the perspective of elliptical patches of uniform vor-
ticity, gi (i=0,... N—1), each with aread;, and circula-
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B. Cosymplectic matrix the zeroes in the first column and row &f the net circula-
tion of each vortexa, , ¢ , is clearly a Casimir.

The cosymplectic matridi® is defined b : ) . -
ymp y Since one of the coordinates (h0) is a Casimir, we can

JF ... G treat it as a constant parameter and reduce the dimension of
{F.G}= g‘]]kg- @3 the submatricegii by one. This leaves five remaining vari-
. “ ables per vortex@,si, s+6i, d4+6i, s, andag g
From (2b), we see that The submatrices can themselves be rendered block diagonal
by using a transformation that replaces the second order mo-
‘Nij:j q; [y , ] x; xdxdy. (8b) \r;wvents with second order momeratsout the vortex centroid
e set

(Note thatsa; / 6q; =my; .)
Because of the factor of;x in the preceding expres- aj.g=ai:+6i, az+ei=a2+6i, @3+6i=a3+6i
sion, moments of different vortices do not couple together. It (133
f~ollows~frpm th.e productg7b)—(7¢) anq the definitions of X¥=a, glaiigi, Y =asieil1.6,
a; thatJ is a direct sum oved;, the single-vortex cosym-

i i : 3 *2 3 * .\ *
plectic matrices: A4+6i=84+6i — X| "@1+6i, As+6i= As+ei Xi Yi A1+6i

~ N-1, (13b
J=@ . (9 agie=ags6 Y “A146i-
=0 . The variables X ,y;) are just the coordinates of the cen-
For N=2 vortices,J takes the block-diagonal form troid of theith vortex. In the new coordinatds;}, we de-
note the cosymplectic matrix by, After defining new
- jo 0 functionsm;, the mixed products corresponding(&c) van-
J= 0 31 : ish when integrated ovdd; because

HereJ;, a 6x6 matrix, has the following structure: , )
' fin (x=x)dxdy= fin (y=yi)dxdy=0.

9 (~O The elements of the submatrix; are thus identically zero
ji = ”il “i (10) and the new cosymplectic matrix takes the form
T P
0 ZF , | 0
with J—iGiJi ; i—( o 4 (14)
~ 0 A1 6i The block diagonal submatrices;, .7, are given by(11g
% :( A0 ) (118  and(11b) after replacing th@’s by a’s. Here.  is, to within
1rei a normalization factor, the canonical cosymplectic matrix for
0 0%, - ..~ point vortex motion;.%; is the cosymplectic matrix for a
3 N 4+6i core Kida vortex(cf. FMM). The block diagonal form od shows
L= —2a44i 0 23646 |, (11b  that, in this coordinate system, the vortices are not coupled
— 35,5 —236.6 0 t.hrough. the cosymplectic mat.rix. Qoupling between the vor-
tices arises through the Hamiltonian.
and The existence of a second Casimir for each vortex now
. . becomes apparent sind&(JC/da¥) = 0 also has the solu-
~ 0 Az+6i 233460 tion
zi= ~ ~ (119
—2816 —a3+6i 0 )
C'=a,, 6866~ 3514 - (19

Before turning to the Hamiltonian, we first note that the
system has some symmetries that are independent of theor the particular case of uniform elliptical vortices, this is
form of the Hamiltonian. These symmetries are manifesteégain related to the circulation of an individual vortex:
in Casimir invariantsC, which are solutions of C'=T?A?/16x2. This is not true in the general case, how-

ever(cf. FMM).

0=Jk—, (12)
oa
The Casimirs arise when the cosymplectic matrix is singular
and they correspond to constants of the motion. There ar
infinitely many Casimirs for the 2-D Euler equations, the = We now seek an approximation to the Hamiltonian writ-
materially conserved functionals of vorticity, but onlyN2  ten wholly in terms of thes;. For the 2-D Euler equations,
Casimirs for a system dfl elliptical vortices in shear. Given the excess energy is an invariant quarftity° For point vor-

. Hamiltonian
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tex motion, the excess energy is the Hamiltonian. With the . ' A
ansatz that the excess energy is the Hamiltonian for our sys- @a+6i=(\; ‘coS¢; H\ismzti’i)ﬁ,
tem, we obtain

1t , L 1 . LA
H=-— 520 fD 2¥q/ dxdy+ fD ¥l g dxdy as+6i= (N "~ \i)Sing;cosp; 5 —, (19)
= i i
N—1 LA
* JZO foiwi G dxdy], (16 a6+6i:()\i_lsin2¢i+)\icosz¢i)4l_ﬂ_l
where (b) The vortices remain well separated in the sense that the
1 vortex separation®&;; and the length scales of the vortices,
lﬂi’(x)zﬁf g In|x—x'|dx"dy’ (17)  characterized by the length of their semi-major axes,
Di SatiSfybi<Rij .
is the streamfunction induced by vortexThe first term in To evaluateH,, only the first approximation is needed.

(16) corresponds to interactions of the background flow withUsing (17),
the vortices, the second to interactions of the vortices with

themselves, and the third to interactions of the vortices with A
one another(The notations ;" stands for=) 55 .;.) Ho=— 8_2 I'ZIn (8g+6itasre)pa T2 (20
Ti=0 iAi
LettingH=H,+H,+ H3, the first term |n(16) may be
written as Invoking the second approximation to expand the Green's

function to second order ih;/R;;, the final term is
2
s+ 6i

it — |t (w—e) N-1 N-1
a1 +6i

4 211
= E > {r-r- In R?+—{—I‘-(a -
3 877 = it ij Rizj 2 i\A4+6j

1
Hy=— 20 [Z(me)

a5
+ 6
X|ag+eit . (18) 1
ai+ 6
o _ +ag+6j) T Erj(a4+6i+a6+6i)
For H, andH;, two approximations are requiret) The
vortices are close to elliptical in shape with close to uniform —c020,(Tia4 6+ a4, o)
vorticity. (The existence of the circulation Casimir then im- .
plies conservation of individual vortex arga constant area —sinf6;; (@646 + jas61)
ellipse can be characterized by four parameters, for example,
its_ aspect ra_1tio,>\ _(the _ratio of the semi-major and sgmi- —sin ;j(T'ias 1 ¢;+ a5, i) } (219
minor axe$, its orientation,¢ (the angle between the fixed
coordinate axes and the rotating body fraend thex and  \ypere
y centroids. These four parameters are uniquely determined
by the first and second order spatial moments of the ellipse. : Lk ok kg
i iiC0SH;i ,Riising;i ) = (X" — X5 ,y7 —VY7). 21b
The second order moments are related to the aspect ratio (Rijcosfi; ,Rijsindi;) = O =7, y7 —y7) (210
and orientation by Combining terms,
|
1 n CERp
ZE (0+€)ag 6+ (0 ), gt (0 +€) —o o+ (w—e)
=0 | i
2 47 g , 2 .
+5-In (a4+6i+a6+6i)ﬁ+2 + E,Zo I'\T;InR2 + R—izj(aijcos 2, —2;sin ;) ||, (22)
|
where uncoupled, and the Hamiltonian is invariant under a change

of vortex labels.

