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The equations of motion for interacting elliptical vortices in a background shear flow are derived
from a Hamiltonian moment formulation. The equations reduce to the sixth order system of
Melanderet al. @J. Fluid Mech.167, 95 ~1986!# when a pair of vortices is considered and shear is
neglected. The equations for a pair of identical vortices are analyzed using a number of methods,
with particular emphasis on the implications for vortex merger. The splitting distance between the
stable and unstable manifolds connecting the hyperbolic fixed points of the intercentroidal motion—
the separatrix splitting—is estimated with a Melnikov analysis. This analysis differs from the
standard time-periodic Melnikov analysis on two counts:~a! the ‘‘periodic’’ perturbation arises from
a second degree of freedom in the system which is not wholly independent of the first degree of
freedom, the intercentroidal motion;~b! this perturbation has a faster time scale than the
intercentroidal motion. The resulting Melnikov integral appears to be exponentially small in the
perturbation as the latter goes to zero. Numerical simulations, notably Poincare´ sections, provide a
global view of the dynamics and indicate that, as observed in previous studies, there are essentially
two modes of merger. The effect of the shear on chaotic motion is also discussed. ©1996
American Institute of Physics.@S1070-6631~96!00104-1#

I. INTRODUCTION

In this paper, we first present a simple approximate
model of the dynamics ofN elliptical vortices in a two-
dimensional shear flow. We subsequently use this model to
examine the conditions under which a pair of vortices can
merge in the presence of a shear flow. This model has many
similarities with other discrete vortex models, most notably
with the uniform elliptical vortex in shear of Kida~1981!1

and the interacting uniform elliptical vortices of Melander
et al. ~1986!2 ~hereafter referred to as MZS!. The essential
difference lies in the simultaneous presence of vortex-vortex
and vortex-shear interactions.3,4 These processes both
complement and compete with one another. Vortex-vortex
and vortex-shear interactions are especially common in
geophysics,5–7 and they may also be found in other settings.
The emergence of quasi-uniform vortices and their complex
interaction with one another is recognized as an important
feature of geostrophic~two-dimensional! turbulence.8–10

As in MZS, the vortices in our model are approximated
as elliptical patches of uniform vorticity and an expansion
based on spatial moments of the vorticity distribution is em-
ployed. However, the derivation of the resulting Hamiltonian
system is considerably different~Sec. II!. Instead of deriving
the equations of motion by manipulating the moments, the
procedure of Flierlet al. ~1995!11 ~hereafter referred to as
FMM! is followed; this is a powerful approach which pro-
vides a simple and generalizable route to the equations of
motion. Beginning with a Hamiltonian description of the full
~infinite-dimensional! system, approximations are made
within this framework so as to obtain a reduced Hamiltonian

description. In this way, the Hamiltonian structure of the
problem is preserved in a natural way.~See Appendix A for
background information on noncanonical Hamiltonian dy-
namics and the method of reduction.! The Hamiltonian na-
ture of the equations of motion is more explicit, and the
derivation is somewhat simpler than in MZS because of re-
duction and the noncanonical formalism.12

The analysis of the model is motivated by the phenom-
enon of vortex merger~Sec. III!. In the absence of any ex-
ternal flow, like-signed vortices will merge when close
together.13–15 But when background shear is present, it is
possible for even well separated vortices to merge if they are
oriented appropriately.3 Conversely, these two basic interac-
tions can interfere: the shear flow may sweep the vortices
past one another before they can merge, or each vortex may
advect the other in a direction normal to the shear, making it
easier for the shear to separate them.

An inherent limitation of our analysis is the approximate
nature of the model. In the derivation, it is assumed that the
vortices are small and well separated and that they remain
elliptical for all time; during a vortex merger event, however,
the model loses its asymptotic consistency since real vortices
deviate increasingly from ellipticity as a merger event pro-
ceeds. It has been shown that the ‘‘elliptical model’’ of Leg-
ras and Dritschel~1991!,16 which is a Galerkin-like approxi-
mation to the contour dynamics equations, gives a better
approximation than the model of MZS to some of the defor-
mations seen during merger.15 Nevertheless, in the absence
of background shear, both the elliptical model and the model
of MZS give similar predictions for the onset of merger.
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Thus, there is reason to believe that the model considered in
this paper should provide some insight into the interaction of
uniform vortices in shear.

For simplicity, the analysis is restricted to a pair of iden-
tical vortices in shear. Its centerpiece is a Melnikov analysis
of the separatrix splitting between the stable and unstable
manifolds connecting the hyperbolic fixed points of the in-
tercentroidal motion~Sec. IV!. The equations of motion for a
pair of identical vortices reduce to those for a point vortex
pair in shear~see Appendix B and Ref. 3!, when the vortices’
internal degrees of freedom are eliminated; for sufficiently
strong strain, the phase plane of this system exhibits a pair of
hyperbolic fixed points which are connected by a separatrix
~see Fig. 1!. Thus, a question which immediately comes to
mind is what happens to the separatrix under the perturbation
due to the elliptical vortices’ internal degrees of freedom: in
dynamical systems theory, the separatrix splitting, besides
leading to chaotic motion, controls transport across the~un-
perturbed! separatrix.17–19This is interesting because it sug-
gests a route by which widely separated vortices could inter-
act at close range and possibly merge.

For the unperturbed point vortex pair in shear, the closed
orbits in the interior are divided from the open orbits in the
exterior by the separatrix~see Fig. 1!; with a perturbation, a
trajectory could pass from the exterior to the interior~and
vice versa!. However, because of the unusual form of the
perturbation and the presence of multiple time scales, a stan-
dard Melnikov analysis cannot be applied. The approach we
have developed differs from some previous applications of
Melnikov’s method to fluid dynamics20–23 because the per-
turbation is not imposed externally, but rather arises naturally
from the internal structure of the problem. A consequence of
the separation of time scales between the perturbed and the
unperturbed motion is that the Melnikov integral should be

exponentially small as the perturbation amplitude goes to
zero,24,25 and this is what we find.

Although it is convenient~and natural! to present Melni-
kov’s method in the Hamiltonian context, it is the model’s
underlying phase space geometry that is fundamental. Our
numerical study of vortex merger and chaotic motion is
based upon this general geometric approach to the dynamics
~Sec. V!. Two-dimensional Poincare´ sections of the intercen-
troidal motion are the primary tool. They provide a global
view of the dynamics, and as they are constructed at constant
energy, they complement previous interpretations of vortex
merger which are based on energy arguments~e.g., Ref. 4!.
In particular, they enable one to make a useful geometrical
distinction between a predominantly vortex-vortex mode of
merger and a predominantly vortex-shear one. In addition, it
is observed that the chaotic dynamics in the vicinity of the
separatrix are weaker than in the interior, in agreement with
the asymptotic Melnikov analysis.

II. HAMILTONIAN MOMENT FORMULATION

In this section, the equations of motion forN elliptical
vortices in a background shear flow are derived. Using a
Hamiltonian moment formulation in which the quadratic vor-
ticity moments are the dynamical variables, FMM were able
to derive the equations of motion for the Kida vortex. Our
work generalizes that of FMM by extending the analysis to
N interacting vortices. Briefly, our derivation proceeds by~i!
expressing the Poisson bracket for the two-dimensional
~2-D! Euler equations in terms of the first and second order
vorticity moments;~ii ! determining the cosymplectic matrix
Jjk from the bracket;~iii ! computing the Hamiltonian in
terms of the moments; and~iv! obtaining the equations of
motion fromH andJjk. Background information on nonca-
nonical Hamiltonian dynamics and on the notation adopted
here may be found in Appendix A.

A. Poisson bracket

First, consider a 2-D Euler flow with a spatially and
temporally varying vorticity distribution,q(x,t). We make
the assumption thatq approaches a uniform, constant value,
say v, sufficiently rapidly as uxu→`, and we set
q(x,t)5v1q8(x,t).

The Poisson bracket for 2-D Euler flow is26,27

$F,G%5E q8F dF

dq8
,

dG

dq8Gdxdy, ~1!

whereF andG are functionals of vorticity,d/dq8 denotes a
functional derivative, @a,b#5axby2bxay is the two-
dimensional Jacobian, and the constant background vorticity
does not appear.~The background vorticity will enter in the
Hamiltonian by virtue of the dynamical role associated with
the background flow.! We introduce a finite set of functionals
of the perturbation vorticity which we callmoments,
$aj@q8#: j50, . . . ,K21%. For a subset of functionals ofq8
depending only onq8 as functionsof the moments, e.g.,
F@q8#5 f (a0@q8#, . . . ,aK21@q8#),

dF

dq8
5

] f

]aj
daj

dq8
,

FIG. 1. Phase space geometry for a point vortex pair in shear with
v2e,0.
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and ~1! takes the form

$F,G%5
] f

]aj
Jjk

]g

]ak
, ~2a!

where

Jjk5E q8F daj

dq8
,
dak

dq8Gdxdy. ~2b!