aij=l'i(ag16;—Qa+6j), Bij=lias.6-
D. Equations of motion for  a;
Like the cosymplectic matrix, the Hamiltonian possesses We now compute the equations of motion freAb) and
several symmetries: the first and second order moments afé4). The equations of motion for the quadratic moments are
900 Phys. Fluids, Vol. 8, No. 4, April 1996 Ngan, Meacham, and Morrison
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N—1 .
) , a.6liSIN B
g6~ 2 %Jraswi —(w—e)
1=0 TR
_ 2q;
[(at6itap16i) (47T iA) +2]
1, FJ'COS 2”
i=o 77Ri2j '
. 1 1
as+6i:§w(a4+6i_ae+ei)+ Ee(a4+6i+aﬁ+6i)

(a4+6| a-6+6|)
a [(a4+6|+ae+e|)(477/r Aj) +2]

—E

, I'jcos &;;
—2—(a4+6|+a6+e|)

N—-1

. | ag. gl isin 2,
g6/ = 2 - #ﬂL Az gi
X| (w+e)+ 24i
w
[(ag46i T ap16i)(4TITiA) +2]

, I'jcos 29”

mRi;

- 2 (233

After some simplification, the first order equations are

N—-1
1 T
X‘*:_E(w_e)yi*_;o > R sing;;

1 Nfll 1
+F—i 2 o R3{ ajj+ aji)sin J;;

+2(Bij+ Bji)cos Fij},

N—-1
=—(w+e)x +> R R cos;

1 N—-1

+ F_I J-ZO ,FRigj—{_(aij +C(ji)COS $|J
+2(B|J+ﬁ“)$|n 39”} (23b

The equationg23a and (23b) constitute a set of §

tions of motion do not depend on the global centroid posi-
tion; one is left with a system of M—2 equations after ap-
propriate linear combinations are taken.

Note added in proof Analogous equations have re-
cently been obtained by Riccareli al*° using the method of

MZS.

E. Equations of motion in physical variables

By transforming to the more intuitive variables,
(X .y \i,¢i), a set of equations analogous to those of
MZS is obtained.

The equations for the evolution ok{ ,y) are (23b).
Using (19), we find that\; and ¢; evolve according to

A=\ E 2 sin 2 6;; — ¢) +esin 2¢; |,
. aln, 1 1+>\i2 249
¢i_(1+>\i)2_§1—>\$
T
X ?coszeij—dn)—ecos?q&i
ij

In the ¢; equation, there is an apparent singularity when
Ni=1. This is not of dynamical significance. As noted by
MZS, this singularity arises from the fact that the orientation
of a circular vortex is not well-defined. MZS point out that
one way to “desingularize” these equations is to introduce
new variables,

Ai 1/2

(6i -')’i):(ﬁ) (Ni—1)(cos 2p; ,sin 2¢;).

MZS further note thai(\;—1)%/\;,2¢;) is one set of ca-
nonical variables for this problem. This set was later used by
Ide and Wiggin&! in a study of the motion of a single ellip-
tical vortex in a time-dependent linear background flow; an
alternative set is introduced in FMM. However, there is a
singularity atR;; =0 which cannot be removed by a coordi-
nate transformation. Following MZS we takg;—0 as be-

ing indicative of vortex merger, but it should be noted that
the model ceases to be consistent in this limit because the
assumption of well-separated vortices breaks down.

For reference, the equations of motion fdr=2 vortices
may be found in Appendix C.

[Il. PRELIMINARY ANALYSIS

coupled ODEs. They are a closed set even though they do

not contain explicit evolution equations f&;; and ¢;; be-

causeR;; and 6;; may be determined fror21b).

In this section, we begin the analysis of our model. As-
pect ratio—orientation variables are used because they clearly

The equations can be simplified in the following way. display physical processes. We will restrict the analysis to a

Since theN quantitiesC'=ay, giag. ¢ —

aZ_ ¢ are Casimirs,

system of two identical vortices. While more complicated

as. 6,856, andag, g are not all independent of one an- configurations can exhibit behavior that a symmetric vortex
other. This can be made explicit by employing a transformapair cannot, the vortex-vortex and vortex-shear interactions
tion of variables wherein the Casimirs act as dependent varanalyzed below are still present. The HamiltonianNovor-

ables, thereby leaving a set of onlyN4independent
equations of motionN equations reduce tdC'/dt=0). A

tices is not fundamentally different from that for two vorti-

ces: there are no multipole interactions at the order of our

further simplification may be had by noting that the equa-truncation.

Phys. Fluids, Vol. 8, No. 4, April 1996

Ngan, Meacham, and Morrison 901

Downloaded-16-Jul-=2007-t0-129.215.49.133.-Redistribution-subject-to-AlP-license-or-copyright,~see=http://pof.aip.org/pof/copyright.jsp



A. Nondimensionalization The equations of motion for the MZS model are obtained by
settingeé = 0 in (25); those for a Kida vortex are obtained
from the N and ¢ equations where=0; and the equations
describing a point vortex pair in shear correspond touhe
and # equations when terms ief are neglected. The pertur-
Pations to these basic states then represent the addition of
vortex-shear interactionsii) vortex-vortex interactions; and
(iii) internal degrees of freedorfaspect ratio and orienta-
tion).

Our starting point is the systet1) for N=2 vortices
from Appendix C. LettingD denote a characteristic separa-
tion scale, we nondimensionalize as followR?=uD?,
e=8&qy, w=atqy, 6=A;/A,, and time is scaled by, *.
We define a nondimensional perturbation paramete
e=Ay/(mD?), which is assumed to be sméile., the vorti-
ces are assumed to be well separat&pecializing to the

symmetric case of identical vortices, withg=\;=N\, . .
We choose to regarn@5) as a perturbed point vortex pair
bo= 1=, Aj=Ag, andq;=dq: ganes) P P P

, in shear. There are two reasons for this choice. The phase
1A sin 26— &) space geometry of a point vor.tex pair in shear prowdes_ a
A ' convenient framework for studying vortex merger. For suffi-
- 1 1-32 ciently strong strain, and in the absence of a perturbation, a
0= = (a+cos W)+ eu 1+ e2=u2 cos 20— @), separatrlx divides clpsed orbits from unbounded o(m.
2 2 A Appendix B for details When they are perturbed, we will
(25)  find that the vortices can merge and that some of the closed
orbits will disappear; furthermore, the separatrix splits apart

U=eusin 20— €2u™

A= —\{ésin 2¢+eu~ ! sin A 0— )},

) N 11+N\2 into distinct stable and unstable manifoldhe connection
$= FESSL +t3 1_)\2{9005 2p—eu~t cos 26— ¢)} between these phenomena is discussed in Sgd.né sec-
ond reason is a practical one: there exists an analytical tool,
e namely the Melnikov function, which may be applied to sys-
+ X5 tems with heteroclinic orbits.

In preparation for the Melnikov analysis, we apply one
more scaling. We are particularly interested in what happens

) i ; ) in the vicinity of the separatrix of the point vortex pair. It
tices(the first term in thep equation, and(b) the effects of will prove convenient if the distance from the separatrix to

the background flow on the vorticéthe terms involvinge in the origin, determined by balancing the first two terms in the

each equation At O(e), interactions between the vortices ¢ equation of25), is scaled to b©(1). This is equivalent to

modify_ the evolution of the aspe_ct ratio a_nd ori_entatior_l bUtchoosingé= ey where y=0(1). The equations(25) then
have little effect on the separation. As with point vortices,

: . s "become
these interactions produce a constant change in the rotation

The terms in(25) have simple physical interpretations.
The terms atD(1) representa) the self-rotation of the vor-

rate of the separation vector, but no change in its length. At . . 5 1 1-\% 4
O(€?), the shape and separation of the vortices are tightly U=eyusin 20— €u Sin A 6= ) +0(e%),
coupled. )
The first two equations if25), the pair that govern the h=e Z(a-l—COS 2)+ul+ ezlule_k
separation of the vortices, have terms uDiae?), while the 2 2 A

remaining four have terms t@(e). The truncation implicit

in (25) arises from the truncation of the Hamiltonian: an
infinite moment hierarchy is closed at second order by ap-  \=—e\{y sin 2¢+u~2 sin A - ¢)} + O(3),
proximating the vortices as ellipses.

X cos 20— ¢)+0(eh).
(26)

5 A . 1 1+>\2{ 2u-t
B. Integrable basic states: Perturbed point vortex pair (1+1) 21=A
in shear y

X coS 2{0—¢)}+ea2

ese equations express the following sequence of interac-
ns. On theO(1) time scale, the elliptical vortices rotate at

+0(€%).
The system(25) is a fourth order(two degree-of- Ole)

freedon), nonlinear, Hamiltonian system. In the absence ofT
shear, the 2-D Euler equations conserve angular impulse aqFS
thex andy centroids; this leads to two independent integralsa rateN/(1+))2 On a longer time scal(e 1), the as-

_Of motion when Fhe total circulation is nonvanishiffghese pect ratio and rotation rate of the vortices vary slowly, and
integrals of motion are destroyed by background shear anﬁl1e vortices move in the background shear flow under their
the Hamiltonian is the only one which remains. From our . tual interaction. On an even longer time sc&@ée2)
derivation, we know that this is a Hamiltonian system '®Pr'®%he finite sizes of the vortices induce small perturbations to

sgnted n non_canonlcal_coordmat(esse_e_FMM for a d'SCl_JS' the rate at which the intercentroidal separation vector
sion of canonical coordinatgswe anticipate that there is a anges

possibility of chaotic motion because the number of degrees
of freqdom exceeds the number of integrals of mof?bn. V. ASYMPTOTIC ANALYSIS

This system can be regarded as a perturbation to any o
three integrable basic statés:the MZS modelfii) a pair of In this section, we investigate the syst€2®) by means
isolated Kida vortices; andii) a point vortex pair in shear. of an asymptotic analysis in the small parameteAs noted
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above, we use the Melnikov meth8d®® and appeal to lator and the variable increases monotonically with time.

analogies between this system and a rapidly forced pend®ne can consider the first degree of freedom,ff, to be
lum. We begin with a brief discussion of the Melnikov “perturbed” by this second degree of freedom. By trans-
method. forming the autonomous two degree-of-freedom systeén

The Melnikov integral measures the distance betweeinto a nonautonomous one degree-of-freedom system, where
the stable and unstable manifolds formed by the splitting of ahe slow intercentroidal motion is perturbed by the fast os-
homoclinic or heteroclinic orbit. Its most commonly encoun- cillatory terms of thel, 8, and\ equations, a multiple time-
tered variant is for a periodically perturbed, one degree-ofscale analysis can then be performed.

freedom(canonical Hamiltonian system: There is a growing body of research on one degree-of-
Py Py freedom systems with rapidly oscillating perturbations. The
aq=—(a,p), p=-—(q,p), (27 implications of this research for our system are briefly exam-

p Jq ined in the next section.

whereH =Hy(q,p) + €H,(q,p,t), andH; is an explicit pe-

riodic function qf the time varia_blet,. Let the period oH; A The rapidly forced pendulum

be = and let this beO(1). Setting z(t)=(q(t),p(t)), we . . i

consider the case in which the unperturbed system has two Since there are two time scales in the syster(26f, and

hyperbolic fixed points that are joined by a heteroclinic orbitthe fast oscillatory terms occur at higher ordereinwe ex-
2(t)=20(t). (The homoclinic case is analogou#. one de- pect behavior similar to that of a nonlinear pendulum forced

fines a functiorM of t, e (—,%) by by a weak but rapid oscillation, viz.
. d> [t
M(to)=e f {Ho(@o().Hizo(1) tto)bdt,  (28) gz Tsinx=osin o). (30