~Repeated sum notation is used here and henceforth.! The
success of this approach depends on whether we are able to
approximate the Hamiltonian of the system as a function of
the moments,$aj%. This will in turn depend both on the
nature of the scalar fieldq8(x) and on our particular choice
of moments.

Let us move in the direction ofspatialmoments by in-
troducing a finite~but as yet, arbitrary! set of time-dependent
disjoint areas$Sj (t): j50, . . . ,N21% and defining the set of
moments,$ã j%, in terms of them by

ã j :5E q8xk~x!x l~x!xrxsdxdy, ~3!

where r and s are non-negative integers andr1s<2 for
0<k,l<N21. Herex j (x)51 if x P Sj andx j (x)50 other-
wise. The monomialsxr and xs may be associated with
xk(x) andx l(x), respectively. Provided thatq8 is such that
we can choose the$Sj% so thatq850 on their boundaries, the
Jacobians in the integrands of~2b! are polynomials of at
most second degree. This ensures thatJjk takes the form

Jjk5cl
jkãl . ~4!

The cl
jk are the structure constants of a Lie algebra and the

bracket,~2a!, is a Lie-Poisson bracket with cosymplectic ma-
trix J.

If the perturbation vorticity field has the form of
‘‘clumps,’’ so that q8 is nonzero only on a set of compact,
disjoint regions,$Di : i50, . . . ,N21%, then we may obtain a
further simplification. Choosing theSi so that eachSi com-
pletely contains the correspondingDi but does not intersect
any of the remainingD ’s, the moments in~3! are zero unless
k5 l .

With these simplifications, we can think of our model as
approximating the vorticity distribution by a collection of
elliptical patches of uniform vorticity, one patch being as-
signed to each of the disjoint clumps in the originalq8 dis-
tribution. More formally, there is a simple correspondence
between the instantaneous state of the moments and the con-
figuration of a collection of uniform elliptical patches. First
order moments determine the positions of the centroids, and
second order moments define the aspect ratio and orientation
of the equivalent ellipses. Each vortex embodies an infinite
number of degrees of freedom corresponding to the shape of
each regionDi and the distribution of the vorticity within it.
The moment reduction, as we shall see, restricts this number
to only two degrees of freedom per vortex, one associated
with the vortex centroid and one with its ellipticity and ori-
entation.

For the specific problem considered in this paper, we
adopt the perspective ofN elliptical patches of uniform vor-
ticity, qi8( i50, . . . ,N21), each with area,Ai , and circula-

tion, G i . The steady uniform background vorticity is associ-
ated with a flow that combines both background rotation and
strain:

C5
1

4
v~x21y2!1

1

4
e~x22y2!, ~5!

v ande being constants. This is the same background flow
used in the Kida problem.

We now label the moments with a single suffix that com-
bines information about both the polynomial used to gener-
ate the moment and the vortex with which it is associated.
~To avoid unnecessary confusion, we lower the indices on
the a’s.! After the reduction sketched above, we find that
there are six moments associated with each vortex. One is
the circulation of the vortex,

G i :5ã116i :5E
Di

qi8dxdy; ~6a!

two are the first moments of the vorticity,

ã216i5E
Di

qi8xdxdy, ã316i5E
Di

qi8ydxdy; ~6b!

and the remaining three are second order moments,

ã416i5E
Di

qi8x
2dxdy, ã516i5E

Di

qi8xydxdy,

~6c!

ã616i5E
Di

qi8y
2dxdy.

The i ’s identify the vortices.
It is convenient to define functionsm̃j associated with

the integrands of theã j :

m̃416i5x2, m̃516i5xy, m̃616i5y2,
~7a!

m̃216i5x, m̃316i5y, m̃116i51.

The structure constantscl
jk can then be evaluated from the

relations

@m̃416i ,m̃616i #54m̃516i , @m̃416i ,m̃516i #52m̃416i ,

@m̃516i ,m̃616i #52m̃616i , @m̃216i ,m̃316i #51, ~7b!

@m̃216i ,m̃416i #50, @m̃316i ,m̃616i #50,

and

@m̃216i ,m̃516i #5m̃216i , @m̃216i ,m̃616i #52m̃316i ,
~7c!

@m̃316i ,m̃416i #522m̃216i , @m̃316i ,m̃516i #52m̃316i .

~Any Jacobian withm̃116i as one of its arguments is clearly
zero.!
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B. Cosymplectic matrix

The cosymplectic matrixJ̃ jk is defined by

$F,G%5
]F

]ã j
J̃ jk

]G

]ãk
. ~8a!

From ~2b!, we see that

J̃ jk5E qj8@m̃j ,m̃k#x jxkdxdy. ~8b!

~Note thatdã j /dqj85m̃jx j .)
Because of the factor ofx jxk in the preceding expres-

sion, moments of different vortices do not couple together. It
follows from the products~7b!–~7c! and the definitions of
ã j that J̃ is a direct sum overJ̃i , the single-vortex cosym-
plectic matrices:

J̃5 %
i50

N21

J̃i . ~9!

For N52 vortices,J̃ takes the block-diagonal form

J̃5S J̃0 0

0 J̃1
D .

Here J̃i , a 636 matrix, has the following structure:

J̃i5S 0 0 0

0 Ãi C̃ i

0 2C̃ i
T

B̃ i
D , ~10!

with

Ãi5S 0 ã116i

2ã116i 0 D , ~11a!

B̃ i5S 0 2ã416i 4ã516i

22ã416i 0 2ã616i

24ã516i 22ã616i 0
D , ~11b!

and

C̃ i5S 0 ã216i 2ã316i

22ã216i 2ã316i 0 D . ~11c!

Before turning to the Hamiltonian, we first note that the
system has some symmetries that are independent of the
form of the Hamiltonian. These symmetries are manifested
in Casimir invariantsC, which are solutions of

05 J̃ jk
]C

]ãk
. ~12!

The Casimirs arise when the cosymplectic matrix is singular
and they correspond to constants of the motion. There are
infinitely many Casimirs for the 2-D Euler equations, the
materially conserved functionals of vorticity, but only 2N
Casimirs for a system ofN elliptical vortices in shear. Given

the zeroes in the first column and row ofJ̃, the net circula-
tion of each vortex,ã116i , is clearly a Casimir.

Since one of the coordinates in~10! is a Casimir, we can
treat it as a constant parameter and reduce the dimension of
the submatricesJ̃i by one. This leaves five remaining vari-
ables per vortex,ã216i , ã316i , ã416i , ã516i , and ã616i .
The submatrices can themselves be rendered block diagonal
by using a transformation that replaces the second order mo-
ments with second order momentsabout the vortex centroid.
We set

a116i5ã116i , a216i5ã216i , a316i5ã316i ,
~13a!

xi*5a216i /a116i , yi*5a316i /a116i ,

a416i5ã416i2xi*
2a116i , a516i5ã516i2xi* yi* a116i ,

~13b!
a616i5ã616i2yi*

2a116i .

The variables (xi* ,yi* ) are just the coordinates of the cen-
troid of the i th vortex. In the new coordinates$aj%, we de-
note the cosymplectic matrix byJjk. After defining new
functionsmj , the mixed products corresponding to~7c! van-
ish when integrated overDi because

E
Di

qi8~x2xi* !dxdy5E
Di

qi8~y2yi* !dxdy50.

The elements of the submatrixC i are thus identically zero
and the new cosymplectic matrix takes the form

J5 %
i51

N

Ji ; Ji5SAi 0

0 B i
D . ~14!

The block diagonal submatricesAi , B i are given by~11a!
and~11b! after replacing theã’s by a’s. HereAi is, to within
a normalization factor, the canonical cosymplectic matrix for
point vortex motion;B i is the cosymplectic matrix for a
Kida vortex~cf. FMM!. The block diagonal form ofJ shows
that, in this coordinate system, the vortices are not coupled
through the cosymplectic matrix. Coupling between the vor-
tices arises through the Hamiltonian.

The existence of a second Casimir for each vortex now
becomes apparent sinceJjk(]C/]ak) 5 0 also has the solu-
tion

Ci5a416ia616i2a516i
2 . ~15!

For the particular case of uniform elliptical vortices, this is
again related to the circulation of an individual vortex:
Ci5G i

2Ai
2/16p2. This is not true in the general case, how-

ever ~cf. FMM!.

C. Hamiltonian

We now seek an approximation to the Hamiltonian writ-
ten wholly in terms of theaj . For the 2-D Euler equations,
the excess energy is an invariant quantity.28,29For point vor-
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tex motion, the excess energy is the Hamiltonian. With the
ansatz that the excess energy is the Hamiltonian for our sys-
tem, we obtain

H52
1

2(
i50

N21 H E
Di

2Cqi8dxdy1E
Di

c i8qi8dxdy

1 (
j50

N21

8E
Di

c i8qi8dxdyJ , ~16!

where

c i8~x!5
1

2pEDi

qi8lnux2x8udx8dy8 ~17!

is the streamfunction induced by vortexi . The first term in
~16! corresponds to interactions of the background flow with
the vortices, the second to interactions of the vortices with
themselves, and the third to interactions of the vortices with
one another.~The notation( j50

N218 stands for( j50,jÞ i
N21 .)

Letting H5H11H21H3 , the first term in~16! may be
written as

H152 (
i50

N21 H 14 ~v1e!Fa416i1
a216i
2

a116i
G1

1

4
~v2e!

3Fa616i1
a316i
2

a116i
G J . ~18!

For H2 andH3 , two approximations are required.~a! The
vortices are close to elliptical in shape with close to uniform
vorticity. ~The existence of the circulation Casimir then im-
plies conservation of individual vortex area.! A constant area
ellipse can be characterized by four parameters, for example,
its aspect ratio,l ~the ratio of the semi-major and semi-
minor axes!, its orientation,f ~the angle between the fixed
coordinate axes and the rotating body frame!, and thex and
y centroids. These four parameters are uniquely determined
by the first and second order spatial moments of the ellipse.

The second order moments are related to the aspect ratio
and orientation by

a416i5~l i
21cos2f i1l isin

2f i !
G iAi

4p
,

a516i5~l i
212l i !sinf icosf i

G iAi

4p
, ~19!

a616i5~l i
21sin2f i1l icos

2f i !
G iAi

4p
.

~b! The vortices remain well separated in the sense that the
vortex separationsRi j and the length scales of the vortices,
characterized by the length of their semi-major axes,bi ,
satisfybi!Ri j .

To evaluateH2 , only the first approximation is needed.
Using ~17!,

H252
1

8p (
i50

N21

G i
2 lnF ~a416i1a616i !

4p

G iAi
12G . ~20!

Invoking the second approximation to expand the Green’s
function to second order inbi /Ri j , the final term is

H352
1

8p (
i50

N21

(
j50

N21

8H G iG j ln Ri j
21

2

Ri j
2 F12G i~a416 j

1a616 j !1
1

2
G j~a416i1a616i !

2cos2u i j ~G ia416 j1G ja416i !

2sin2u i j ~G ia616 j1G ja616i !

2sin 2u i j ~G ia516 j1G ja516i !G J , ~21a!

where

~Ri jcosu i j ,Ri jsinu i j !5~xi*2xj* ,yi*2yj* !. ~21b!

Combining terms,

H52
1

4(
i50

N21 H F ~v1e!a416i1~v2e!a616i1~v1e!
a216i
2

G i
1~v2e!

a316i
2

G i
G

1
G i
2

2p
lnH F ~a416i1a616i !

4p

G iAi
12G J 1

1

2p (
j50

N21

8FG iG j lnRi j
21

2

Ri j
2 ~a i jcos 2u i j22b i jsin 2u i j !G J , ~22!

where

a i j5G i~a616 j2a416 j !, b i j5G ia516 j .

Like the cosymplectic matrix, the Hamiltonian possesses
several symmetries: the first and second order moments are

uncoupled, and the Hamiltonian is invariant under a change
of vortex labels.

D. Equations of motion for ai

We now compute the equations of motion from~A5! and
~14!. The equations of motion for the quadratic moments are
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ȧ416i5 (
j50

N21

8
a416iG jsin 2u i j

pRi j
2 1a516iF2~v2e!

2
2qi8

@~a416i1a616i !~4p/G iAi ! 12#

2 (
j50

N21

8
G jcos 2u i j

pRi j
2 G ,

ȧ516i5
1

2
v~a416i2a616i !1

1

2
e~a416i1a616i !

1qi8
~a416i2a616i !

@~a416i1a616i !~4p/G iAi ! 12#

2 (
j50

N21

8
G jcos 2u i j
2pRi j

2 ~a416i1a616i !,

ȧ616i5 (
j50

N21

82
a616iG jsin 2u i j

pRi j
2 1a516i

3F ~v1e!1
2qi8

@~a416i1a616i !~4p/G iAi ! 12#

2 (
j50

N21

8
G jcos 2u i j

pRi j
2 G . ~23a!

After some simplification, the first order equations are

ẋi*52
1

2
~v2e!yi*2 (

j50

N21

8
G j

2pRi j
sinu i j

1
1

G i
(
j50

N21

8
1

2pRi j
3 $~a i j1a j i !sin 3u i j

12~b i j1b j i !cos 3u i j %,

ẏi*5
1

2
~v1e!xi*1 (

j50

N21

8
G j

2pRi j
cosu i j

1
1

G i
(
j50

N21

8
1

2pRi j
3 $2~a i j1a j i !cos 3u i j

12~b i j1b j i !sin 3u i j %. ~23b!

The equations~23a! and ~23b! constitute a set of 5N
coupled ODEs. They are a closed set even though they do
not contain explicit evolution equations forRi j and u i j be-
causeRi j andu i j may be determined from~21b!.

The equations can be simplified in the following way.
Since theN quantitiesCi5a416ia616i2a516i

2 are Casimirs,
a416i ,a516i , anda616i are not all independent of one an-
other. This can be made explicit by employing a transforma-
tion of variables wherein the Casimirs act as dependent vari-
ables, thereby leaving a set of only 4N independent
equations of motion (N equations reduce todCi /dt50). A
further simplification may be had by noting that the equa-

tions of motion do not depend on the global centroid posi-
tion; one is left with a system of 4N22 equations after ap-
propriate linear combinations are taken.

Note added in proof. Analogous equations have re-
cently been obtained by Riccardiet al.30 using the method of
MZS.

E. Equations of motion in physical variables

By transforming to the more intuitive variables,
(xi* ,yi* ,l i ,f i), a set of equations analogous to those of
MZS is obtained.

The equations for the evolution of (xi* ,yi* ) are ~23b!.
Using ~19!, we find thatl i andf i evolve according to

l̇i52l i (
j50

N21

8F G j

pRi j
2 sin 2~u i j2f i !1esin 2f i G ,

~24!

ḟ i5
qi8l i

~11l i !
2 2

1

2

11l i
2

12l i
2

3H G j

pRi j
2 cos 2~u i j2f i !2ecos 2f i J 1

v

2
.

In the ḟ i equation, there is an apparent singularity when
l i51. This is not of dynamical significance. As noted by
MZS, this singularity arises from the fact that the orientation
of a circular vortex is not well-defined. MZS point out that
one way to ‘‘desingularize’’ these equations is to introduce
new variables,

~d i ,g i !5S Ai

8pl i
D 1/2~l i21!~cos 2f i ,sin 2f i !.

MZS further note that„(l i21)2/l i ,2f i… is one set of ca-
nonical variables for this problem. This set was later used by
Ide and Wiggins31 in a study of the motion of a single ellip-
tical vortex in a time-dependent linear background flow; an
alternative set is introduced in FMM. However, there is a
singularity atRi j50 which cannot be removed by a coordi-
nate transformation. Following MZS we takeRi j→0 as be-
ing indicative of vortex merger, but it should be noted that
the model ceases to be consistent in this limit because the
assumption of well-separated vortices breaks down.

For reference, the equations of motion forN52 vortices
may be found in Appendix C.

III. PRELIMINARY ANALYSIS

In this section, we begin the analysis of our model. As-
pect ratio–orientation variables are used because they clearly
display physical processes. We will restrict the analysis to a
system of two identical vortices. While more complicated
configurations can exhibit behavior that a symmetric vortex
pair cannot, the vortex-vortex and vortex-shear interactions
analyzed below are still present. The Hamiltonian forN vor-
tices is not fundamentally different from that for two vorti-
ces: there are no multipole interactions at the order of our
truncation.
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A. Nondimensionalization

Our starting point is the system~C1! for N52 vortices
from Appendix C. LettingD denote a characteristic separa-
tion scale, we nondimensionalize as follows:R25uD2,
e5ẽq0 , v5aẽq0 , d5A1 /A0 , and time is scaled byq0

21 .
We define a nondimensional perturbation parameter
e5A0 /(pD

2), which is assumed to be small~i.e., the vorti-
ces are assumed to be well separated!. Specializing to the
symmetric case of identical vortices, withl05l15l,
f05f15f, A15A0 , andq15q0:

u̇5ẽusin 2u2e2u21
12l2

l
sin 2~u2f!,

u̇5
ẽ

2
~a1cos 2u!1eu211e2

1

2
u22

12l2

l
cos 2~u2f!,

~25!
l̇52l$ẽsin 2f1eu21 sin 2~u2f!%,

ḟ5
l

~11l!2
1
1

2

11l2

12l2 $ẽcos 2f2eu21 cos 2~u2f!%

1a
ẽ

2
.