. . where 5¢ "—0 for an appropriate positive power?*37:%
where {f,g}:=fqgp—fpgq, then the signed separation be- s is a Hamiltonian system of the form 627) with
tween the stable and unstable manifolds along the normal to
the unperturbed separatrix is given by q=x, p=x, H0=£p2—cosq, H,= — qasin E)
M(to) ? ‘
d(tg)= mJFO(GZ)- (29  When =0, the unperturbed system is a one degree-of-
0M0RT0 freedom Hamiltonian system with a hyperbolic fixed point at
The existence of one zero d(ty) implies the existence of (x=0x=0) and an emanating homoclinic trajectgigenti-
infinitely many zeroes, sinck(ty) is periodic with period fying x=27 with x=0). As is standard for nonautonomous
7. If IM(to)/dty # O at the zeroes, then there are infinitely systems, one can define a Poincaegtion by strobing the
many transverse manifold crossings and, by the Smalesystem at the period of the forcing,m2. For sufficiently
Birkhoff homoclinic theorem, there exists chaotic motion in weak forcing, the associated Poincanap has a hyperbolic
the vicinity of the separatrix. The quantikf is referred to as fixed point that lies close to the unperturbed one. In certain
the Melnikov function or Melnikov integral. cases, it can be proven that the stable and unstable manifolds
Although we shall be working in terms of the periodi- persist, lie close to the unperturbed homoclinic orbit, and
cally perturbed one degree-of-freedom Melnikov function,intersect transversalf{.
the Melnikov approach is applicable to non-Hamiltonian sys-  In the periodically forced Hamiltonian system described
tems.(See Refs. 34 and 36 for more discussiolfe expect at the beginning of Sec. IV, the splitting distance between the
the methods and results described in this section to generadtable and unstable manifolds@e) and is given in terms
ize. of the Melnikov integral by(29). For the rapidly forced sys-
The systen(26) is not of the form required for the stan- tem (30), the Melnikov integral is exponentially small; but
dard Hamiltonian Melnikov analysis. To begin with, the vari- the meaning of this is uncertain because formally the Melni-
ables are not canonical; but this is just a question of coordikov theory is only accurate t®(e?). It is, however, now
nates. Next, the basic state that we would like to perturlthought that under properly specified conditions the Melni-
around, that of a pair of point vortices in shear, is a onekov analysis generally does provide a good estimate of the
degree-of-freedom system, while the full systé@6) has splitting distance, even in rapidly forced problems. Delshams
two degrees of freedom. Most importantly, there are two disand Sear& were able to establish that the leading order term
tinct time scales: the natural time scale for the intercentroidain the splitting distance for the forced pendulum equation is
motion, which isO(e~ 1), and the time scale for the rotation indeed given by the Melnikov integral whev=0. They also
of the vortices, which i€D(1). Theterms containingp are  show? that the same is true for the class of second order
thusO(1). Theslow intercentroidal motion is coupled with equations,X+ f(x) = uePg(t/€), where g is 2m-periodic
fast variations in the vortices’ orientation and shape, compliwith zero mean, when the unforced equation has a ho-
cating the analysis. moclinic orbit which satisfies certain analyticity require-
These difficulties can be resolved by multiple time-scalements. Fonticff proved, under less restrictive conditions,
perturbation theory. An explicit time-periodic perturbation to that the Melnikov function in these systems is indeed expo-
the Hamiltonian is not given, but in some parameter rangesentially small and obtained upper bounds on the splitting
the second degree of freedom,, (), behaves like an oscil- distance.
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These proofs exploit the explicit closed-form representa-
tion of the unperturbed system’s homoclinic trajectdfhis Fi=eQyusin29, F,= EQ[ (a+cos ?9)+U_l],
allows the contours of integration of certain integrals to be
moved in the complex planeln the problem at hand, we
cannot provide such proofs, largely because we have an im- Q=00)=
plicit representation only. Furthermore, our system is slightly )
different from those considered previously: it belongs to the 1
general class of rapidly forced second order equations, [1~Q|e€Yusin2—e “u
X+ f(x,X) = uePg(t/€). Nevertheless, we conjecture that its ) _
structural similarity to the rapidly forced pendulum suggests —edyu sin 20, (32b
that its manifolds should cross transversally and that the r
separatrix splitting should be exponentially small. We pro- f,=Q e( Z(a+ cos ¥)+u*t
vide support for this by performing a Melnikov analysis and L 12
examining the leading order contribution to the splitting dis- 1 1—
tance. This does not constitute a proof because in the asymp- + 62§U72 X cos 26— ¢)}
totic analysis an infinite series of integrals contributes to the
splitting distance and they may not all be exponentially 71
small. We will later turn to numerical simulations to see if _GQ[ (et cosP)+u ]
they are in accord with this picture.

(:I-Tz'l'fa ]

X sin X 6— ¢)}

Our goal is to obtain a one degree-of-freedom system with a
basic state that describes the motion of a point vortex pair in
) ) ) shear. The function§, and F, have the correct form, but
B. Calculating a Melnikov function they do not constitute a proper basic state, as they are a
We now present a Melnikov analysis that freely exploitscoupled to the perturbed motion through(\). Therefore,
a number of assumptions. First, we exploit the autonomou®e expandh as\=D\g+ek($)+ ..., wherek, is a con-
nature of the system and restrict attention to situations irstant and can be treated as a paramé€Téiis is permissible
which the vortex orientationg, increases monotonically for trajectories withx bounded away from 0 and)1The
with time. This is reasonable whencan be bounded away function Q(\) can then be expanded i and its leading
from unity, as suggested by the form (#6) for small e. order component,

Thus we replace the independent variableith ¢: o y] !
_ Qo= t+tea-| (33
du A 0= 1 2 )
@=Q eyu sin 20— e’u~?! X sin 2(0—¢)}, (1+Xo) 2
used to define an appropriate basic state. Hence we write
%=Q € Z( +cos¥)+ut du
de 2'¢ dg = C1(U0:00)+91(u,0.6)= 71,
1, 1-\? (349
+e?su? -9, 31 do
R W "’)} B G000 v 0.)=
dx ) . i
%=—Q[e)\{y sin 2¢p+u~1sin 26— ¢)}1, with
where G1=C~51+leeﬂo’yusin20+gl,
) (34b
\ 11+\ - o as Y ~1| =
-1 By constructionG; andG,—and thus the tilde quantities—

Xcos 26— ¢)}+ eaz (31b have no explicit¢ dependence, whilg, and g, have an
2 o L 92 1T
explicit 7-periodic dependence ofi. The functionsg; and
Next, the conservation of the Hamiltonian is invokkto g, may be obtained froni34b) and
expressh=\(u, d,¢;h) and eliminate\ from the first two 1—
equationg313. The resulting system may be written in the !%:Q eyu sin 20— e2u~! N sin 26— ¢)}
form

g, andg, may be obtained froni34b) and

du
d¢—F1(u 6.\ (u,0,¢))+f1(u,6,1(U,0,0),4), i
" _ Y .
) (323 “,=Q| € E(a+ cos ¥)+u
—=F5(U,0,\(u,0,9))+f(u,0,\(u,0,0),d), )
dé ,1 122
Where +e Eu X cos 26— o).
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[Note that whileF,, F,, G; andG, areO(e), fq, fy, g1 A= (—G,(do),G1(00))/(G1(qg)?+ Ga(gg)2)*?

and g, are O(ez).]~ The basic state is given by ) 12

(du/d¢=G,,do/dp=G,) and corresponds to the equations =n/(G1(do) "+ G2(go)) ™=

of motion for a pair of point vortices in shear when The transverse splitting distance @j(#=0) is then given

®=e¢ is identified as a slow time. The quantify, can be  py

interpreted as a parameter set by the initial conditions. With- B ’ ) "

out loss of generality, we assume that0 (y<O just ro- d(¢p) =M (¢p)/[G1(A0(0))+G3(do(0))]™ (363

tates the phase space through)9@hd thata<<1 (a suffi-  \here

cient condition for the existence of hyperbolic fixed points;

see Appendix B M(¢p):AS( ¢p;¢p)_Au(¢p;¢p) (36b)
We note that the procedure described above, whereby gng

one degree-of-freedom nonautonomous Hamiltonian system , .