The terms in~25! have simple physical interpretations.
The terms atO(1) represent~a! the self-rotation of the vor-
tices~the first term in thef equation!, and~b! the effects of
the background flow on the vortices~the terms involvingẽ in
each equation!. At O(e), interactions between the vortices
modify the evolution of the aspect ratio and orientation but
have little effect on the separation. As with point vortices,
these interactions produce a constant change in the rotation
rate of the separation vector, but no change in its length. At
O(e2), the shape and separation of the vortices are tightly
coupled.

The first two equations in~25!, the pair that govern the
separation of the vortices, have terms up toO(e2), while the
remaining four have terms toO(e). The truncation implicit
in ~25! arises from the truncation of the Hamiltonian: an
infinite moment hierarchy is closed at second order by ap-
proximating the vortices as ellipses.

B. Integrable basic states: Perturbed point vortex pair
in shear

The system~25! is a fourth order ~two degree-of-
freedom!, nonlinear, Hamiltonian system. In the absence of
shear, the 2-D Euler equations conserve angular impulse and
thex andy centroids; this leads to two independent integrals
of motion when the total circulation is nonvanishing.32 These
integrals of motion are destroyed by background shear and
the Hamiltonian is the only one which remains. From our
derivation, we know that this is a Hamiltonian system repre-
sented in noncanonical coordinates~see FMM for a discus-
sion of canonical coordinates!; we anticipate that there is a
possibility of chaotic motion because the number of degrees
of freedom exceeds the number of integrals of motion.33

This system can be regarded as a perturbation to any of
three integrable basic states:~i! the MZS model;~ii ! a pair of
isolated Kida vortices; and~iii ! a point vortex pair in shear.

The equations of motion for the MZS model are obtained by
settingẽ 5 0 in ~25!; those for a Kida vortex are obtained
from thel andf equations whene50; and the equations
describing a point vortex pair in shear correspond to theu
andu equations when terms ine2 are neglected. The pertur-
bations to these basic states then represent the addition of~i!
vortex-shear interactions;~ii ! vortex-vortex interactions; and
~iii ! internal degrees of freedom~aspect ratio and orienta-
tion!.

We choose to regard~25! as a perturbed point vortex pair
in shear. There are two reasons for this choice. The phase
space geometry of a point vortex pair in shear provides a
convenient framework for studying vortex merger. For suffi-
ciently strong strain, and in the absence of a perturbation, a
separatrix divides closed orbits from unbounded ones~see
Appendix B for details!. When they are perturbed, we will
find that the vortices can merge and that some of the closed
orbits will disappear; furthermore, the separatrix splits apart
into distinct stable and unstable manifolds.~The connection
between these phenomena is discussed in Sec. V.! The sec-
ond reason is a practical one: there exists an analytical tool,
namely the Melnikov function, which may be applied to sys-
tems with heteroclinic orbits.

In preparation for the Melnikov analysis, we apply one
more scaling. We are particularly interested in what happens
in the vicinity of the separatrix of the point vortex pair. It
will prove convenient if the distance from the separatrix to
the origin, determined by balancing the first two terms in the
u equation of~25!, is scaled to beO(1). This is equivalent to
choosingẽ5eg whereg5O(1). The equations~25! then
become

u̇5egusin 2u2e2u21
12l2

l
sin 2~u2f!1O~e4!,

u̇5eH g

2
~a1cos 2u!1u21J 1e2

1

2
u22

12l2

l

3cos 2~u2f!1O~e4!.
~26!

l̇52el$g sin 2f1u21 sin 2~u2f!%1O~e3!,

ḟ5
l

~11l!2
1e

1

2

11l2

12l2 $g cos 2f2u21

3cos 2~u2f!%1ea
g

2
1O~e3!.

These equations express the following sequence of interac-
tions. On theO(1) time scale, the elliptical vortices rotate at
a ratel/(11l)2. On a longer time scale,O(e21), the as-
pect ratio and rotation rate of the vortices vary slowly, and
the vortices move in the background shear flow under their
mutual interaction. On an even longer time scale,O(e22),
the finite sizes of the vortices induce small perturbations to
the rate at which the intercentroidal separation vector
changes.

IV. ASYMPTOTIC ANALYSIS

In this section, we investigate the system~26! by means
of an asymptotic analysis in the small parametere. As noted
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above, we use the Melnikov method34–36 and appeal to
analogies between this system and a rapidly forced pendu-
lum. We begin with a brief discussion of the Melnikov
method.

The Melnikov integral measures the distance between
the stable and unstable manifolds formed by the splitting of a
homoclinic or heteroclinic orbit. Its most commonly encoun-
tered variant is for a periodically perturbed, one degree-of-
freedom~canonical! Hamiltonian system:

q̇5
]H

]p
~q,p!, ṗ52

]H

]q
~q,p!, ~27!

whereH5H0(q,p)1eH1(q,p,t), andH1 is an explicit pe-
riodic function of the time variable,t. Let the period ofH1

be t and let this beO(1). Setting z(t)5„q(t),p(t)…, we
consider the case in which the unperturbed system has two
hyperbolic fixed points that are joined by a heteroclinic orbit
z(t)5z0(t). ~The homoclinic case is analogous.! If one de-
fines a functionM of t0 P (2`,`) by

M ~ t0!5eE
2`

`

$H0„z0~ t !…,H1„z0~ t !,t1t0…%dt, ~28!

where $ f ,g%:5 f qgp2 f pgq , then the signed separation be-
tween the stable and unstable manifolds along the normal to
the unperturbed separatrix is given by

d~ t0!5
M ~ t0!

u¹H0„z0~ t0!…u
1O~e2!. ~29!

The existence of one zero ofM (t0) implies the existence of
infinitely many zeroes, sinceM (t0) is periodic with period
t. If ]M (t0)/]t0 Þ 0 at the zeroes, then there are infinitely
many transverse manifold crossings and, by the Smale-
Birkhoff homoclinic theorem, there exists chaotic motion in
the vicinity of the separatrix. The quantityM is referred to as
the Melnikov function or Melnikov integral.

Although we shall be working in terms of the periodi-
cally perturbed one degree-of-freedom Melnikov function,
the Melnikov approach is applicable to non-Hamiltonian sys-
tems.~See Refs. 34 and 36 for more discussion.! We expect
the methods and results described in this section to general-
ize.

The system~26! is not of the form required for the stan-
dard Hamiltonian Melnikov analysis. To begin with, the vari-
ables are not canonical; but this is just a question of coordi-
nates. Next, the basic state that we would like to perturb
around, that of a pair of point vortices in shear, is a one
degree-of-freedom system, while the full system~26! has
two degrees of freedom. Most importantly, there are two dis-
tinct time scales: the natural time scale for the intercentroidal
motion, which isO(e21), and the time scale for the rotation
of the vortices, which isO(1). Theterms containingf are
thusO(1). Theslow intercentroidal motion is coupled with
fast variations in the vortices’ orientation and shape, compli-
cating the analysis.

These difficulties can be resolved by multiple time-scale
perturbation theory. An explicit time-periodic perturbation to
the Hamiltonian is not given, but in some parameter ranges
the second degree of freedom, (l,f), behaves like an oscil-

lator and the variablef increases monotonically with time.
One can consider the first degree of freedom, (u,u), to be
‘‘perturbed’’ by this second degree of freedom. By trans-
forming the autonomous two degree-of-freedom system~26!
into a nonautonomous one degree-of-freedom system, where
the slow intercentroidal motion is perturbed by the fast os-
cillatory terms of theu̇, u̇, andl̇ equations, a multiple time-
scale analysis can then be performed.

There is a growing body of research on one degree-of-
freedom systems with rapidly oscillating perturbations. The
implications of this research for our system are briefly exam-
ined in the next section.

A. The rapidly forced pendulum

Since there are two time scales in the system of~26!, and
the fast oscillatory terms occur at higher order ine, we ex-
pect behavior similar to that of a nonlinear pendulum forced
by a weak but rapid oscillation, viz.

d2x

dt2
1sin x5d sinS te D , ~30!

wherede2n→0 for an appropriate positive powern.24,37,25

This is a Hamiltonian system of the form of~27! with

q5x, p5 ẋ, H05
1

2
p22cosq, H152qdsinS te D .

When d50, the unperturbed system is a one degree-of-
freedom Hamiltonian system with a hyperbolic fixed point at
(x50,ẋ50) and an emanating homoclinic trajectory~identi-
fying x52p with x50). As is standard for nonautonomous
systems, one can define a Poincare´ section by strobing the
system at the period of the forcing, 2pe. For sufficiently
weak forcing, the associated Poincare´ map has a hyperbolic
fixed point that lies close to the unperturbed one. In certain
cases, it can be proven that the stable and unstable manifolds
persist, lie close to the unperturbed homoclinic orbit, and
intersect transversally.38

In the periodically forced Hamiltonian system described
at the beginning of Sec. IV, the splitting distance between the
stable and unstable manifolds isO(e) and is given in terms
of the Melnikov integral by~29!. For the rapidly forced sys-
tem ~30!, the Melnikov integral is exponentially small; but
the meaning of this is uncertain because formally the Melni-
kov theory is only accurate toO(e2). It is, however, now
thought that under properly specified conditions the Melni-
kov analysis generally does provide a good estimate of the
splitting distance, even in rapidly forced problems. Delshams
and Seara25 were able to establish that the leading order term
in the splitting distance for the forced pendulum equation is
indeed given by the Melnikov integral whenn>0. They also
show39 that the same is true for the class of second order
equations, ẍ1 f (x)5mepg(t/e), where g is 2p-periodic
with zero mean, when the unforced equation has a ho-
moclinic orbit which satisfies certain analyticity require-
ments. Fontich40 proved, under less restrictive conditions,
that the Melnikov function in these systems is indeed expo-
nentially small and obtained upper bounds on the splitting
distance.
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These proofs exploit the explicit closed-form representa-
tion of the unperturbed system’s homoclinic trajectory.~This
allows the contours of integration of certain integrals to be
moved in the complex plane.! In the problem at hand, we
cannot provide such proofs, largely because we have an im-
plicit representation only. Furthermore, our system is slightly
different from those considered previously: it belongs to the
general class of rapidly forced second order equations,
ẍ1 f (x,ẋ)5mepg(t/e). Nevertheless, we conjecture that its
structural similarity to the rapidly forced pendulum suggests
that its manifolds should cross transversally and that the
separatrix splitting should be exponentially small. We pro-
vide support for this by performing a Melnikov analysis and
examining the leading order contribution to the splitting dis-
tance. This does not constitute a proof because in the asymp-
totic analysis an infinite series of integrals contributes to the
splitting distance and they may not all be exponentially
small. We will later turn to numerical simulations to see if
they are in accord with this picture.

B. Calculating a Melnikov function

We now present a Melnikov analysis that freely exploits
a number of assumptions. First, we exploit the autonomous
nature of the system and restrict attention to situations in
which the vortex orientation,f, increases monotonically
with time. This is reasonable whenl can be bounded away
from unity, as suggested by the form of~26! for small e.
Thus we replace the independent variablet with f:

du

df
5QFegu sin 2u2e2u21

12l2

l
sin 2~u2f!G ,

du

df
5QFeH g

2
~a1cos 2u!1u21J

1e2
1

2
u22

12l2

l
cos 2~u2f!G , ~31a!

dl

df
52Q@el$g sin 2f1u21 sin 2~u2f!%#,

where

Q5H l

~11l!2
1e

1

2

11l2

12l2 $g cos 2f2u21

3cos 2~u2f!%1ea
g

2 J 21

. ~31b!

Next, the conservation of the Hamiltonian is invoked41 to
expressl5l(u,u,f;h) and eliminatel from the first two
equations~31a!. The resulting system may be written in the
form

du

df
5F1„u,u,l~u,u,f!…1 f 1„u,u,l~u,u,f!,f…,

~32a!
du

df
5F2„u,u,l~u,u,f!…1 f 2„u,u,l~u,u,f!,f…,

where

F15eVgu sin 2u, F25eVH g

2
~a1cos 2u!1u21J ,

V5V~l!5H l

~11l!2
1ea

g

2 J 21

,

f 15QFegu sin 2u2e2u21
12l2

l
sin 2~u2f!G

2eVgu sin 2u, ~32b!

f 25QFeH g

2
~a1 cos 2u!1u21J

1e2
1

2
u22

12l2

l
cos 2~u2f!G

2eVH g

2
~a1 cos 2u!1u21J .

Our goal is to obtain a one degree-of-freedom system with a
basic state that describes the motion of a point vortex pair in
shear. The functionsF1 andF2 have the correct form, but
they do not constitute a proper basic state, as they are a
coupled to the perturbed motion throughV(l). Therefore,
we expandl asl5l01el1(f)1 . . . , wherel0 is a con-
stant and can be treated as a parameter.~This is permissible
for trajectories withl bounded away from 0 and 1.! The
function V(l) can then be expanded ine, and its leading
order component,

V05H l0

~11l0!
2 1ea

g

2 J 21

, ~33!

used to define an appropriate basic state. Hence we write

du

df
5G1~u,u;V0!1g1~u,u,f!5G 1 ,

~34a!
du

df
5G2~u,u;V0!1g2~u,u,f!5G 2 ,

with

G15G̃11g̃15eV0gusin2u1g̃1 ,
~34b!

G25G̃21g̃25eV0H g

2
~a1 cos 2u!1u21J 1g̃2 .

By construction,G1 andG2—and thus the tilde quantities—
have no explicitf dependence, whileg1 and g2 have an
explicit p-periodic dependence onf. The functionsg̃1 and
g1 may be obtained from~34b! and

G 15QFegu sin 2u2e2u21
12l2

l
sin 2~u2f!G ;

g2 and g̃2 may be obtained from~34b! and

G 25QFeH g

2
~a1 cos 2u!1u21J

1e2
1

2
u22

12l2

l
cos 2~u2f!G .
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@Note that whileF1 , F2 , G1 andG2 areO(e), f 1 , f 2 , g1
and g2 are O(e2).] The basic state is given by
(du/df5G̃1 ,du/df5G̃2) and corresponds to the equations
of motion for a pair of point vortices in shear when
F5ef is identified as a slow time. The quantityV0 can be
interpreted as a parameter set by the initial conditions. With-
out loss of generality, we assume thatg.0 (g,0 just ro-
tates the phase space through 90°!, and thata,1 ~a suffi-
cient condition for the existence of hyperbolic fixed points;
see Appendix B!.

We note that the procedure described above, whereby a
one degree-of-freedom nonautonomous Hamiltonian system
~often called a one- and one-half degree-of-freedom system!
is obtained from a two degree-of-freedom autonomous sys-
tem, is quite old.42 Except for the complication due to the
second time scale, this procedure is analogous to the one
described in Holmes and Marsden.43

We can now proceed along the lines of the standard
Melnikov analysis. By analogy with other one- and one-half
degree-of-freedom systems, a Poincare´ section is defined on
the planef5fp(modp), fp P (2`,`) being an arbitrary
constant.@Formally, we transform to an autonomous third-
order system and plot intersections of its trajectories with
f5fp(modp).# In the unperturbed limit, the associated
Poincare´ map has hyperbolic fixed points at
(u,u)5(2/@g(12a)#,6p/2) that are joined by a pair of
invariant heteroclinic manifolds. The smoothness of the sys-
tem means that for any closed, compact range ofl that does
not includel50 or 1, the hyperbolic points persist for suf-
ficiently smalle. It is therefore expected that a perturbation
will split the heteroclinic manifolds into distinct stable and
unstable manifolds.

Let q0(f)5„u0(ef),u0(ef)… be a heteroclinic trajec-
tory of the unperturbed system. Since the unperturbed system
is autonomous,q0(f) passes through all the points on the
unperturbed heteroclinic manifold asf increases from2`
to ` ~i.e., from fixed point to fixed point!. In the usual way,
a set of coordinates on the heteroclinic manifold is then de-
fined by a choice of the pointq0(0). Trajectories on the
perturbed stable and unstable manifolds can be obtained by
expanding around this heteroclinic trajectory:

qj~f;fp ,e!5q0~f2fp!1q1
j ~f;fp!,

wherej5s or u. The deviationq1
u is asymptotically small~in

e) compared toq0 asf→2`; q1
s is asymptotically small

compared toq0 as f→1`. Actually, u1;O(e2) and
u1;O(e2). The autonomous nature of the unperturbed sys-
tem is once more used to shift the time originf50: for each
particular choice offp , the heteroclinic trajectory is now
given byq0(f2fp).

We seek an estimate of the distance between these mani-
folds at a pointq0(0) and in a direction normal to the un-
perturbed heteroclinic orbit. LettingG5„G1(q),G2(q)…,
~34a! can be rewritten as

dq

df
5G~q!1g~q,f!, ~35!

and the normal to the unperturbed invariant manifold is

n̂5„2G2~q0!,G1~q0!…/„G1~q0!
21G2~q0!

2
…

1/2

5n/„G1~q0!
21G2~q0!

2
…

1/2.

The transverse splitting distance atq0(f50) is then given
by

d~fp!5M ~fp!/@G1
2
„q0~0!…1G2

2
„q0~0!…#1/2, ~36a!

where

M ~fp!5Ds~fp ;fp!2Du~fp ;fp! ~36b!

and

D j~f;fp!5n•q1
j ~f;fp!

5G1„q0~f2fp!…u1
j ~f;fp!2G2„q0~f

2fp!…u1
j ~f;fp!. ~36c!