(often called a one- and one-half degree-of-freedom system  A'(#:dp)=n-ay(b; dp)

is obtained from a two degree-of-freedom autonomous sys- -G _ O (b db)—G
tem, is quite old”?> Except for the complication due to the 1(q0(<é ) 02(&:dp) ~ G2(Go( 4
second time scale, this procedure is analogous to the one — pp)UL(D; bp). (360

described in Holmes and Marsd&h. _—

We can now proceed along the lines of the standard In order to calculateM (¢y), and thus the splitting (_j's'
Melnikov analysis. By analogy with other one- and one-halft@nce, the system(348 must be expanded. Since
degree-of-freedom systems, a Poincseetion is defined on Gj(qO):F(qO'AO) and S|m|Iar_Iy forg andf, the_qugntyﬂes
the planeg= ¢,(modr), ¢, = (—o,%) being an arbitrary Al andqgy may be expres;ed in termsfofande, simplifying
constant[Formally, we transform to an autonomous third- the calculations. ExpandingA; /d¢ anddgy/d¢, and col-
order system and plot intersections of its trajectories witH€Cting terms,
¢=¢p(modm).] In the unperturbed limit, the associated dAl
Poincare map has hyperbolic fixed points at w:H(QO((ﬁ— ®p) No)f2(Ao(d— dp) o, P)
(u,0)=(2N1 y(1—a)],==/2) that are joined by a pair of
invariant heteroclinic manifolds. The smoothness of the sys- —F2(do(@— dp) No)f1(o(d— dp) Mo, b)
tem means that for any closed, compact rangk tfat does of f f of
not includex =0 or 1, the hyperbolic points persist for suf- g |:l_2_|:2_1> +u1( 1_2_ 2_1)
ficiently smalle. It is therefore expected that a perturbation I\ I\ au au
will split the heteroclinic manifolds into distinct stable and of of
unstable manifolds. + 6, Fl——Fz—)+"',

Let go( @) = (ug(€), bp(e)) be a heteroclinic trajec- 96 96
tory of the unperturbed system. Since the unperturbed systemhich is formally O(€e®) at leading order. For brevity this is
is autonomousgy(¢) passes through all the points on the written as
unperturbed heteroclinic manifold as increases from- « dAl
to = (i.e., from fixed point to fixed point In the usual way, = ST+ T+ T+ - . (37)
a set of coordinates on the heteroclinic manifold is then de- ~ d¢

fined by a choice of the poingy(0). Trajectories on the \ypile the forms of thef’s are rather complicated, they can
perturbed stable and unstable manifolds can be obtained Iy simplified by expanding i, e.g.,

expanding around this heteroclinic trajectory:
fZ(qoy)\Oqu):fZO(q01)\01¢)+ Ele(qOI)\O!(b)—’_ o

i( - — _ i s
A" (d:dp.€)=do(d— p) +01(d; Pp), This induces corresponding expansions in thgs,
wherej =s or u. The deviatiorg! is asymptotically smalin 11~ TioT €Tj1+ ..., and(37) thus becomes
€) compared tag, as ¢— —=; g3 is asymptotically small dAl
compared toq, as ¢—+. Actually, u;~0O(e?) and WZG‘O’TwJr (Tt Tyt .

6,~0(€?). The autonomous nature of the unperturbed sys- ' ' . _
tem is once more used to shift the time origie=0: for each  Integrating the preceding equation owgtyields M (¢,):

particular choice ofe,, the heteroclinic trajectory is now M ()= €M o b))+ € (Mg ) + Mys( o))+ -+
p p p p

given by do($— ¢y)- (38)

We seek an estimate of the distance between these mani- . S
folds at a pointgo(0) and in a direction normal to the un- The leading order contribution is fairly easy to calculate.
perturbed heteroclinic orbit. Lettings=(G,(q),G,(q)), e find that
(34a can be rewritten as )2 w0

11-N\5 ., . .
aq Ml":_i)\—oﬂo sin Z%L‘ Uy “{y co§46y(eep)
dg_Clara@.d), (35 .
—2¢]+ (ya+2ug (ep))cog 26y(ep) —24]}d .

and the normal to the unperturbed invariant manifold is (39
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We have chosen the origin of thé coordinate so that A. Poincare sections
00(0)=0, i.e., the midpoint of the heteroclinic trajectory.

. . We construct Poincarsections for the two degree-of-
From the leading sin@, factor, we see thaM, crosses

infinitel i tina th ist t ch freedom Hamiltonian systert26) by first choosing a value
Zero Ininitely many imes, suggesting the existence of chag Hy. A Poincaresection is then built up by computing

otlc_motlonath f the chaoti ion is related to th . trajectories from a set of initial conditions that satisfy
€ widih ot the chaofic region IS refated 1o the Magnly \ .y, 9,=0)=H,. Whenever ¢(t) crosses zero

tude oLthe integral. By a gneneralized Riemgqn-Lebesgu?modﬂ) in a specified sengéncreasing fol";>0) *® a point
lemma’ the mt_egral is<O(e") for any n; |.e_.,_|t IS expo- appears on the three-dimensional Poincseetion spanned
nentially small ine. A necessarybut not sufficient condi- by u, 6, and\; it is then projected onto theu( 6) plane

Eqnh for tg's to be t?e domlnal\r/]lt partth(qu)t |s|tha:)thet The results are shown irx{y) coordinates by applying the
igher-order correctiongM;, My, etc. must also be, a transformation X,y) = u¥%(cos, sinf).

most, exponentially small. This is clearly possible for those For each Poincéreection,H, is fixed by evaluatingd
Tmn that are rapidly oscillating functions @f. However, t.he for a given Q<=Xo,y=yo,>\=>\’o;¢=0) using(C2). A set of
contribution toM of any part.s Offmn that have no fast time initial conditions satisfyingd =H is obtained by specifying
dependence must be considered more carefully. Below we y,¢ and solving the nonlinear equation
find the leading order term considering only sleivdepen- e

dence and show that it makes zero contributiofvito . —0) —

We need to comput®,,+T4;. This requires a knowl- H(x;u,0,6=0)=Ho,
edge of the first asymptotic correction to the path of thefor \. For e=0.01 toe=0.03. we have observed a maxi-
perturbed stable and unstable manifolds. Upon substitutiquum of 3 roots. the number ’depending on the valuélgf
for A, we find that the sunT,y+ T4 consists of two parts: and the limits )\’ N between which roots are found
a rapidly oscillating component,,¢, which like T, yields L maxe '

tall I Hibuti int i q The limits span the range of over which the model is
an exponentially small contribution upon integration, an an'expected to béinitially) valid. In the cases discussed below,
other componentT,s, which does not oscillate rapidly. In

o . : A . Hg corresponds to a point on the unperturbed separatrix, i.e.,
principle, this should result in a contribution to the Melnikov (Xo.YoAo)=(0,1,15). With a linear shear flow

integral that is not exponentially small and so would domi-(e w)=(1/m,—1/m) and['=1, the fixed points are located
nateMo. However, if we calculatd ,5 explicitly, we find at (Xo,yo)=(0,% 1/(me))=(0,£1). We thus takeD=1 in

that our definition ofe.
Q3122 31“\3 Poincafesectigns are shown i_n .Fig. 2. For the .MZS
Toe=— 5 3 model, closed orbits encircle the origin, but at some distance
(1+Xo) Ao [Fig. 2@)]. There is a large gap in the interior, where there
1 are no(closed orbits at all; initial conditions that are too
xgyugl{y sin(46y) + (ya+ ugl)sin(zeo)}. close to the origin merge before appearing on a Poincare