In order to calculateM (fp), and thus the splitting dis-
tance, the system~34a! must be expanded. Since
G(q0)5F(q0 ,l0) and similarly forg and f , the quantities
D j andq1

j may be expressed in terms off andF, simplifying
the calculations. ExpandingdD j /df anddq1

j /df, and col-
lecting terms,

dD j

df
5F1„q0~f2fp!,l0…f 2„q0~f2fp!,l0 ,f…

2F2„q0~f2fp!,l0…f 1„q0~f2fp!,l0 ,f…

1l1S F1

] f 2
]l

2F2

] f 1
]l D1u1S F1

] f 2
]u

2F2

] f 1
]u D

1u1S F1

] f 2
]u

2F2

] f 1
]u D1•••,

which is formallyO(e3) at leading order. For brevity this is
written as

dD j

df
5e3T11e4T21e5T31 ••• . ~37!

While the forms of thef ’s are rather complicated, they can
be simplified by expanding ine, e.g.,

f 2~q0 ,l0 ,f!5 f 20~q0 ,l0 ,f!1e f 21~q0 ,l0 ,f!1••• .

This induces corresponding expansions in theT’s,
Tj5Tj01eTj11 . . . , and~37! thus becomes

dD j

df
5e3T101e4~T201T11!1••• .

Integrating the preceding equation overf yieldsM (fp):

M ~fp!5e3M10~fp!1e4„M20~fp!1M11~fp!…1 ••• .
~38!

The leading order contribution is fairly easy to calculate.
We find that

M1052
1

2

12l0
2

l0
V0

2 sin 2fpE
2`

`

u0
21$g cos@4u0~ef!

22f#1„ga12u0
21~ef!…cos@2u0~ef!22f#%df.

~39!
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We have chosen the origin of thef coordinate so that
u0(0)50, i.e., the midpoint of the heteroclinic trajectory.
From the leading sin 2fp factor, we see thatM10 crosses
zero infinitely many times, suggesting the existence of cha-
otic motion.

The width of the chaotic region is related to the magni-
tude of the integral. By a generalized Riemann-Lebesgue
lemma,44 the integral is!O(en) for any n; i.e., it is expo-
nentially small ine. A necessary~but not sufficient! condi-
tion for this to be the dominant part ofM (fp) is that the
higher-order corrections,M11, M20, etc. must also be, at
most, exponentially small. This is clearly possible for those
Tmn that are rapidly oscillating functions off. However, the
contribution toM of any parts ofTmn that have no fast time
dependence must be considered more carefully. Below we
find the leading order term considering only slowf depen-
dence and show that it makes zero contribution toM .

We need to computeT201T11. This requires a knowl-
edge of the first asymptotic correction to the path of the
perturbed stable and unstable manifolds. Upon substitution
for l1 , we find that the sumT201T11 consists of two parts:
a rapidly oscillating component,T2 f , which like T10 yields
an exponentially small contribution upon integration, and an-
other component,T2s , which does not oscillate rapidly. In
principle, this should result in a contribution to the Melnikov
integral that is not exponentially small and so would domi-
nateM10. However, if we calculateT2s explicitly, we find
that

T2s52H V0
4~12l0!

2

~11l0!
2 12V0

3
11l0

2

l0
J

3
1

8
gu0

21$g sin~4u0!1~ga1u0
21!sin~2u0!%.

~40!

This is symmetric aboutf5fp , so the integral*2`
` df is

identically zero, and the slow component ofM201M11 thus
vanishes. As for slow perturbations to the positions of the
stable and unstable manifolds, there is a part ofu1 and u1
that does not oscillate rapidly, but it affects both manifolds in
the same way and so does not contribute to the splitting
distance at this order. We note that the correction
e4(M201M11) formally occurs at the same order as would
the corrections associated with deviations of the shape of the
vortices from ellipticity@i.e.,O(e3)].

V. NUMERICAL RESULTS

The Melnikov analysis suggests that a chaotic band
should form around the unperturbed separatrix, though the
~exponentially small! scaling is tentative. Here we use nu-
merical simulations to both support this and provide a picture
of the global dynamics. For simplicity, only thee depen-
dence will be considered at length. The equations of motion
~25! are used for the integrations; however, it is convenient
to scale time byq0 . The singularity atl51 has not pre-
sented any difficulty.

A. Poincaré sections

We construct Poincare´ sections for the two degree-of-
freedom Hamiltonian system~26! by first choosing a value
of H0 . A Poincare´ section is then built up by computing
trajectories from a set of initial conditions that satisfy
H(l;u,u,f50)5H0 . Whenever f(t) crosses zero
(modp) in a specified sense~increasing forG i.0),45 a point
appears on the three-dimensional Poincare´ section spanned
by u, u, andl; it is then projected onto the (u, u) plane.
The results are shown in (x,y) coordinates by applying the
transformation (x,y)5u1/2(cosu, sinu).

For each Poincare´ section,H0 is fixed by evaluatingH
for a given (x5x0 ,y5y0 ,l5l0 ;f50) using~C2!. A set of
initial conditions satisfyingH5H0 is obtained by specifying
x,y,f and solving the nonlinear equation

H~l;u,u,f50!5H0 ,

for l. For e50.01 to e50.03, we have observed a maxi-
mum of 3 roots, the number depending on the value ofH0

and the limits,lmin ,lmax, between which roots are found.
The limits span the range ofl over which the model is
expected to be~initially ! valid. In the cases discussed below,
H0 corresponds to a point on the unperturbed separatrix, i.e.,
(x0 ,y0 ,l0)5(0,1,1.5). With a linear shear flow
(e,v)5(1/p,21/p) andG51, the fixed points are located
at (x0 ,y0)5„0,61/(pe)…5(0,61). We thus takeD51 in
our definition ofe.

Poincare´ sections are shown in Fig. 2. For the MZS
model, closed orbits encircle the origin, but at some distance
@Fig. 2~a!#. There is a large gap in the interior, where there
are no ~closed! orbits at all; initial conditions that are too
close to the origin merge before appearing on a Poincare´
section. Moving away from the origin, one sees that closed
orbits do not extend beyondu251. Fore50.01, there are, as
with the point vortex pair in shear, closed orbits inside the
separatrix, and unbounded orbits outside@Fig. 2~b!#. There is
also a gap in the interior. Whene is increased, bounded and
unbounded orbits remain, but there are far fewer of them: the
fraction of merging initial conditions increases rapidly with
e. For e50.03, every point inside the unperturbed separatrix
merges@Fig. 2~c!#.

In the absence of shear, the innermost orbit of the Poin-
carésection divides initial conditions that merge from those
that do not: it defines a critical merger criterion. This crite-
rion is not, however, the same as the classical criterion for
identical circular vortices; i.e., that the critical separation,
r c53.3r v , where r v is the vortex radius~see MZS!. The
Poincare´ section is defined at constantH, not constantl. In
general, it is expected that the critical merger threshold de-
fined on a constant Hamiltonian surface,r c,H , will be greater
than r c , with minH(rc,H)5rc . Even for a Poincare´ section
associated with near-circular vortices at the separatrix,r c,H is
quite different fromr c because the vortices become strongly
elongated away from the separatrix. For example,
r c,H'0.6150.61r v andl(r c,H)'10, when the Poincare´ sec-
tion is defined byl051.001 ande50.01. In Fig. 3, we show
a merging trajectory corresponding to Fig. 2~a!—note that
r is initially less thanr c,H .
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An innermost orbit can also be distinguished in Fig. 2~b!
~i.e., e50.01 with shear!, but it cannot be associated with a
critical merger threshold in the same way as for the MZS
model. Because of the presence of the background shear, it is
now possible for points outside the separatrix to merge; the
regions of the Poincare´ section inside and outside the unper-
turbed separatrix are no longer perfectly separated. Most of
the exterior trajectories are analogous to the unbounded or-
bits for a point vortex pair in shear—physically, the vortices
approach one another, reach a minimum separation, and are
carried away by the shear. The combined effect of vortex-

vortex and vortex-shear interactions now makes merger pos-
sible, but only for a small fraction of the orbits~Fig. 4!. In
cases wheree is small, the innermost orbit defines a critical
radius that separatesmostof the merging orbits frommostof
the non-merging orbits@e.g., Fig. 2~b!#, with the exchange
between the interior and the exterior being rather limited.

The kind of merger represented by Fig. 4 is very differ-
ent from that in Figs. 2~a! and 3. Whereas vortex-vortex
interactions dominated the previous mode of merger, vortex-
shear interactions are crucial to this one. Vortex-shear inter-
actions stretch the vortices out and bring them together;
vortex-vortex interactions then initiate the actual merger. For
a typical merging trajectory that is initially outside the sepa-
ratrix ~Fig. 5!, l!lmin by the time the trajectory crosses the
separatrix.~These trajectories do not appear on the Poincare´
section because they merge beforef goes throughp.) Dur-
ing the course of merger, the approximation that the vortices
are small and well separated breaks down; however, this kind

FIG. 2. Poincare´ sections corresponding toG51 and (x0 ,y0 ,l0)
5(0,1,1.5). ~a! MZS model (e50.01, no shear!. ~b! e50.01 and
(v,e)5(21/p,1/p). ~c! e50.03 and (v,e)5(21/p,1/p).