section. Moving away from the origin, one sees that closed
(40 orbits do not extend beyond=1. Fore=0.01, there are, as
with the point vortex pair in shear, closed orbits inside the
This is symmetric aboup= ¢, so the integrall ”..d¢ is  separatrix, and unbounded orbits outdifigy. 2(b)]. There is
identically zero, and the slow componentMb,+M;i; thus  also a gap in the interior. Whenis increased, bounded and
vanishes. As for slow perturbations to the positions of theynbounded orbits remain, but there are far fewer of them: the
stable and unstable manifolds, there is a partipfand 6, fraction of merging initial conditions increases rapidly with
that does not oscillate rapidly, but it affects both manifolds in¢ Fore=0.03, every point inside the unperturbed Separatrix
the same way and so does not contribute to the splittingnergeqFig. 2(c)].
distance at this order. We note that the correction |n the absence of shear, the innermost orbit of the Poin-
(Mot Myy) formally occurs at the same order as would caresection divides initial conditions that merge from those
the corrections associated with deviations of the shape of thgat do not: it defines a critical merger criterion. This crite-
vortices from ellipticity[i.e., O(%)]. rion is not, however, the same as the classical criterion for
identical circular vortices; i.e., that the critical separation,
r.=3.3,, wherer, is the vortex radiugsee MZS. The
V. NUMERICAL RESULTS Poincaresection is defined at constaldt not constani. In
general, it is expected that the critical merger threshold de-
The Melnikov analysis suggests that a chaotic bandined on a constant Hamiltonian surfacgy , will be greater
should form around the unperturbed separatrix, though théhanr., with miny(r.y)=r.. Even for a Poincareection
(exponentially small scaling is tentative. Here we use nu- associated with near-circular vortices at the separatyix,is
merical simulations to both support this and provide a picturequite different fromr . because the vortices become strongly
of the global dynamics. For simplicity, only the depen- elongated away from the separatrix. For example,
dence will be considered at length. The equations of motiom ;;~0.61=0.61r, and\(r )~ 10, when the Poincargec-
(25) are used for the integrations; however, it is conveniention is defined by, y=1.001 ande=0.01. In Fig. 3, we show
to scale time bygy. The singularity aik=1 has not pre- a merging trajectory corresponding to Figa2—note that
sented any difficulty. r is initially less thanr .
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A

FIG. 2. Poincare sections corresponding td'=1 and §&g,Yo.\o)
=(0,1,1.5). (8 MZS model (=0.01, no shear (b) €=0.01 and

(w,8)=(—1/m1/7). (c) €=0.03 and (€)= (— 1/m,1/7).

An innermost orbit can also be distinguished in Figh)2
(i.e., e=0.01 with shegt but it cannot be associated with a
critical merger threshold in the same way as for the MZS
model. Because of the presence of the background shear, it is
now possible for points outside the separatrix to merge; the
regions of the Poincarsection inside and outside the unper- )
turbed separatrix are no longer perfectly separated. Most of -10
the exterior trajectories are analogous to the unbounded or-

0.4
035}
0.3
025;

0.15¢

0 005 01 015 02 025
t

FIG. 3. Typical merging trajectory for Fig.(®, i.e., e=0.01. The initial
condition is ;,6; ,A;)=(0.400,1.57,0.111). This is an example of vortex-

vortex merger.

vortex and vortex-shear interactions now makes merger pos-
sible, but only for a small fraction of the orbi{fig. 4). In
cases where is small, the innermost orbit defines a critical
radius that separatesostof the merging orbits fronmostof
the non-merging orbit§e.g., Fig. 2b)], with the exchange
between the interior and the exterior being rather limited.
The kind of merger represented by Fig. 4 is very differ-
ent from that in Figs. @ and 3. Whereas vortex-vortex
interactions dominated the previous mode of merger, vortex-
shear interactions are crucial to this one. Vortex-shear inter-
actions stretch the vortices out and bring them together;
vortex-vortex interactions then initiate the actual merger. For
a typical merging trajectory that is initially outside the sepa-
ratrix (Fig. 5, N <<\, by the time the trajectory crosses the
separatrix(These trajectories do not appear on the Poincare
section because they merge befgrgoes throughr.) Dur-
ing the course of merger, the approximation that the vortices
are small and well separated breaks down; however, this kind
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bits for a point vortex pair in shear—physically, the vortices
approach one another, reach a minimum separation, and a§fs. 4. Merging initial conditions well outside the separatrix plotted on top
carried away by the shear. The combined effect of vortexef a 2-D projection of the Hamiltonian surface corresponding to Fig). 2
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that approach the separatrix, but most of these do not merge;

(a) 10 . . . , . . : a small displacement inu(#) can make the difference be-
tween merger and separation by the shear. Another compli-
8l ] cating factor is that for larger values ef there is vortex-
vortex merger for points lying just outside the separatrix and
6L | initial A\>1.
" 4l ] B. Separatrix splitting and chaos
Because the Melnikov result is both asymptotic and ap-
2t ] proximate[the perturbation in(34@ is truncated, and be-
cause the Melnikov function is exponentially small, numeri-
0 . . . A . . . cal verification of the formation of a heteroclinic tangle is
0 2 4 6 8 10 12 14 16 needed.
t Verification of the exponentially small nature of the nu-
®  0.012 - merator in the expression for the separatrix splitting distance
is difficult because the position of the folds is a function of
0.01F € (through the slow timeb = e¢), and the folds narrow and
squeeze together a&sis reduced. Moreover, the denominator
0.008 + in (368 becomes exponentially small as one approaches the
< 0.006 | hyperbolic points, where the splitting is greatest. The impor-
tant result here is not the precise scaling, but the existence of
0.004 | the heteroclinic tangle and the fact that the splitting is gen-
erally small. It could be possible for the stable and unstable
0.002 | manifolds to split apart but not intersect transvers&lly.
Figure @a) shows a blow-up of thee=0.01 Poincare
O3 % 8§10 12 14 16 section near the separatrix, while FighBshows a typical
t trajectory in this region. Though we anticipate that a hetero-

clinic tangle is present, its width is too narrow to be resolved

FIG. 5. Typical merging trajectory corresponding to Fig(&.r:t; and(b) by these pictures; one must look very closely at the separa-

\:t. The initial conditions arer(, 6; ,\;)=(9.00,2.81,0.0102). This is an trix for any evidence Of.the s_epara}trlx spllttmg_. For larger
example of vortex-shear merger. values ofe, the separatrix splitting is clearly evident, there

are distinct fold-like structures for=0.03[Fig. 2(c)]. This
is suggestive of a heteroclinic tangle. Most trajectories, how-

of merger is certainly physically plausible. Such a mechaever, do not follow these structures indefinitely: they usually
nism has also been observed in contour dynamics simulanerge after a short while.
tions of circular vortices in shediThis suggests two distinct The separatrix splitting is relevant for vortex merger,
modes of merger(i) a predominantly vortex-vortex one; and insofar as there are only a limited number of initial condi-
(i) a predominantly vortex-shear one. Such a division wasions outside the separatrix that lead to merger; however, the
noted by Waughand it is implicit in the work of Marcu§.  relationship is not simple. The separatrix splitting applies to
The latter study, however, differs in that it emphasizes enerthat portion of the Hamiltonian surface whexe- O(1), not
getics(exchanges between the vortices and between the vote the regions wherk <1, as in vortex-shear merger beyond
tices and the shear flgwather than the geometrical configu- the separatrix(Recall that the Melnikov analysis only deals
ration of the vortices. Because we are working on a constantwith small perturbations about a basic state.
energy Poincareurface and because our flow has a strain ~ The vicinity of the separatrix is not the only chaotic
component(it is not simply an azimuthal shear flowit is region. Figure 7a) is a blow-up of the Poincarsection be-
useful to think in terms of the vortices’ geometrical configu-tweenr =0.50 andr =0.40; Fig. 7b) is a typical trajectory in
ration. this region. The trajectories hop around chaotically until they

Melanderet al1* derived a merger criterion for the MZS fall into the origin(i.e., the vortices mergeThis inner cha-
model that agrees fairly well with contour dynamics simula-otic region provides an example of chaos associated with a
tions. When ambient shear is present, there does not appesigher-order resonant®in which the ratio of the vortices’
to be an analytical expression, based on the initial configurotational frequency to their librational frequency around the
ration of the vortex pair, that is necessary and sufficient fororigin is 9:1. Somewhat unusually, chaos around the second-
merger. A merger criterion for initial conditions inside the ary resonances is stronger than chaos around the separatrix.
separatrix could be determined by estimating the position ofhis is because the separatrix splitting does not correspond
the innermost orbit on the Poincasection; but the situation to a primary resonance. For systems in which the time scale
is much more complicated for initial conditions outside theof the perturbation is the same as that of the basic state
separatrix. Outside the separatrix, vortex merger is the resuthotion, the chaotic motion around the separatrix usually cor-
of a complex interplay between vortex-vortex and vortex-responds to the dominant 1:1 resonance; in our system there
shear interactions. Many initial conditions yield trajectoriesis a separation of time scales between the fast rotation of the
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FIG. 6. Blow-up of the region around the separatrix ésr0.01. (a) Poin-

care section for initial conditions 1 ,6;)=(0.99-1.01,7/2). (b) Typical FIG. 7. Chaos in the interior fore=0.01. (3) Poincare section for
trajectory just inside the separatrix; (6; ,\;)=(0.998,1.57,0.7255). Other r=0.40-0.50. (b) Typical “chaotic” trajectory. The initial condition is
parameters are as in Fig. 2. (ri,6,,\;)=(0.45,0.00,0.152). Other parameters are as in Fig. 2.

teractions in vortex merger and the relationship between the
vortices and the slow centroidal motion. The order of theseparatrix splitting and chaotic moti¢around the separatrix
resonances increases as one approaches the separatrix afd in the interior.
chaotic motion around the separatrix is thus severely cur- The derivation of the model in Sec. II exposes the mod-
tailed. The existence of a separation of time scales for finitg|'s Hamiltonian structure. It makes explicit the origin of the
€ is consistent with an exponentially small Melnikov integral approximationgthey are made in the Hamiltonigrand the
in the asymptotic limit. model’s relation to point vortex, Kida, and MZS models. It

would be interesting to see if a related procedure could be

applied to the higher-order non-Hamiltonian model of
VI. DISCUSSION Dritschel and Legrds and the Hamiltonian elliptical model

of Legras and Dritschéf The Hamiltonian structure of the

We began this paper by deriving the equations of motioratter has not been elucidated, and a Hamiltonian analog of

for N elliptical vortices in a background shear flow using athe former should, at least in principle, be possible.
Hamiltonian moment formulation. This model generalizes  The Melnikov analysis of Sec. IV was motivated by vor-
that of Melanderet al? to include a background shear that tex merger, but it is interesting in its own right. In dynamical
combines rotation and strain. Motivated by the phenomenosystems theory, one usually deals with nonintegrable pertur-
of vortex merger, we considered the case of two identicabations to integrable basic states; in this work, our starting
vortices, both analytically and numerically. A Melnikov point is a chaotic system. This system is then re-expressed as
analysis of the separatrix splitting between the stable andn integrable basic state plus a rapidly varying perturbation
unstable manifolds connecting the hyperbolic fixed points ofwhich may be constructed order by order in the perturbation
the intercentroidal motion was performed, with the expectaparameter The resulting system is an approximate one,
tion that it would provide insight into the interaction of ini- though it does avoid the dynamical consistency problem as-
tially widely-separated vortices. The numerical results havesociated with externally imposed perturbatiéhdt is un-
by means of two-dimensional Poincasections, addressed likely that the higher order terms so neglected would sup-
the relative importance of vortex-vortex and vortex-shear inpress the existence of chaos, but in light of the exponentially
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small Melnikov integral, which is consistent with results for shear flow, and different Hamiltonian surface$ig has al-
rapidly forced oscillatoré?3**°they could be importantlf ~ ways been determined by a point on the unperturbed separa-
it were not for the implicit form of the separatrix, the sepa-trix) should also be considered. This would, moreover, pro-
ratrix splitting induced by perturbations to a given ordervide additional insight into the validity of the time-scale
could perhaps be bounded using the method of Delshams arsgparation. A case for which the time-scale separation breaks
Seara’® nevertheless, this would not provide a definitive an-down would provide an example in which the separatrix
swer in our case, where there are infinitely many terms in theplitting has a direct effect on the interaction of the vortices
perturbation. Another interesting aspect of the analysis isand, perhaps, on vortex merger as well.

that it has been applied to a system with two degrees of

freedom which cannot be expressed as a one degree-of-

freedom system with a closed perturbation, as in previouA\CKNOWLEDGMENTS

studles.of .rapldly forced oscillators. It is aIsp worth nptmg This work was begun during the 1993 Summer Program
that while it has been proven that the Melnikov function is;

: . in Geophysical Fluid Dynamics at the Woods Hole Oceano-
exponenhally small for.aclass of rapldly forced second order raphic Institution. The Summer Program is supported by
equations, our analysis .has been apphed to a more 9ENERYHOI and the NSF. In the course of this study, KN has been
§ys:em,. OE% whose basic state can include cross-terms, "gupported by a postgraduate scholarship from the Natural
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metrical interpretation of the dynamics through the use o OE Contract No. DE EG05 80ET53088. The authors would
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caresections, constructed at fixed energy and vortex orienta-
tion, simplify the visualization of the dynamics and facilitate
a global view. From Poincarsections and time series of the APPENDIX A: NONCANONICAL DYNAMICS AND
intercentroidal separation and aspect ratio, it is possible, fofamILTONIAN REDUCTION

sufficiently small perturbation amplitudg to distinguish be-

tween predominantly vortex-vortex merger and predomi-  Ngncanonical methods have proven to be useful in sev-
nantly vortex-shear merger. In particular, the importance Okyra| pranches of continuum mechanics, notably geophysical
the relative orientation of the vortices in vortex-shear mergefjyiq dynamic&®5! and magnetohydrodynamics®® The

is highlighted. Considerations such as this are not capturefoncanonical formalism readily lends itself to a systematic
by arguments based on energetics. The Poirg=eBons als0  procedure for approximating the equations of motion. A
demonstrate that it may be preferable to define a mergefimple noncanonical representation of the Hamiltonian struc-
criterion for noncircular vortices at fixed energy rather thany,re of the general inviscid and nondiffusive fluid equations

fixed aspect ratio. S involves writing the equations of motion in the foffrt’
The exponentially small separatrix splitting suggested by

the asymptotic Melnikov analysis has not been verified di- ;57
rectly (which would in fact be rather difficult but the nu- E={Z,H}1 (A1)
merical results for finitee are consistent with it. Poincare

sections indicate that the separatrix splitting is indeed SmalkzvhereZ(x t) is the appropriate set of fluid variablés.g.