FIG. 3. Typical merging trajectory for Fig. 2~a!, i.e., e50.01. The initial
condition is (r i ,u i ,l i)5(0.400,1.57,0.111). This is an example of vortex-
vortex merger.

FIG. 4. Merging initial conditions well outside the separatrix plotted on top
of a 2-D projection of the Hamiltonian surface corresponding to Fig. 2~a!.
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of merger is certainly physically plausible. Such a mecha-
nism has also been observed in contour dynamics simula-
tions of circular vortices in shear.3 This suggests two distinct
modes of merger:~i! a predominantly vortex-vortex one; and
~ii ! a predominantly vortex-shear one. Such a division was
noted by Waugh3 and it is implicit in the work of Marcus.4

The latter study, however, differs in that it emphasizes ener-
getics~exchanges between the vortices and between the vor-
tices and the shear flow! rather than the geometrical configu-
ration of the vortices. Because we are working on a constant-
energy Poincare´ surface and because our flow has a strain
component~it is not simply an azimuthal shear flow!, it is
useful to think in terms of the vortices’ geometrical configu-
ration.

Melanderet al.14 derived a merger criterion for the MZS
model that agrees fairly well with contour dynamics simula-
tions. When ambient shear is present, there does not appear
to be an analytical expression, based on the initial configu-
ration of the vortex pair, that is necessary and sufficient for
merger. A merger criterion for initial conditions inside the
separatrix could be determined by estimating the position of
the innermost orbit on the Poincare´ section; but the situation
is much more complicated for initial conditions outside the
separatrix. Outside the separatrix, vortex merger is the result
of a complex interplay between vortex-vortex and vortex-
shear interactions. Many initial conditions yield trajectories

that approach the separatrix, but most of these do not merge;
a small displacement in (u,u) can make the difference be-
tween merger and separation by the shear. Another compli-
cating factor is that for larger values ofe, there is vortex-
vortex merger for points lying just outside the separatrix and
initial l@1.

B. Separatrix splitting and chaos

Because the Melnikov result is both asymptotic and ap-
proximate @the perturbation in~34a! is truncated#, and be-
cause the Melnikov function is exponentially small, numeri-
cal verification of the formation of a heteroclinic tangle is
needed.

Verification of the exponentially small nature of the nu-
merator in the expression for the separatrix splitting distance
is difficult because the position of the folds is a function of
e ~through the slow timeF5ef), and the folds narrow and
squeeze together ase is reduced. Moreover, the denominator
in ~36a! becomes exponentially small as one approaches the
hyperbolic points, where the splitting is greatest. The impor-
tant result here is not the precise scaling, but the existence of
the heteroclinic tangle and the fact that the splitting is gen-
erally small. It could be possible for the stable and unstable
manifolds to split apart but not intersect transversally.40

Figure 6~a! shows a blow-up of thee50.01 Poincare´
section near the separatrix, while Fig. 6~b! shows a typical
trajectory in this region. Though we anticipate that a hetero-
clinic tangle is present, its width is too narrow to be resolved
by these pictures; one must look very closely at the separa-
trix for any evidence of the separatrix splitting. For larger
values ofe, the separatrix splitting is clearly evident, there
are distinct fold-like structures fore50.03 @Fig. 2~c!#. This
is suggestive of a heteroclinic tangle. Most trajectories, how-
ever, do not follow these structures indefinitely: they usually
merge after a short while.

The separatrix splitting is relevant for vortex merger,
insofar as there are only a limited number of initial condi-
tions outside the separatrix that lead to merger; however, the
relationship is not simple. The separatrix splitting applies to
that portion of the Hamiltonian surface wherel5O(1), not
to the regions wherel!1, as in vortex-shear merger beyond
the separatrix.~Recall that the Melnikov analysis only deals
with small perturbations about a basic state.!

The vicinity of the separatrix is not the only chaotic
region. Figure 7~a! is a blow-up of the Poincare´ section be-
tweenr50.50 andr50.40; Fig. 7~b! is a typical trajectory in
this region. The trajectories hop around chaotically until they
fall into the origin ~i.e., the vortices merge!. This inner cha-
otic region provides an example of chaos associated with a
higher-order resonance46 in which the ratio of the vortices’
rotational frequency to their librational frequency around the
origin is 9:1. Somewhat unusually, chaos around the second-
ary resonances is stronger than chaos around the separatrix.
This is because the separatrix splitting does not correspond
to a primary resonance. For systems in which the time scale
of the perturbation is the same as that of the basic state
motion, the chaotic motion around the separatrix usually cor-
responds to the dominant 1:1 resonance; in our system there
is a separation of time scales between the fast rotation of the

FIG. 5. Typical merging trajectory corresponding to Fig. 4.~a! r :t; and~b!
l:t. The initial conditions are (r i ,u i ,l i)5(9.00,2.81,0.0102). This is an
example of vortex-shear merger.
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vortices and the slow centroidal motion. The order of the
resonances increases as one approaches the separatrix and
chaotic motion around the separatrix is thus severely cur-
tailed. The existence of a separation of time scales for finite
e is consistent with an exponentially small Melnikov integral
in the asymptotic limit.

VI. DISCUSSION

We began this paper by deriving the equations of motion
for N elliptical vortices in a background shear flow using a
Hamiltonian moment formulation. This model generalizes
that of Melanderet al.2 to include a background shear that
combines rotation and strain. Motivated by the phenomenon
of vortex merger, we considered the case of two identical
vortices, both analytically and numerically. A Melnikov
analysis of the separatrix splitting between the stable and
unstable manifolds connecting the hyperbolic fixed points of
the intercentroidal motion was performed, with the expecta-
tion that it would provide insight into the interaction of ini-
tially widely-separated vortices. The numerical results have,
by means of two-dimensional Poincare´ sections, addressed
the relative importance of vortex-vortex and vortex-shear in-

teractions in vortex merger and the relationship between the
separatrix splitting and chaotic motion~around the separatrix
and in the interior!.

The derivation of the model in Sec. II exposes the mod-
el’s Hamiltonian structure. It makes explicit the origin of the
approximations~they are made in the Hamiltonian!, and the
model’s relation to point vortex, Kida, and MZS models. It
would be interesting to see if a related procedure could be
applied to the higher-order non-Hamiltonian model of
Dritschel and Legras15 and the Hamiltonian elliptical model
of Legras and Dritschel.16 The Hamiltonian structure of the
latter has not been elucidated, and a Hamiltonian analog of
the former should, at least in principle, be possible.

The Melnikov analysis of Sec. IV was motivated by vor-
tex merger, but it is interesting in its own right. In dynamical
systems theory, one usually deals with nonintegrable pertur-
bations to integrable basic states; in this work, our starting
point is a chaotic system. This system is then re-expressed as
an integrable basic state plus a rapidly varying perturbation
~which may be constructed order by order in the perturbation
parameter!. The resulting system is an approximate one,
though it does avoid the dynamical consistency problem as-
sociated with externally imposed perturbations.47 It is un-
likely that the higher order terms so neglected would sup-
press the existence of chaos, but in light of the exponentially

FIG. 6. Blow-up of the region around the separatrix fore50.01. ~a! Poin-
caré section for initial conditions (r i ,u i)5(0.9921.01,p/2). ~b! Typical
trajectory just inside the separatrix: (r i ,u i ,l i)5(0.998,1.57,0.7255). Other
parameters are as in Fig. 2.

FIG. 7. Chaos in the interior fore50.01. ~a! Poincare´ section for
r50.4020.50. ~b! Typical ‘‘chaotic’’ trajectory. The initial condition is
(r i ,u i ,l i)5(0.45,0.00,0.152). Other parameters are as in Fig. 2.
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small Melnikov integral, which is consistent with results for
rapidly forced oscillators,24,39,40they could be important.~If
it were not for the implicit form of the separatrix, the sepa-
ratrix splitting induced by perturbations to a given order
could perhaps be bounded using the method of Delshams and
Seara;25 nevertheless, this would not provide a definitive an-
swer in our case, where there are infinitely many terms in the
perturbation.! Another interesting aspect of the analysis is
that it has been applied to a system with two degrees of
freedom which cannot be expressed as a one degree-of-
freedom system with a closed perturbation, as in previous
studies of rapidly forced oscillators. It is also worth noting
that while it has been proven that the Melnikov function is
exponentially small for a class of rapidly forced second order
equations, our analysis has been applied to a more general
system, one whose basic state can include cross-terms, i.e.,
ẍ1 f (x,ẋ)50.

The numerical results of Sec. V have emphasized a geo-
metrical interpretation of the dynamics through the use of
two-dimensional Poincare´ sections. Two-dimensional Poin-
carésections, constructed at fixed energy and vortex orienta-
tion, simplify the visualization of the dynamics and facilitate
a global view. From Poincare´ sections and time series of the
intercentroidal separation and aspect ratio, it is possible, for
sufficiently small perturbation amplitudee, to distinguish be-
tween predominantly vortex-vortex merger and predomi-
nantly vortex-shear merger. In particular, the importance of
the relative orientation of the vortices in vortex-shear merger
is highlighted. Considerations such as this are not captured
by arguments based on energetics. The Poincare´ sections also
demonstrate that it may be preferable to define a merger
criterion for noncircular vortices at fixed energy rather than
fixed aspect ratio.

The exponentially small separatrix splitting suggested by
the asymptotic Melnikov analysis has not been verified di-
rectly ~which would in fact be rather difficult!, but the nu-
merical results for finitee are consistent with it. Poincare´
sections indicate that the separatrix splitting is indeed small.
In our numerical examples of shear-induced merger of ini-
tially well-separated vortices, the aspect ratios were usually
very small by the time the vortices reached separation dis-
tances comparable to the diameter of the separatrix. We do
not know if this will be the case on Hamiltonian surfaces
determined by criteria differing from those in our experi-
ments.

Chaos in the interior is stronger than chaos around the
separatrix. This indicates that even for finitee, there exists,
as assumed in the Melnikov analysis, a separation of time
scales such that a higher order resonance is created near the
separatrix—the order of the resonance increases away from
the origin. The time-scale separation will eventually break
down with increasinge, but this has not been observed here
because of the accompanying increase in vortex merger.

As for future work, it would be interesting to study the
scattering behavior around the separatrix. Since the system is
nonintegrable, chaotic scattering48,49is expected. Preliminary
studies, however, indicate that this is a very weak effect,
largely because of the background shear flow. Different
background flows~we have restricted ourselves to a linear

shear flow!, and different Hamiltonian surfaces (H0 has al-
ways been determined by a point on the unperturbed separa-
trix! should also be considered. This would, moreover, pro-
vide additional insight into the validity of the time-scale
separation. A case for which the time-scale separation breaks
down would provide an example in which the separatrix
splitting has a direct effect on the interaction of the vortices
and, perhaps, on vortex merger as well.
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APPENDIX A: NONCANONICAL DYNAMICS AND
HAMILTONIAN REDUCTION

Noncanonical methods have proven to be useful in sev-
eral branches of continuum mechanics, notably geophysical
fluid dynamics50,51 and magnetohydrodynamics.52,53 The
noncanonical formalism readily lends itself to a systematic
procedure for approximating the equations of motion. A
simple noncanonical representation of the Hamiltonian struc-
ture of the general inviscid and nondiffusive fluid equations
involves writing the equations of motion in the form26,27

]Z

]t
5$Z,H%, ~A1!

whereZ(x,t) is the appropriate set of fluid variables~e.g.,
ru,r, . . . ), andH@Z# is a Hamiltonian functional. In an Eu-
lerian description, the noncanonical Poisson bracket,$,%, has
the form

$F,G%@Z#5 K Z,FdFdZ
,
dG

dZ G L , ~A2!

whereF andG are functionals,̂ ,& is an integration over the
volume corresponding to the spatial variablex, and the func-
tional derivative is defined by

dF@Z;dZ#5: K dZ,
dF

dZ L . ~A3!

The bracket of~A2! is a Lie algebra product for functionals,
i.e., is bilinear, antisymmetric, and satisfies the Jacobi iden-
tity, ˆF,$G,H%‰1ˆG,$H,F%‰1ˆH,$F,G%‰50, provided the
‘‘inner bracket’’ @ ,# is a Lie algebra product for functions. In
the present context, the@ ,# corresponds to the horizontal
Jacobian. Brackets of the form of~A2! are called Lie-Poisson
brackets.
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In order to simplify the Poisson bracket, we confine our
attention to a special subset of all admissible functionalsF
andG and apply a Hamiltonian reduction method. Specifi-
cally, for functions, f andg, of a finite set of linear function-
als ofZ, the Poisson bracket may be written as

$ f ,g%~z!5zl cl
jk ] f

]zj
]g

]zk
, j ,k,l 51,2, . . .M , ~A4!

where thezj are the new ‘‘dynamical variables’’ and the
quantitiescl

jk are the structure constants of some Lie algebra.
Repeated sum notation is used. The cosymplectic matrix,
Jjk:5zl cl

jk , inherits the property of skew-symmetry and the
reduced bracket automatically satisfies Jacobi’s identity. Us-
ing ~A1! and ~A4! to obtain equations of motion for the
dynamical variables,

żj5Jjk
]H

]zk
. ~A5!

The idea of reduction has a long pedigree dating to Jacobi
and Poincare´,54,55 but for our purposes here it allows us to
transform an infinite-dimensional system into a finite-
dimensional one and simplifies the task of determining the
cosymplectic matrix.

APPENDIX B: A PAIR OF POINT VORTICES IN SHEAR

The equations of motion forN point vortices in a steady
background flowu(xi) are given by

ẋi5(
j51

N

8
G j

2p

k3~xi2xj !

uxi2xj u2
1u~xi !, ~B1!

wherek3(xi ,yi)5(2yi ,xi) and the prime denotesj Þ i .
For N52 vortices and a background flow given by~5!, i.e.,

~u,v !5S 2
1

2
~v2e!y,

1

2
~v1e!xD , ~B2!

the equations of motion may be written in the form

ẋ152
G2

2p

y12y2
ux12x2u2

2
1

2
~v2e!y1 ,

ẏ15
G2

2p

x12x2
ux12x2u2

1
1

2
~v1e!x1 ,

~B3!

ẋ252
G1

2p

y22y1
ux12x2u2

2
1

2
~v2e!y2 ,

ẏ25
G1

2p

x22x1
ux12x2u2

1
1

2
~v1e!x2 .

Defining X5x12x2 , Y5y12y2 , and nondimensionalizing
time by (G11G2)

21, the equations for the vortex separation
are

Ẋ52S 1

2p

1

X21Y2 1
1

2
~v2e! DY,

~B4!

Ẏ5S 1

2p

1

X21Y2 1
1

2
~v1e! DX,

where nowv:5v/(G11G2),e:5e/(G11G2).
There are two types of fixed points for the preceding

equations:

I : X50, Y56S 2
1

p

1

v2eD
1/2

,

~B5!

II : X56S 2
1

p

1

v1eD
1/2

, Y50.

Type I is present ifv2e,0, and type II is present if
v1e,0. Linearizing around the fixed points, it is easily
shown that type Is are hyperbolic and type IIs are elliptic.

The hyperbolic fixed points are connected by a separa-
trix ~see Fig. 1!. The separatrix is defined implicitly by the
Hamiltonian,

H52
1

4p
lnuX21Y2u2

1

4
~v2e!Y22

1

4
~v1e!X2.

~B6!

For (e,v)5(1/p,21/p), the hyperbolic fixed points are lo-
cated at (0,61).

APPENDIX C: EQUATIONS OF MOTION FOR N52

For reference we display the general equations of motion
for N52 vortices.

In terms of aspect ratios and orientations, the equations
take the form

Ṙ5
1

2
eR sin 2u2

G01G1

8p2R3 HA0

12l0
2

l0
sin 2~u2f0!

1A1

12l1
2

l1
sin 2~u2f1!J , ~C1!

u̇5
v

2
1
e

2
cos 2u1

G01G1

2pR2 1
G01G1

8p2R4 HA0

12l0
2

l0

3cos 2~u2f0!1A1

12l1
2

l1
cos 2~u2f1!J ,

l̇052l0H G1

pR2sin 2~u2f0!1esin 2f0J ,
l̇152l1H G0

pR2sin 2~u2f1!1esin 2f1J ,
ḟ05

q08l0

~11l0!
2 2

1

2

11l0
2

12l0
2 H G1

pR2cos 2~u2f0!

2ecos 2f0J 1
v

2
,

ḟ15
q18l1

~11l1!
2 2

1

2

11l1
2

12l1
2 H G0

pR2cos 2~u2f1!

2ecos2f1J 1
v

2
;

and the Hamiltonian is given by
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24pH5G0G1 ln R21
1

2 H G0
2 ln

~11l0!
2

l0
1G1

2 ln
~11l1!

2

l1
J 1

G01G1

4
pR2~v1ecos 2u!

1
G0A0

4
@v~l01l0

21!1e~l0
212l0!cos 2f0#1

G1A1

4
@v~l11l1

21!1e~l1
212l1!cos 2f1#

1
G0G1

4pR2 @A0~l02l0
21!cos 2~u2f0!1A1~l12l1

21!cos 2~u2f1!#. ~C2!
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