In our numerical examples of shear-induced merger of iNiu.p, ...), andH[ Z] is a Hamiltonian functional. In an Eu-

tially well-separated vortices, the aspect ratios were usuallygign description, the noncanonical Poisson bradkithas
very small by the time the vortices reached separation disge form

tances comparable to the diameter of the separatrix. We do

not know if this will be the case on Hamiltonian surfaces G}[Z]:<Z [f G
determined by criteria differing from those in our experi- ' 162’ 6Z
ments.

Chaos in the interior is stronger than chaos around th&vhereF andG are functionals(,) is an integration over the
separatrix. This indicates that even for finigthere exists, Vvolume corresponding to the spatial variakjeand the func-
as assumed in the Melnikov analysis, a separation of timgonal derivative is defined by
scales such that a higher order resonance is created near the
separatrix—the order of the resonance increases away from
the origin. The time-scale separation will eventually break
down with increasing, but this has not been observed here
because of the accompanying increase in vortex merger. The bracket 0fA2) is a Lie algebra product for functionals,

As for future work, it would be interesting to study the i.e., is bilinear, antisymmetric, and satisfies the Jacobi iden-
scattering behavior around the separatrix. Since the systemfiy, {F,{G,H}}+{G{H,F}}+{H,{F,G}}=0, provided the
nonintegrable, chaotic scatterfi§®is expected. Preliminary “inner bracket”[,] is a Lie algebra product for functions. In
studies, however, indicate that this is a very weak effectthe present context, thg] corresponds to the horizontal
largely because of the background shear flow. Differentlacobian. Brackets of the form @&2) are called Lie-Poisson
background flowgwe have restricted ourselves to a linear brackets.

> : (A2)

o SF
SF([Z;62]=:( 62,55 ). (A3)
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In order to simplify the Poisson bracket, we confine ourwhere noww:=w/(I'1+1',),e:=e/(T'1+T,).
attention to a special subset of all admissible functioifrals There are two types of fixed points for the preceding
and G and apply a Hamiltonian reduction method. Specifi-equations:

cally, for functions f andg, of a finite set of linear function- 1 1 \12
als of Z, the Poisson bracket may be written as I: X=0, Y= ( i ) '
m™ w—e
_of 9
{f.o}(2=2"ck— B k=12, M, (Ad) 1 1\ (BS)
"~ 07 0z I X=i<—— Y=0.
Twtel

where thez are the new “dynamical variables” and the
quantitiesc)* are the structure constants of some Lie algebraType | is present ifo—e<0, and type Il is present if
Repeated sum notation is used. The cosymplectic matrixp+€<0. Linearizing around the fixed points, it is easily
Jik:=7"ci | inherits the property of skew-symmetry and the Shown that type Is are hyperbolic and type lIs are elliptic.
reduced bracket automatically satisfies Jacobi’s identity. Us-  The hyperbolic fixed points are connected by a separa-
ing (A1) and (A4) to obtain equations of motion for the trix (see Fig. 1 The separatrix is defined implicitly by the

dynamical variables, Hamiltonian,
) . oH 1 1 1
5 — 1ik - 2 21— _ 2_ 2
Z=J (Q_R (A5) H 47T|n|X +Y | 4((0 eyY 4(w+e)X .
(B6)

The idea of reduction has a long pedigree dating to Jacobi
and Poincar@*55 but for our purposes here it allows us to FOr (&,w)=(1/m,—1/m), the hyperbolic fixed points are lo-
transform an infinite-dimensional system into a finite-cated at (G+1).
dimensional one and simplifies the task of determining the
cosymplectic matrix.

APPENDIX C: EQUATIONS OF MOTION FOR N=2

APPENDIX B: A PAIR OF POINT VORTICES IN SHEAR

. . . ) ) For reference we display the general equations of motion
The equations of motion faX point vortices in a steady for N=2 vortices

background flowu(x;) are given by In terms of aspect ratios and orientations, the equations

take the form

) Ty kx(x—Xj) 5
Xi:z 2 % — ;|2 +u(x), (B1) .1 _ o+, 1-N\2
=12 x| R=-eRsin 20— ——31A, Sin A 6— ¢g)
wherek X (x;,Y;)=(—V;,X;) and the prime denotes # i. )
For N=2 vortices and a background flow given ), i.e., 1-21
g given ty + Ay ——sin 20— ¢1)], (cD
1
1 1
(uv)=| —5(0—e)y,5(ote)x], (B2) . o e To+Ty To+Dy[ 1-\3
0= =+ scos ¥+ >+ =71 Ag
. . . . 2 2 27R 87°R No
the equations of motion may be written in the form
_)\i
_ T, ViV, X €0s 46— ¢g) +A; N cosze—qﬁl)],
Xl__ﬂm_i(w_e)yly !
. r
No= —)\o{ —125in A 60— ¢pg) +esin 2¢0],
Ty x=x . . 7R
Y1 27T|X1_X2|2 z(w e)Xlr ' FO . .
_ L yo—ys (B3) M=)\ Wsm A 0— ¢pq)+esin 24, ¢,
X2 v —v 12 (w_e)y21
27 [x =% 2 LY SRRV ,
CTex 1 Po=Trng)? 2 1-22| 7RESCS 20~ %0
Y2 2 |X1_X |2 Z(w e)XZ "
Defining X=x;—X,, Y=y;—Y,, and nondimensionalizing —€cos o + 7,
time by ("';+1T',) "1, the equations for the vortex separation )
are _qih 114N To o)
11 T Tny? 2 1oa2| aR2COS AT 4
=‘(ﬁm—vf+z<w‘e>)“ o
. L 1 1 (B4) —ecoSs2p, +§,
Y= (ﬂ XZ+y2 " §(w+e))x’ and the Hamiltonian is given by
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(1+Ng)? ., (1+X)? +F0+F1

+I{1In 2w+
o Ir'fIn x 7 7R*(w+ecos )

2, 1
—47H=T,I", InR+§ I'gin

T'oAo -1 -1 WA -1 -1
= [w(No+Ng )+ e(hg _)\O)C052¢0]+T[0’(>\1+)\1 )+e(hy "—N1)cos 2, ]
Tol'y -1 -1
+47TR2[A0(7\0_7\0 )€0S 26— ¢po) + Ar(N1—N; 7)COS 26— 1) ]. (C2
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